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Abstract. We propose an all regime Lagrange-Projection like numerical scheme for the
gas dynamics equations. By all regime, we mean that the numerical scheme is able to
compute accurate approximate solutions with an under-resolved discretization with
respect to the Mach number M, i.e. such that the ratio between the Mach number M
and the mesh size or the time step is small with respect to 1. The key idea is to de-
couple acoustic and transport phenomenon and then alter the numerical flux in the
acoustic approximation to obtain a uniform truncation error in term of M. This mod-
ified scheme is conservative and endowed with good stability properties with respect
to the positivity of the density and the internal energy. A discrete entropy inequality
under a condition on the modification is obtained thanks to a reinterpretation of the
modified scheme in the Harten Lax and van Leer formalism. A natural extension to
multi-dimensional problems discretized over unstructured mesh is proposed. Then
a simple and efficient semi implicit scheme is also proposed. The resulting scheme
is stable under a CFL condition driven by the (slow) material waves and not by the
(fast) acoustic waves and so verifies the all regime property. Numerical evidences are
proposed and show the ability of the scheme to deal with tests where the flow regime
may vary from low to high Mach values.
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1 Introduction

In this paper, we consider the system of gas dynamics in two space dimension in sit-
uations when the flow regime may vary in terms of Mach number M across the com-
putational domain. We propose a collocated Finite Volume method that addresses two
important issues.

The first issue concerns the lack of accuracy in the low Mach regime of Godunov-type
schemes. While these methods perform well at capturing shocks, they may generate
spurious numerical diffusion when they are used for simulating low Mach flows over
relatively coarse mesh with respect to the Mach number. Improvements of Godunov-type
schemes more generally of collocated methods have been proposed by many authors like
[5,7–9,11,15,19,21,22,24,26,27,32,33]. The analysis of these authors may rely on different
arguments like the analysis of the viscosity matrix [33], an asymptotic expansion in terms
of Mach number [19], a detailed study in [11] that seek for invariance properties of the
numerical scheme transposing the framework of Schochet [28] to the discrete setting,
and also an analysis based on the so-called Asymptotic Preserving property [23] in [22].
Nevertheless the resulting cure usually boils down to reduce the numerical diffusion in
the momentum equation for low Mach number values.

The second problem we address deals with subsonic flow when the fluid velocity is
slow and the acoustic waves are not driving phenomenons. In this case, the Courant-
Friedrichs-Lewy (CFL) condition on the time step for explicit Godunov-type methods
that involves the (fast) acoustic wave velocity may lead to very small time steps choices
and thus costly computations. It seems natural to seek for numerical schemes that enable
the use of a large time steps that are not constrained by the sound velocity. This question
has been examined by several authors like [7–9,22,24] (see also [4,6]) who derived mixed
implicit-explicit strategies that allows to choose the time step independently of the Mach
Number.

Numerical schemes that can tackle both issues, namely: accuracy for mesh sizes that
do not depend on the Mach number and also stability for time steps that are not con-
strained by the Mach value are usually referred to as all regime, like the methods proposed
by [7–9, 22, 24].

In the present work, we first propose an operator splitting strategy that allows to
decouple the acoustic and the transport phenomenons. The approximation algorithm is
split into two steps: an acoustic step and a transport step. For one-dimensional problems,
this strategy is equivalent to an explicit Lagrange-Projection [14, 18] method, however
the present splitting does not involve any moving Lagrangian mesh and can be naturally
expressed for multi-dimensional problems. Following simple lines inspired by [10, 11]
we investigate the dependence of the truncation error with respect to the Mach number.
Let us mention that our study does not involve a Taylor expansion in the vicinity of the
zero-Mach limit, nor a near-divergence free condition for the velocity field. Although this
analysis is by no mean a thorough explanation of the low Mach regime behavior of our
solver, it is enough to suggest simple means to obtain a truncation error with a uniform
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dependence on the Mach number for M < 1. The cure simply relies on modifying the
pressure terms in the flux of the acoustic operator that is coherent with the correction
proposed by [10, 11, 15, 21, 27]. Although this modified scheme is based on a modified
flux definition, one can shows that it can also be rephrased as a simple approximate
Riemann solver in the sense of Harten, Lax and van Leer [20] that is consistent with the
integral form of the gas dynamics equation. This scheme is endowed with good stability
properties under a CFL condition that involves the Mach number as the time step is still
constrained by the sound velocity.

