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Abstract. We devise an efficient algorithm for the symbolic calculation of irreducible
angular momentum and spin (LS) eigenspaces within the n-fold antisymmetrized ten-
sor product A"V, where n is the number of electrons and u =s,p,d,--- denotes the
atomic subshell. This is an essential step for dimension reduction in configuration-
interaction (CI) methods applied to atomic many-electron quantum systems. The al-
gorithm relies on the observation that each L, eigenstate with maximal eigenvalue is
also an L? eigenstate (equivalently for S; and S2), as well as the traversal of LS eigen-
states using the lowering operators L_ and S_. Iterative application to the remaining
states in A"V}, leads to an implicit simultaneous diagonalization. A detailed complex-
ity analysis for fixed 1 and increasing subshell number u yields run time O(u®"~2). A
symbolic computer algebra implementation is available online.
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1 Introduction

Since the inception of quantum mechanics, it is well-known that the (non-relativistic,
Born-Oppenheimer) Hamiltonian governing many-electron atoms leaves the simultane-
ous eigenspaces of the angular momentum, spin and parity (LS) operators

Lz/ LZ/ 52/ SZ/ R (11)

invariant. From a practical perspective, the restriction to symmetry subspaces can signif-
icantly reduce computational costs (see, e.g., Refs. [1-4]). In particular, such a restriction
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is an essential ingredient for configuration interaction (CI) approximation methods in
Refs. [5-7]. However, simultaneous diagonalization of the operators (1.1) on the full CI
space is encumbered by the inherent “curse of dimensionality”, which renders “naive”
O(dim®) approaches infeasible. The present paper outlines an efficient algorithm for
computing the symbolic eigenspaces by making use of representation theory and the al-
gebraic properties of the LS operators.

In (1.1), the total angular momentum operator is defined as L=} ; L(j) with n the
number of electrons and

L(j)=1xxV; (1.2)

the angular momentum operator acting on electron j. (We choose units such that 71=1.) L,
is the third component of L. In spherical polar coordinates, L, (j) =19/ d¢;. Analogously

for spin, S=Y7i" 1 S(j) with S(j) for a=x,y,z the usual Pauli matrices

1/0 1 1/0 —i 1/1 0
”x_§<1 o)' ”y_§<ﬁ o)' ‘72_§<0 —1) (1.3)

acting on electron j. The components of the angular and spin operators obey the well-
known commutator relations [L{x,Lﬂ] =1L, and [Sa,S,g] = 1S, with &,B,7 cyclic permu-
tations of x,y,z. The ladder operators are given by L+ = Ly+iL, and S+ =S, +1S,. They
have the property that for any angular momentum eigenfunction ¢ with eigenvalue my,
L.y™ is zero or an eigenfunction with eigenvalue m,+1, and correspondingly for spin.
The parity operator acts on wavefunctions as Rtp(xl,sl,---,xn,sn) =(—x1,51,"*,—%n,5n),
where x;€RR and s; € {— 1,3} are the position and spin coordinate of electron j.

The simultaneous diagonalization of the LS operators is greatly simplified by rep-
resentation theory using Clebsch-Gordan coefficients. Specifically, the required compu-
tational cost is reduced to the calculation of irreducible LS representation spaces (i.e.,
diagonalizing the operators (1.1)) on the n-fold antisymmetrized tensor product A"V,
(compare with Ref. [7, proposition 2]). Here, V,, denotes an angular momentum subshell,
u=s,p,d,f,--- in chemist’s notation. An explicit realization of V, is

Viu=span{Yum T, Yumd}mesu 1. u (1.4)
with the spherical harmonics Y, ;,:

1
Ys,O = \/ﬁ’

Yo1=—131/5=sin(0)e’, Y,0=3% \/%COS(Q), Y, 1=131/5=sin(f)e "¢

We identify the subshell label u with the corresponding quantum number, i.e., s,p,d,f,--- <
0,1,2,3,---. In particular, dim(V,) =2(2u+1). Note that Y, T, Yi,n are simultaneous
single-particle L,-S, eigenstates. They serve as underlying ordered orbitals, which we



