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Abstract. Feynman’s path integral reformulates the quantum Schrödinger differential
equation to be an integral equation. It has been being widely used to compute inter-
nuclear quantum-statistical effects on many-body molecular systems. In this Review,
the molecular Schrödinger equation will first be introduced, together with the Born-
Oppenheimer approximation that decouples electronic and internuclear motions. Some
effective semiclassical potentials, e.g., centroid potential, which are all formulated in
terms of Feynman’s path integral, will be discussed and compared. These semiclassical
potentials can be used to directly calculate the quantum canonical partition function
without individual Schrödinger’s energy eigenvalues. As a result, path integrations
are conventionally performed with Monte Carlo and molecular dynamics sampling
techniques. To complement these techniques, we will examine how Kleinert’s varia-
tional perturbation (KP) theory can provide a complete theoretical foundation for de-
veloping non-sampling/non-stochastic methods to systematically calculate centroid
potential. To enable the powerful KP theory to be practical for many-body molecu-
lar systems, we have proposed a new path-integral method: automated integration-
free path-integral (AIF-PI) method. Due to the integration-free and computationally
inexpensive characteristics of our AIF-PI method, we have used it to perform ab initio
path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related
phosphoryl-transfer chemical reactions. The computational procedure of using our
AIF-PI method, along with the features of our new centroid path-integral theory at the
minimum of the absolute-zero energy (AMAZE), are also highlighted in this review.
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1 Introduction

1.1 Molecular Schrödinger equation

Ever since quantum mechanics was constructed in the 1920s [1–24], solving the non-
relativistic time-independent Schrödinger equation for a system of nuclei and electrons
has become an essential step to understand every single detail of atomic or molecular
properties [1]. The non-relativistic time-independent Schrödinger equation for a molec-
ular system (hereafter we shorten it as the molecular Schrödinger equation) is [25–27]:

ĤmoleΨn =EnΨn, (1.1)

where Ĥmole is the complete (non-relativistic) molecular Hamiltonian, Ψn and En are an
energy eigenfunction (or wave function) and an energy eigenvalue at an eigenstate n,
respectively. In contrast to the (intra)nuclear or nucleon Hamiltonian [28], the complete
molecular Hamiltonian [4, 5, 25–27, 29] for Nn nuclei and Ne electrons can fortunately be
written in an analytic closed form (thanks to the inverse square-distance proportionality
in Coulomb’s electrostatic force law):
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In Eq. (1.2), the units are atomic units [30], Mj is the mass ratio of nucleus j to an electron,
and Zj is the atomic number of nucleus j. The Laplacian operators ∇2

j and ∇2
i denote the

second order differentiation with respect to the coordinates of the jth nucleus and the ith
electron. The first term in Eq. (1.2) represents the kinetic energy operator for nuclei; the