We propose to circumvent this time-step restriction by implementing a mixed implicit-
explicit method following the ideas developed by [6] for one-dimensional problems using
a genuine Lagrange-Projection framework. This idea was also used in [4] and consists in
using an implicit update for the acoustic step and an explicit march in time for the trans-
port step. This enables stability under a CFL condition that only involves the (slow)
material waves without the (fast) acoustic waves. Finally, let us mention that the overall
procedure is a conservative discretization that relies on a Suliciu relaxation approach [30]
that allows to cope with compressible fluids equipped with very general Equation of
State (EOS).

The paper is structured as follows: we first present the operator splitting considering
only one-dimensional problems. Then we study the behavior of the scheme in the low
Mach regime. This allows to lead to an explicit corrected scheme for the sole acoustic
step that preserves the accuracy of the scheme at low Mach. Interestingly, we show that
this flux-based corrected method may be expressed thanks to an approximate Riemann
solver for the acoustic step. Next and thanks to this property, we investigate the ability of
the corrected scheme to satisfy to a discrete entropy inequality. Afterwards, we present
the extension of the operator splitting method to unstructured meshes either with a semi-
implicit or full-explicit march in time. Finally we present numerical results involving low
Mach and multi-regime flows.

2 Governing equations

We are interested in the two-dimensional gas dynamics equations





∂tρ+∇·(ρu)=0,

∂t(ρu)+∇·(ρu⊗u)+∇p=0,

∂t(ρE)+∇·[(ρE+p)u]=0,

(2.1a)

(2.1b)

(2.1c)

where ρ, u=(u1,u2)t, E denote respectively the density, the velocity vector and the total
energy of the fluid. Let e = E−|u|2/2 be the specific internal energy of the fluid and s
its specific entropy. We note τ = 1/ρ and we suppose given an Equation of State (EOS)
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through the mapping (τ,s) 7→ eEOS which satisfies to the usual Weyl assumptions [34]

∂τeEOS<0, ∂se
EOS >0, ∂ττeEOS >0,

∂sse
EOS>0, ∂ττeEOS∂sse

EOS > (∂τse
EOS)2, ∂τττeEOS<0. (2.2)

The entropy s = sEOS(τ,e) verifies e = eEOS(τ,s) thanks to (2.2) and we can define the

pressure p =−∂τeEOS and the sound velocity c = τ
√

∂ττeEOS. The above assumptions
imply that (τ,s) 7→ eEOS and (τ,e) 7→ −sEOS are strictly convex. Using a slight abuse of
notation, we shall also consider p as a function of (τ,e) and note p= pEOS(τ,e).

3 Acoustic/transport operator splitting strategy for the

one-dimensional problem

In this section we will consider for the sake of simplicity one-dimensional problems and
propose a two-step approximation strategy based on an operator splitting. The aim of
this splitting is to decouple acoustic and transport phenomena. Using this guideline we
will propose an explicit numerical solver. We shall propose two simple extensions of this
method to two-dimensional problems discretized over unstructured grids using either
an explicit or a semi-implicit time update in Section 5.4.

Before going any further, we introduce classical notations for the one-dimensional
setting: let ∆t > 0 and ∆x > 0 be respectively the time and space steps. We define the
Eulerian mesh interfaces xj+1/2 = j∆x for j∈Z, and the intermediate times tn = n∆t for

n∈N. If b is a fluid parameter, in the sequel, we will note bn
j (resp. bn+1

j ) the approximate

value b respectively within the jth cell [xj−1/2,xj+1/2) at instant t= tn (resp. t= tn+1).

For one-dimensional problems, (2.1) supplemented with a passive scalar variable v
(that will account for the transverse velocity in two-dimensional problems) reads





∂tρ+∂x(ρu)=0,

∂t(ρu)+∂x(ρu2+p)=0,

∂t(ρv)+∂x(ρuv)=0,

∂t(ρE)+∂x [(ρE+p)u]=0.

