
Commun. Comput. Phys.
doi: 10.4208/cicp.190313.010813a

Vol. 15, No. 2, pp. 506-555
February 2014

Phase Field Models Versus Parametric Front

Tracking Methods: Are They Accurate and

Computationally Efficient?

John W. Barrett1, Harald Garcke2,∗ and Robert Nürnberg1

1 Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
2 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany.

Received 19 March 2013; Accepted (in revised version) 1 August 2013

Available online 27 September 2013

Abstract. We critically compare the practicality and accuracy of numerical approxima-
tions of phase field models and sharp interface models of solidification. Here we focus
on Stefan problems, and their quasi-static variants, with applications to crystal growth.
New approaches with a high mesh quality for the parametric approximations of the re-
sulting free boundary problems and new stable discretizations of the anisotropic phase
field system are taken into account in a comparison involving benchmark problems
based on exact solutions of the free boundary problem.
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1 Introduction

The solidification of a liquid or the melting of a solid lead to complex free boundary
problems involving many different physical effects. For example, latent heat is set free
at the interface and a competition between surface energy and diffusion leads to insta-
bilities like the Mullins-Sekerka instability. The resulting model is a Stefan problem with
boundary conditions taking surface energy effects and kinetic effects at the interface into
account, see e.g. [37, 51]. Crystals forming in an undercooled melt lead to very complex
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patterns and, in particular, dendritic growth can be observed since the growth is typically
diffusion limited, see [20].

The numerical simulation of time-dependent Stefan problems, or variants of it, is
a formidable task since the evolving free boundary has to be computed. Hence, di-
rect front tracking type numerical methods need to adequately capture the geometry of
the interface and to evolve the interface approximation, often with a coupling to other
physical fields. This coupling, in particular, represents a significant initial hurdle to-
wards obtaining practical implementations, and thus numerical simulations for the prob-
lem at hand. Examples of the implementation of such direct methods can be found in
e.g. [1, 3, 6, 13, 53, 54, 57, 72–75, 81, 86].

A further drawback of direct front tracking methods has been the inability of most
direct methods to deal with so-called mesh effects, or to prevent them altogether. When
a discrete approximation of an interface, for example a polygonal curve in the plane,
evolves in time, then in general it is possible for the approximation to deteriorate or to
break down. Examples of such pathologies are self-crossings and vertex coalescence.
While for simple isotropic problems in the plane these issues can be dealt with, for ex-
ample by frequent remeshings or by using clever formulations that only allow equidis-
tributed approximations, see e.g. [57, 81], until very recently there has been no remedy
for fully anisotropic problems in two and three space dimensions.

However, building on their work for isotropic problems in [8, 9, 11], the present au-
thors recently introduced stable parametric finite element schemes for the direct approx-
imation of anisotropic geometric evolution equations in [10, 12], for which good mesh
properties can be guaranteed. In particular, even for the simulation of interface evolu-
tions in the presence of strong anisotropies, no remeshing or redistribution of vertices is
needed in practice. These schemes, in which only the interface without a coupling to bulk
quantities is modelled, have been extended to approximations of the Stefan problem with
fully anisotropic Gibbs-Thomson law and kinetic undercooling in [13]. The novel method
from [13] can be shown to be stable and to have good mesh properties. We remark that
these approaches extend earlier ideas from [39, 73, 74]. Here we recall the pioneering
work of Schmidt [73, 74], where the full Stefan problem in three dimensions was solved
within a sharp interface framework for the first time.

Phase field methods are an alternative approach to solve solidification phenomena in
the framework of continuum modelling. In phase field approaches a new non-conserved
order parameter ϕ is introduced, which in the two phases is close to two different pre-
scribed values and which smoothly changes its value across a small diffuse interfacial re-
gion. A parabolic partial differential equation for ϕ is then coupled to an energy balance,
which results in a diffusion equation for the temperature taking latent heat effects into
account. We refer to [27, 36, 59, 70, 83] and to the five review articles [25, 33, 62, 77, 79] for
further details. In particular, it can be shown that solutions to the phase field equations
converge to classical sharp interface problems, see e.g. [2, 28, 29, 78] and the references
therein.

The popularity of phase field methods, often also called diffuse interface methods,


