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Abstract. Using the incompressible isotropic turbulent fields obtained from direct nu-
merical simulation and large-eddy simulation, we studied the statistics of oscillation
structures based on local zero-crossings and their relation with inertial-range inter-
mittency for transverse velocity and passive scalar. Our results show that for both
the velocity and passive scalar, the local oscillation structures are statistically scale-
invariant at high Reynolds number, and the inertial-range intermittency of the overall
flow region is determined by the most intermittent structures characterized by one
local zero-crossing. Local flow patterns conditioned on the oscillation structures are
characterized by the joint probability density function of the invariants of the filtered
velocity gradient tensor at inertial range. We demonstrate that the most intermittent
regions for longitudinal velocity tend to lay at the saddle area, while those for the trans-
verse velocity tend to locate at the vortex-dominated area. The connection between the
ramp-cliff structures in passive scalar field and the corresponding saddle regions in the
velocity field is also verified by the approach of oscillation structure classification.
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1 Introduction

Inertial-range intermittency is a well-known feature in turbulent flows quantified by the
anomalous scaling of structure functions Sp(r). In isotropic velocity field, Sp(r) can be
either the longitudinal structure function Sp(r)=〈|δru|p〉, or the transverse structure func-
tion ST

p (r)=〈|δrv|p〉. Here 〈···〉 denotes the ensemble average, δru=u(x+r/2)−u(x−r/2)
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and δrv=v(x+r/2)−v(x−r/2), where u and v are the velocity components in the same
and normal directions to the separation r, respectively. Kolmogorov’s similarity the-

ory [1,2] predicted the simple scaling behavior that Sp(r)∼rζp and ST
p (r)∼rζT

p , with both

ζp and ζT
p equal to p/3. Experimental measurements and numerical simulations showed

that the scaling exponents ζp and ζT
p depart from p/3 when p 6=3 [3–10]. The intermittent

behavior has also been observed in the passive scalar field θ [5, 11, 12], that the structure
function Sθ

p(r) has a scaling ξp departing from p/3 as predicted by the KOC theory of

Obukhov [13] and Corrsin [14], where Sθ
p(r)= 〈|δrθ|p〉 and δrθ= θ(x+r/2)−θ(x−r/2).

Many models have been proposed to describe the anomalous scaling of structure
functions of velocity [3, 15–19] and passive scalar [20–24]. These models present more
and more accurate depiction of the scaling exponents, however the essence of intermit-
tence remains to be an open issue, and the corresponding debates are briefly summarized
as follows:

(1) For the longitudinal velocity structure function, it was predicted that the intense
vortex structures are responsible for the inertial-range intermittency [18, 25, 26], while
Sain et al. [27] argued that the existence of vortex filaments is not crucial for the anoma-
lous scaling.

(2) For the transverse velocity structure function, plenty of works have been de-
voted to clarify whether ζT

p should be equal to ζp. Biferale and Procaccia [28] stated

that ζT
p should be equal to ζp theoretically, and this relation appears to be supported

by some experimental measurements [29, 30]. On the other hand, many experimental
results [6,31,32] and numerical simulations [4,33] suggest that these two scalings are dif-
ferent. It is argued that anisotropy [34,35] and finite Reynolds number effects [34,36] have
large contribution to the difference between the ζT

p and ζp, while the discrepancy can still

be observed in the experimental measurement at Reynolds number of about 104 [6] and
DNS fields where the isotropy can be welly maintained [7–10]. Boratav and Pelz [33] in-
ferred that the difference of ζT

p and ζp is due to an imbalance contribution to intermittency
of the enstrophy-dominated and the strain-dominated regions. Chen et al. [19] studied
the relation between enstrophy and ST

p (r), and proposed the refined similarity hypoth-
esis for transverse velocity increments, which is verified by their DNS data and further
supported by the experimental measurement of Zhou et al. [37].

(3) For the passive scalar field, it was shown that when a mean gradient of passive
scalar was imposed, the ramp-cliff structures would cause the isotropy to be violated at
very small scales [11,12,38,39]. Warhaft conjectured that the departure from local isotropy
at the small scales and the internal intermittency are intimately related [11]. However, to
the best of our knowledge, no work has provided a clear description about the connection
between the flow structures and the inertial-range intermittency of passive scalar.

In the companion paper [40], the effect of the geometric properties on the anomalous
scaling of longitudinal velocity structure function was studied, using the newly devel-
oped oscillation structure (OS) classification based on local zero-crossings. It was found