(3.1a)

(3.1b)

(3.1c)

(3.1d)

Our discretization strategy of (3.1) consists in approximating successively the solutions
of the following systems (3.2) and (3.3) where





∂tρ+ρ∂xu=0,

∂t(ρu)+ρu∂xu+∂x p=0,

∂t(ρv)+ρv∂xu=0,

∂t(ρE)+ρE∂xu+∂x(pu)=0,

(3.2a)

(3.2b)

(3.2c)

(3.2d)
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and 



∂tρ+u∂xρ=0,

∂t(ρu)+u∂x(ρu)=0,

∂t(ρv)+u∂x(ρv)=0,

∂t(ρE)+u∂x(ρE)=0.

(3.3a)

(3.3b)

(3.3c)

(3.3d)

In the sequel, system (3.2) and (3.3) will be respectively referred to as the acoustic
system and the transport system.

Given a fluid state (ρ,ρu,ρv,ρE)n
j , j ∈Z at instant tn, this splitting algorithm can be

decomposed as follows.

1. Update the fluid state (ρ,ρu,ρv,ρE)n
j to the value (ρ,ρu,ρv,ρE)n+1−

j by approximat-

ing the solution of (3.2);

2. Update the fluid state (ρ,ρu,ρv,ρE)n+1−
j to the value (ρ,ρu,ρv,ρE)n+1

j by approxi-

mating the solution of (3.3).

3.1 Properties and approximation of the one-dimensional acoustic system

First, we notice that the acoustic system (3.2) reads equivalently

∂tτ−τ∂xu=0, ∂tu+τ∂x p=0, ∂tv=0, ∂tE+τ∂x(pu)=0. (3.4)

The acoustic system (3.4) is a quasilinear system that can be simply checked to be
strictly hyperbolic. Indeed, the Jacobian of the system (3.4) has three eigenvalues (λ1,λ2,λ3)=
(−c,0,+c). The waves associated with λ1 and λ3 are genuinely nonlinear waves while
the wave of velocity λ2=0 is a stationary contact discontinuity.

In order to derive an update process from (ρ,ρu,ρv,ρE)n
j to (ρ,ρu,ρv,ρE)n+1−

j , we will

perform several approximations. We notice that for a smooth solution (3.4) we also have
∂t p+τ(ρc)2∂xu=0 and we thus choose to perform a Suliciu-type approximation of (3.4)
for t ∈ [tn,tn+∆t) by introducing a surrogate pressure Π and considering the relaxed
system





∂tτ−τ∂xu=0,

∂tu+τ∂xΠ=0,

∂tv=0,

∂tE+τ∂x(Πu)=0,

∂tΠ+τa2∂xu=ν(Π−p),

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

where a>0 is parameter whose choice will be specified later. In the regime ν→+∞ we
formally recover (3.4). In our numerical solver context, we classically mimic the ν→+∞

regime enforcing at each time step Πn
j = pEOS(τn

j ,en
j ) and then solving (3.5) with ν=0.
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At last, for t∈ [tn,tn+∆t) we choose to approximate τ(x,t)∂x by τ(x,tn)∂x in (3.5). If
one introduces the mass variable m defined by dm=ρ(x,tn)dx our approximation of (3.4)
(up to an abuse of notation) can be expressed in the following fully conservative form

∂tW+∂mF(W)=0, (3.6)

where W=(τ,u,v,E,Π)T and F(W)=(−u,Π,0,Πu,a2u)T. Let us remark that (3.6) is con-
sistent with a Suliciu relaxation of the gas dynamics equation written in Lagrangian co-
ordinates using a mass variable formulation. The solution of the Riemann problem asso-
ciated with (3.6) can be derived explicitly (see Section C). This allows to write an exact
Godunov solver for (3.6) that turns out to be an approximate Riemann solver for (3.4)
following the Harten-Lax-van Leer formalism (see Section B and [1, 20]). It provides us
with the update formula





Wn+1−
j =Wn

j −
∆t

∆x

(
Fj+1/2−Fj−1/2

)
,

Fj+1/2=F(Wn
j ,Wn

j+1),

F(WL,WR)=(−u∗,Π∗,0,Π∗u∗,a2u∗)T,

(3.7a)

(3.7b)

(3.7c)

where 



u∗=
(uR+uL)

2
−

1

2a
(ΠR−ΠL),

Π∗=
(ΠR+ΠL)

2
−

a

2
(uR−uL).

