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Abstract. We devise an efficient algorithm for the symbolic calculation of irreducible
angular momentum and spin (LS) eigenspaces within the n-fold antisymmetrized ten-
sor product ∧nVu, where n is the number of electrons and u = s,p,d,··· denotes the
atomic subshell. This is an essential step for dimension reduction in configuration-
interaction (CI) methods applied to atomic many-electron quantum systems. The al-
gorithm relies on the observation that each Lz eigenstate with maximal eigenvalue is
also an L

2 eigenstate (equivalently for Sz and S
2), as well as the traversal of LS eigen-

states using the lowering operators L− and S−. Iterative application to the remaining
states in ∧nVu leads to an implicit simultaneous diagonalization. A detailed complex-
ity analysis for fixed n and increasing subshell number u yields run time O(u3n−2). A
symbolic computer algebra implementation is available online.

PACS: 31.15.-p, 03.65.Fd, 02.70.Wz

Key words: Angular momentum and spin symmetry, atomic many-electron quantum systems,
symbolic computation.

1 Introduction

Since the inception of quantum mechanics, it is well-known that the (non-relativistic,
Born-Oppenheimer) Hamiltonian governing many-electron atoms leaves the simultane-
ous eigenspaces of the angular momentum, spin and parity (LS) operators

L
2, Lz, S

2, Sz, R̂ (1.1)

invariant. From a practical perspective, the restriction to symmetry subspaces can signif-
icantly reduce computational costs (see, e.g., Refs. [1–4]). In particular, such a restriction
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is an essential ingredient for configuration interaction (CI) approximation methods in
Refs. [5–7]. However, simultaneous diagonalization of the operators (1.1) on the full CI
space is encumbered by the inherent “curse of dimensionality”, which renders “naive”
O(dim3) approaches infeasible. The present paper outlines an efficient algorithm for
computing the symbolic eigenspaces by making use of representation theory and the al-
gebraic properties of the LS operators.

In (1.1), the total angular momentum operator is defined as L=∑
n
j=1 L(j) with n the

number of electrons and

L(j)= 1
i

xj×∇j (1.2)

the angular momentum operator acting on electron j. (We choose units such that h̄=1.) Lz

is the third component of L. In spherical polar coordinates, Lz(j)= 1
i

∂/∂ϕj. Analogously
for spin, S=∑

n
j=1 S(j) with Sα(j) for α= x,y,z the usual Pauli matrices

σx =
1

2

(

0 1
1 0

)

, σy=
1

2

(

0 −i

i 0

)

, σz =
1

2

(

1 0
0 −1

)

(1.3)

acting on electron j. The components of the angular and spin operators obey the well-
known commutator relations [Lα,Lβ] = iLγ and [Sα,Sβ] = iSγ with α,β,γ cyclic permu-
tations of x,y,z. The ladder operators are given by L±= Lx±iLy and S±= Sx±iSy. They
have the property that for any angular momentum eigenfunction ψmℓ with eigenvalue mℓ,
L±ψmℓ is zero or an eigenfunction with eigenvalue mℓ±1, and correspondingly for spin.
The parity operator acts on wavefunctions as R̂ψ(x1,s1,··· ,xn,sn) =ψ(−x1,s1,··· ,−xn,sn),
where xj∈R

3 and sj∈{− 1
2 , 1

2} are the position and spin coordinate of electron j.

The simultaneous diagonalization of the LS operators is greatly simplified by rep-
resentation theory using Clebsch-Gordan coefficients. Specifically, the required compu-
tational cost is reduced to the calculation of irreducible LS representation spaces (i.e.,
diagonalizing the operators (1.1)) on the n-fold antisymmetrized tensor product ∧nVu

(compare with Ref. [7, proposition 2]). Here, Vu denotes an angular momentum subshell,
u=s,p,d,f,··· in chemist’s notation. An explicit realization of Vu is

Vu =span{Yu,m↑,Yu,m↓}m=u,u−1,···,−u (1.4)

with the spherical harmonics Yu,m:

Ys,0=
1√
4π

,

Yp,1=− 1
2

√

3
2π sin(θ)eiϕ, Yp,0=

1
2

√

3
π cos(θ), Yp,−1=

1
2

√

3
2π sin(θ)e−iϕ

···

We identify the subshell label u with the corresponding quantum number, i.e., s,p,d,f,···↔
0,1,2,3,··· . In particular, dim(Vu) = 2(2u+1). Note that Yu,m ↑, Yu,m ↓ are simultaneous
single-particle Lz-Sz eigenstates. They serve as underlying ordered orbitals, which we


