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Abstract. Because of stability constraints, most numerical schemes applied to hyper-
bolic systems of equations turn out to be costly when the flux term is multiplied by
some very large scalar. This problem emerges with the M1 system of equations in
the field of radiotherapy when considering heterogeneous media with very disparate
densities. Additionally, the flux term of the M1 system is non-linear, and in order for
the model to be well-posed the numerical solution needs to fulfill conditions called
realizability. In this paper, we propose a numerical method that overcomes the stabil-
ity constraint and preserves the realizability property. For this purpose, we relax the
M1 system to obtain a linear flux term. Then we extend the stencil of the difference
quotient to obtain stability. The scheme is applied to a radiotherapy dose calculation
example.
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1 Introduction

The present work is devoted to the numerical solution of a moment system of equations,
which describes the transport of electrons in tissues. The model finds application in the
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field of radiotherapy dose calculation when considering low density media [11]:

1

ρ(x)
∇x.ψ1(x,ǫ)=∂ǫ(S(ǫ)ψ

0)(x,ǫ), (1.1a)

1

ρ(x)
∇x.ψ2(x,ǫ)=∂ǫ(S(ǫ)ψ

1)(x,ǫ)−2T(ǫ)ψ1(x,ǫ), (1.1b)

where the unknowns ψ0∈R, ψ1∈R
3 and ψ2∈R

3×3 depend on energy ǫ∈R
+ and position

x ∈R
3. The stopping power S> 0 and the transport coefficient T ≥ 0 are functions of ǫ

characterizing the loss of energy and the deflection of the electrons during their transport.
Finally, ρ(x) > 0 is the density of the medium at point x. This equation is solved by
marching backward in energy, i.e. we prescribe ψ0(ǫmax,x) = 0 and ψ1(ǫmax,x) = 0R3 at
initial energy ǫmax (which means that electrons have bounded energy) and we solve (1.1)
from ǫmax to 0. This choice is motivated by two reasons. First, the system (1.1) is obtained
from the following kinetic equation [11]

Ω

ρ(x)
.∇xψ(x,ǫ,Ω)=∂ǫ(S(ǫ)ψ)(x,ǫ,Ω)+T(ǫ)∂µ

(

(1−µ2)∂µψ
)

(x,ǫ,Ω), (1.2)

by extracting moments (integrating over all Ω=(µ,
√

1−µ2 cosφ,
√

1−µ2sinφ)∈S2 gives
(1.1a) and multiplying (1.2) by Ω and integrating over all Ω∈S2 gives (1.1b)). One realizes
that the collision operator in (1.2) is backward parabolic in ǫ. Indeed it is ill-posed when
working in the direction of increasing ǫ. Second, this choice is also consistent with the
physics. Indeed the electrons only loses electrons in the medium. They are injected with
a maximum energy which progressively decreases. In order to be consistent with both
the underlying kinetic equation and the physics behind it, we always solve (1.1) from a
maximum energy ǫmax to 0.

1.1 M1 model

The system (1.1) is composed of 4 equations with 9 unknowns (scalar ψ0, vector ψ1 and
symmetric matrix with known trace ψ2). It is closed using the entropy minimization
principle [19]:

We seek the function ψM ≥0 minimizing the Boltzmann entropy function

H( f )=
∫

S2
f (Ω)ln f (Ω)dΩ

under the constraint of realizing the moments of order 0 and 1, i.e.
∫

S2
f (Ω)dΩ=ψ0,

∫

S2
Ω f (Ω)dΩ=ψ1.

We close the system (1.1) by fixing ψ2 as the 2nd order moment of ψM

ψ2=
∫

S2
ΩΩTψM(Ω). (1.3)