(3.8a)

(3.8b)

The update of the conservative variables is obtained by setting ρn+1−
j =1/τn+1−

j , (ρu)n+1−
j =

ρn+1−
j ×un+1−

j , (ρv)n+1−
j = ρn+1−

j ×vn+1−
j and (ρE)n+1−

j = ρn+1−
j ×En+1−

j . This can be

summed up by the following update formulas





Ljρ
n+1−
j =ρn

j ,

Lj(ρu)n+1−
j =(ρu)n

j −
∆t

∆x
(Π∗

j+1/2−Π∗
j−1/2),

Lj(ρv)n+1−
j =(ρv)n

j ,

Lj(ρE)n+1−
j =(ρE)n

j −
∆t

∆x
(Π∗

j+1/2u∗
j+1/2−Π∗

j−1/2u∗
j−1/2),

Lj=1+
∆t

∆x
(u∗

j+1/2−u∗
j−1/2).

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.9e)

Let us remark that (3.7) also proposes an update relation for Π. However in this case
Π is just a disposable intermediate value whose role only consists in providing a formula
for the interface pressure terms and the updated value Πn+1−

k will be discarded. Indeed
in this explicit scheme, Π is updated after each time step by the equilibrium formula
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Πn
j = pEOS(τn

j ,en
j ). However, this will no longer be the case for semi-implicit strategy as we

will see in Section 5.4.

Let us finally note that the relaxation scheme (3.7) is equivalent to the acoustic scheme [12].
In order to avoid numerical instabilities, the parameter a must complies with the subchar-
acteristic condition

a>maxρc, (3.10)

for all possible values of ρc when considering a solution of the equilibrium system (3.4).
In practice we will choose a value aLR for each interface by setting

aLR =Kmax(ρn
Lcn

L,ρn
Rcn

R), (3.11)

where K ≥ 1, LR = j+1/2, L = j and R = j+1. We refer the reader to [1–3, 14] and the
reference therein for more details.

3.2 Properties and approximation of the one-dimensional transport system

The transport system equation discretization is quite simple. Indeed, system (3.3) is a
quasi-linear hyperbolic system that only involves the transport of the conservative vari-
ables with the velocity u. We choose to approximate the solution of (3.3) thanks to a
standard upwind Finite-Volume approximation for ϕ∈{ρ,ρu,ρv,ρE}

ϕn+1
j = ϕn+1−

j −
∆t

∆x

(
u∗

j+1/2ϕn+1−
j+1/2−u∗

j−1/2ϕn+1−
j−1/2

)
+

∆t

∆x
ϕn+1−

j

(
u∗

j+1/2−u∗
j−1/2

)
, (3.12)

where

ϕn+1−
j+1/2=

{
ϕn+1−

j , if u∗
j+1/2≥0,

ϕn+1−
j+1 , if u∗

j+1/2<0.

Let us finally remark that (3.12) can be recast into

ϕn+1
j = ϕn+1−

j Lj+
∆t

∆x

(
u∗

j+1/2ϕn+1−
j+1/2−u∗

j−1/2ϕn+1−
j−1/2

)
. (3.13)

3.3 Properties of the operator splitting scheme

We present here a few properties of the operator splitting scheme defined by (3.7) and
(3.12). Let us first remark that this algorithm performs the same update as a classical
Lagrange-Remap (or equivalently Lagrange-Projection) algorithm for one-dimensional
problems (see appendix A) although the design of our algorithm does not involve a mov-
ing mesh for following the variables in a Lagrangian reference frame. This feature will be
the key element of the multi-dimensional extension of the present scheme. It is also interesting to
mention that the operator splitting strategy also provided a mean of treating the waves of
the gas dynamics system (3.1) separately: the acoustic step only involves acoustic waves
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while freezing the transport waves. The transport step only deals with the contact dis-
continuity of the material transport. Let us mention that a similar operator splitting was
used in [13].

The overall update from variable at instant tn to variables at instant tn+1 is fully con-
servative with respect to ρ, ρu, ρv and ρE. Indeed, we have





ρn+1
j =ρn

j +
∆t

∆x

(
u∗

j+1/2ρn+1−
j+1/2−u∗

j−1/2ρn+1−
j−1/2

)
,

(ρu)n+1
j =(ρu)n

j +
∆t

∆x

(
u∗

j+1/2(ρu)n+1−
j+1/2+Π∗

j+1/2−u∗
j−1/2(ρu)n+1−

j−1/2−Π∗
j−1/2

)
,

(ρv)n+1
j =(ρv)n

j +
∆t

∆x

(
u∗

j+1/2(ρv)n+1−
j+1/2−u∗

j−1/2(ρv)n+1−
j−1/2−

)
,

(ρE)n+1
j =(ρE)n

j +
∆t

∆x

(
u∗

j+1/2(ρE)n+1−
j+1/2+Π∗

j+1/2u∗
j+1/2−u∗

j−1/2(ρE)n+1−
j−1/2

−Π∗
j−1/2u∗

j−1/2

)
.

