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Abstract. In this paper, we present an adaptive, analysis of variance (ANOVA)-based
data-driven stochastic method (ANOVA-DSM) to study the stochastic partial differen-
tial equations (SPDEs) in the multi-query setting. Our new method integrates the ad-
vantages of both the adaptive ANOVA decomposition technique and the data-driven
stochastic method. To handle high-dimensional stochastic problems, we investigate
the use of adaptive ANOVA decomposition in the stochastic space as an effective
dimension-reduction technique. To improve the slow convergence of the generalized
polynomial chaos (gPC) method or stochastic collocation (SC) method, we adopt the
data-driven stochastic method (DSM) for speed up. An essential ingredient of the
DSM is to construct a set of stochastic basis under which the stochastic solutions en-
joy a compact representation for a broad range of forcing functions and/or boundary
conditions.

Our ANOVA-DSM consists of offline and online stages. In the offline stage, the
original high-dimensional stochastic problem is decomposed into a series of low-
dimensional stochastic subproblems, according to the ANOVA decomposition tech-
nique. Then, for each subproblem, a data-driven stochastic basis is computed using
the Karhunen-Loève expansion (KLE) and a two-level preconditioning optimization
approach. Multiple trial functions are used to enrich the stochastic basis and improve
the accuracy. In the online stage, we solve each stochastic subproblem for any given
forcing function by projecting the stochastic solution into the data-driven stochastic
basis constructed offline. In our ANOVA-DSM framework, solving the original high-
dimensional stochastic problem is reduced to solving a series of ANOVA-decomposed
stochastic subproblems using the DSM. An adaptive ANOVA strategy is also provided
to further reduce the number of the stochastic subproblems and speed up our method.
To demonstrate the accuracy and efficiency of our method, numerical examples are
presented for one- and two-dimensional elliptic PDEs with random coefficients.
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1 Introduction

Over the past few decades, there has been growing interest and significant progress in
modeling complex physical and engineering systems with uncertainties. Many physical
and engineering applications involving uncertainty quantification can be described by
stochastic partial differential equations (SPDEs). One of the essential challenges in these
applications is how to solve SPDEs efficiently when the dimension of stochastic input
variables is high. These problems are computationally prohibitive for some of the ex-
isting numerical methods, such as stochastic finite element method [14], Wiener chaos
expansion method [19, 28], generalized polynomial chaos (gPC) methods [29, 35, 37, 38],
and stochastic collocation method [1, 39]. One of the reasons is that these methods use
a problem-independent basis, which produces a very large coupled system when the di-
mension of the input stochastic variables is high.

For stochastic problems with high stochastic input dimensions, we employ the func-
tional Analysis of Variance, or ANOVA method [4, 16] as a dimension-reduction tech-
nique. This is motivated by the observation that for many real physical systems, only
a relatively small number of stochastic dimensions is important and will significantly
impact the stochastic systems’ outputs. The ANOVA decomposition was introduced by
Fisher [9]. Later in 1948, Hoeffding successfully applied ANOVA decomposition to study
U-statistics [17]. ANOVA also was used for uncertainty quantification in [36] and was
employed in gPC for solving high-dimensional stochastic PDE systems in [5, 10, 12, 26,
27, 40, 42]. In [10] ANOVA was integrated with a multi-element stochastic collocation
method. In [26], an adaptive version of ANOVA was developed to automatically detect
the important dimensions. In [40], adaptive ANOVA methods based on three different
adaptive criteria were proposed and compared.

ANOVA decomposition of the original high-dimensional stochastic problem results
in a set of low-dimensional subproblems in stochastic space, which are efficiently solved
by the sparse-grid stochastic collocation method. The stochastic collocation method was
first introduced by Tatang and McRae in [34]. The properties of stochastic collocation
method have been extensively studied in the past 10 years. In [3,30,31], the errors of inte-
grating or interpolating functions with Sobolev regularity were analyzed for Smolyak
constructions based on one-dimensional (1D) nested Clenshaw-Curtis rules. In [31],
the degree of exactness of the Smolyak quadrature using Clenshaw-Curtis and Gaus-
sian one-dimensional rules was investigated. In 2003, Gerstner and Griebel [13] intro-
duced the dimension-adaptive tensor-product quadrature method. Recently Xiu and
Hesthaven [39] have used Lagrange polynomial interpolation to construct high-order