(3.14a)

(3.14b)

(3.14c)

(3.14d)

The scheme (3.7)-(3.8) for the acoustic step is stable under the Courant-Friedrichs-
Lewy (CFL) condition

∆t

∆x
max
j∈Z

(
max(τn

j ,τn
j+1)aj+1/2

)
≤

1

2
. (3.15)

If one notes b±=(b±|b|)/2, then a classical result states that the CFL condition associated
with the transport scheme (3.12) reads

∆tmax
j∈Z

(
(u∗

j− 1
2
)+−(u∗

j+ 1
2
)−
)
<∆x. (3.16)

Entropy-related stability properties of the scheme will be examined in Section 5.3.

One can also remark that both the acoustic steps and the transport steps are achieved
thanks to genuine Godunov solvers applied to simplified subsystems.

4 Behavior of the scheme with respect to the Mach regime

We are now interested in the behavior of the numerical scheme with respect to the vari-
ations of the Mach regime. In order to characterize the Mach regime of the flow, we
consider a classical rescaling of the equations (3.1): let us introduce the following non-
dimensional quantities:

x̃=
x

L
, t̃=

t

T
, ρ̃=

ρ

ρ0
, ũ=

u

u0
, ṽ=

v

v0
, ẽ=

e

e0
, p̃=

p

p0
, c̃=

c

c0
. (4.1)
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The parameters L, T, u0=v0=L/T, ρ0, e0= p0ρ0, p0 and c0=
√

p0/ρ0 denote respectively
a characteristic length, time, velocity, density, internal energy, pressure and sound speed.
If M=u0/c0 is the so-called Mach-number then system (3.1) reads





∂t̃ρ̃+∂x̃(ρ̃ũ)=0,

∂t̃(ρ̃ũ)+∂x̃(ρ̃ũ2)+
1

M2
∂x̃ p̃=0,

∂t̃(ρ̃ṽ)+∂x̃(ρ̃ũṽ)=0,

∂t̃(ρ̃Ẽ)+∂x̃[(ρ̃Ẽ+ p̃)ũ]=0,

(4.2a)

(4.2b)

(4.2c)

(4.2d)

where Ẽ= ẽ+M2ũ2/2. For a given small value of the Mach number, we distinguish two
cases:

• the term ∂x̃ p̃ remains of magnitude O(M2). Then the variations of ρ̃ũ are of order 1
which implies that all the tilde variables will remain of order 1. We shall refer this
case as the low Mach regime;

• the term ∂x̃ p̃ does not remain of magnitude O(M2). Then the variations of ρ̃ũ will
reach a magnitude O(1/M) or O(1/M2). These large magnitude variations of the
momentum will induce a growth of the Mach number and thus a change of Mach
regime.

Before going any further, let us underline that in the present approach we do not in-
tend to study the behavior of the rescaled system (3.1) in the limit regime M→ 0. This
delicate question has been widely investigated over the past years and is still a rich field
of research [11, 19, 22]. We focus here on a simpler task that consists in examining the
consistency of a rescaled approximate solution provided by the splitting operator algo-
rithm with the solution of (4.2) in the low Mach regime. The framework we will place
ourselves in does not require sophisticated hypotheses and may deal with the evaluation
of a local behavior of the solution (a few neighbouring cells in the discrete setting). More
precisely, if one considers smooth solutions of (4.2) and considers the truncation error of
the rescaled numerical scheme in the sense of Finite Difference, how does it depends on
M in the low Mach regime?

Introducing the rescaling defined earlier into (3.8) we get

ũ∗
j+1/2=

1

2
(ũn

j +ũn
j+1)−

1

2ãj+1/2 M
(Π̃n

j+1−Π̃n
j ),

Π̃∗
j+1/2=

1

2
(Π̃n

j +Π̃n
j+1)−

ãj+1/2 M

2
(ũn

j+1−ũn
j ),
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for (3.9) we have





L̃jρ̃
n+1−
j = ρ̃n

j ,

L̃j(ρ̃ũ)n+1−
j =(ρ̃ũ)n

j −
∆t̃

M2∆x̃
(Π̃∗

j+1/2−Π̃∗
j−1/2),

L̃j(ρ̃ṽ)n+1−
j =(ρ̃ṽ)n

j ,

L̃j(ρ̃Ẽ)n+1−
j =(ρ̃Ẽ)n

j −
∆t̃

∆x̃
(Π̃∗

j+1/2ũ∗
j+1/2−Π̃∗

j−1/2ũ∗
j−1/2),

L̃j= Lj=1+
∆t̃

∆x̃
(ũ∗

j+1/2−ũ∗
j−1/2),

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

and finally if ϕ̃∈{ρ̃,ρ̃ũ,ρ̃ṽ,ρ̃Ẽ} the rescaling of (3.13), reads

1

∆t̃
(ϕ̃n+1

j − L̃j ϕ̃
n+1−
j )+

1

∆x̃

(
ϕ̃n+1−

j+1/2ũ∗
j+1/2−ũ∗

j−1/2 ϕ̃n+1−
j−1/2

)
=0. (4.4)

Note that the CFL restriction of the acoustic step reads now

∆t̃

∆x̃
max(τ̃n

j ,τ̃n
j+1)ã

n
j+1/2≤

M

2
, (4.5)

while the CFL restriction associated with the transport step is

(
(ũ∗

j−1/2)
+−(ũ∗

j+1/2)
−
) ∆t̃

∆x̃
≤1. (4.6)

In order to evaluate the truncation error (in the Finite Difference sense) in the low
Mach regime, we use the classical tool of equivalent equations. Let (x̃, t̃) 7→ b̃ be a pa-
rameter of (rescaled) functions that describe a smooth flow. With a classical slight abuse
of notation, we consider that ϕ̃(xj,t

n)= ϕ̃n
j so that we can substitute these functions into

the discrete update formula when ϕ̃∈{ρ̃,ũ,ṽ,Ẽ,Π̃}. We suppose that we are in low Mach
regime, namely ∂x̃ p̃=O(M2). This hypothesis yields that Π̃n

j+1 = Π̃n
j +O(M2∆x̃) for the

discrete unknowns. We have the following result.

Proposition 4.1. In the low Mach regime, the rescaled discretization of the acoustic step
is consistent with

∂t̃τ̃− τ̃∂x̃ũ=O(∆t̃)+O(M∆x̃), ∂t̃ũ+
τ̃

M2
∂x̃ p̃=O(∆t̃)+O

(
∆x̃

M

)
,

∂t̃ṽ=O(∆t̃), ∂t̃Ẽ+ τ̃∂x̃( p̃ũ)=O(∆t̃)+O(M∆x̃).

The rescaled discretization of the transport step is consistent with

∂t̃ ϕ̃+ũ∂x̃ ϕ̃=O(∆t̃)+O(∆x̃)+O(M∆x̃),
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and the equivalent equation verified by the rescaled scheme reads





∂t̃ρ̃+∂x̃(ρ̃ũ)=O(∆t̃)+O(∆x̃)+O(M∆x̃),

∂t̃(ρ̃ũ)+∂x̃(ρ̃ũ2)+
1

M2
∂x̃ p̃=O(∆t̃)+O(∆x̃)+O(M∆x̃)+O

(
∆x̃

M

)
,

∂t̃(ρ̃ṽ)+∂x̃(ρ̃ũṽ)=O(∆t̃)+O(∆x̃)+O(M∆x̃),

∂t̃(ρ̃Ẽ)+∂x̃[(ρ̃Ẽ+ p̃)ũ]=O(∆t̃)+O(∆x̃)+O(M∆x̃).

(4.7a)

(4.7b)

(4.7c)

(4.7d)

Proof. There exists three smooth functions A, B and C of magnitude 1 with respect to M
such that

ũ∗
j+1/2=

ũn
j+1+ũn

j

2
+M∆x̃A(xj+1/2,tn)+O(M∆x̃2),

Π̃∗
j+1/2=

Π̃n
j+1+Π̃n

j

2
+M∆x̃B(xi+1/2,tn)+O(M∆x̃2),

Π̃∗
j+1/2ũ∗

j+1/2=
(ũn

j+1+ũn
j )(Π̃

n
j+1+Π̃n

j )

4
+M∆x̃C(xi+1/2,tn)+O(M∆x̃2).

Injecting the above relation into (4.3) we get





L̃jρ̃
n+1−
j = ρ̃n

j ,

L̃j(ρ̃ũ)n+1−
j =(ρ̃ũ)n

j −
∆t̃

M2

Π̃n
j+1−Π̃n

j−1

2∆x̃
+O

(
∆x̃∆t̃

M

)
,

L̃j(ρ̃jṽ)
n+1−=(ρ̃ṽ)n

j ,

Lj(ρ̃Ẽ)n+1−
j =(ρ̃Ẽ)n

j −∆t̃

(
(ũn

j+1+ũn
j )(Π̃

n
j+1+Π̃n

j )

4∆x̃
−
(ũn

j−1+ũn
j )(Π̃

n
j−1+Π̃n

j )

4∆x̃

)

+O(M∆x̃∆t̃),

L̃j=1+∆t̃
ũn

j+1−ũn
j−1

2∆x̃
+O(M∆x̃∆t̃).

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

This yields





L̃jρ̃
n+1−
j = ρ̃n

j ,

L̃j(ρ̃ũ)n+1−
j =(ρ̃ũ)n

j −
∆t̃

M2
∂x̃ p̃+O

(
∆x̃∆t̃

M

)
+O

(
∆x̃2∆t̃

)
,

L̃j(ρ̃jṽ)
n+1−=(ρ̃ṽ)n

j ,

Lj(ρ̃Ẽ)n+1−
j =(ρ̃Ẽ)n

j −∆t̃∂x̃( p̃ũ)+O(M∆x̃∆t̃)+O(∆x̃2∆t̃),

L̃j=1+∆t̃∂x̃ũ+O(M∆x̃∆t̃)+O(∆x̃2∆t̃).

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.9e)
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Remark 4.1. For smooth solutions in the low Mach regime, we have ∂x̃ p̃=O(M2). We
used this relation to obtain the term O(∆x̃2∆t̃) in (4.9b).

Let us remark that (4.9) is indeed consistent at order 1 with respect to ∆x with

∂t̃τ̃− τ̃∂x̃ũ=O(∆t̃)+O(M∆x̃), ∂t̃ũ+
τ̃

M2
∂x̃ p̃=O(∆t̃)+O

(
∆x̃

M

)
,

∂t̃ṽ=O(∆t̃), ∂t̃Ẽ+ τ̃∂x̃( p̃ũ)=O(∆t̃)+O(M∆x̃).

Now we turn to the transport step. Accounting for the low Mach hypothesis, (4.4)
becomes

1

∆t̃
(ϕ̃n+1

j − L̃j ϕ̃
n+1−
j )+

1

2∆x̃

(
ϕ̃n+1−

j+1/2(ũ
n
j+1+ũn

j )− ϕ̃n+1−
j−1/2(ũ

n
j +ũn

j−1)
)
=O(M∆x̃),

hence
1

∆t̃
(ϕ̃n+1

j − L̃j ϕ̃
n+1−
j )+∂x̃(ϕ̃ũ)=O(∆x̃)+O(M∆x̃), (4.10)

which is consistent with ∂t̃ ϕ̃+ũ∂x̃ ϕ̃=O(∆t̃)+O(∆x̃)+O(M∆x̃). Finally, using (4.9) into
(4.10) we finally obtain the desired result.

Remark 4.2. It is important to note that the analysis we proposed in this section cannot
be considered as an exhaustive explanation for the behavior of the numerical scheme in
the Low Mach regime. It just merely provides magnitude estimate of the truncation er-
ror. Considering the same lines with additional hypotheses: ρ̃, ũ, ṽ, Ẽ are solution of
the rescaled gas dynamics equations in the low Mach regime with well-prepared condi-
tions [11], then one can show that the O(∆x̃/M) term in (4.7b) does vanish [11] for one-
dimensional problems set over the whole real line. The analysis is delicate and depends
on many hypotheses: for two-dimensional problems same results can be obtained for
discretization over a triangular mesh with periodic boundary conditions. However, this
no longer works for two-dimensional Cartesian meshes where the classical Godunov-
type solvers perform poorly with periodic boundary conditions. More general boundary
conditions require a specific study for each case [10, 11].

5 Low Mach correction

The equivalent equation (4.7) satisfied by the rescaled scheme is clearly not satisfactory
because of the term O(∆x̃/M) which behaves bad when M≪∆x̃. This suggests to modify
the scheme accordingly.
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5.1 Correction of the low Mach behavior: a simple flux modification

In the light of the previous asymptotic analysis, we propose to leave the projection step
unchanged and rather focus on the acoustic step of the scheme. In the acoustic step, we
suggest to simply replace Π∗

j+1/2 by

Π
∗,θ
j+1/2=

1

2
(Πn

j +Πn
j+1)−θj+1/2

aj+1/2

2
(un

j+1−un
j ). (5.1)

The associated dimensionless flux reads

Π̃
∗,θ
j+1/2=

1

2
(Π̃n

j +Π̃n
j+1)−θj+1/2

ãj+1/2M

2
(ũn

j+1−ũn
j ). (5.2)

This yields the following modified scheme for the acoustic step.





Wn+1−
j =Wn

j −
∆t

∆x

(
Fj+1/2−Fj−1/2

)
,

Fj+1/2=Fθ(Wn
j ,Wn

j+1),

Fθ(WL,WR)=(−u∗,Π∗,θ,0,Π∗,θu∗,a2u∗)T.

(5.3a)

(5.3b)

(5.3c)

Let us underline that this modification solely alters the non-centered terms of the

pressure flux. In other words this does not modify the ultimate consistency of Π
∗,θ
j+1/2

with the pressure value, it does impact the numerical dissipation involved with the dis-
cretization of the pressure terms. This approach complies with several previous works
that have been investigating the approximation of the low Mach regime like [15, 21, 27].
While such modification is usually delicate with regards to the stability of the numerical
scheme, we will nevertheless see that the resulting modified numerical scheme is still
endowed with stability properties (see Section 5.3). In the sequel, in order to perform
an equivalent equation analysis with the modified pressure flux, we consider a smooth
function x 7→θ such that θj+1/2=θ(xj+1/2). We have the following consistency properties

for the numerical scheme with the modified pressure flux Π
∗,θ
j+1/2.

Proposition 5.1. In the low Mach regime, the rescaled discretization (5.3) of the acoustic
step is consistent with

∂t̃τ̃− τ̃∂x̃ ũ=O(∆t̃)+O(M∆x̃), ∂t̃ũ+
τ̃

M2
∂x̃ p̃=O(∆t̃)+O

(
θ∆x̃

M

)
,

∂t̃ṽ=O(∆t̃), ∂t̃Ẽ+ τ̃∂x̃( p̃ũ)=O(∆t̃)+O(M∆x̃)+O(Mθ∆x̃).

The rescaled discretization of the transport step is consistent with

∂t̃ ϕ̃+ũ∂x̃ ϕ̃=+O(∆t̃)+O(∆x̃)+O(M∆x̃),
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and the equivalent equation verified by the rescaled scheme reads




∂t̃ρ̃+∂x̃(ρ̃ũ)=O(∆t̃)+O(∆x̃)+O(M∆x̃),

∂t̃(ρ̃ũ)+∂x̃(ρ̃ũ2)
1

M2
+∂x̃ p̃=O(∆t̃)+O(∆x̃)+O

(
θ∆x̃

M

)
,

∂t̃(ρ̃ṽ)+∂x̃(ρ̃ũṽ)=O(∆t̃)+O(∆x̃)+O(M∆x̃).

∂t̃(ρ̃Ẽ)+∂x̃[(ρ̃Ẽ+ p̃)ũ]=O(∆t̃)+O(∆x̃)+O(M∆x̃)+O(Mθ∆x̃).

(5.4a)

(5.4b)

(5.4c)

(5.4d)

As a consequence, provided that we impose the asymptotic behavior θj+1/2 =O(M), the
truncation error is uniform with respect to M.

Proof. Following similar lines as in the proof of Proposition 4.1 and using the same nota-
tions, there exists three smooth functions A, B, C and D of magnitude 1 with respect to
M such that

ũ∗
j+1/2=

ũn
j+1+ũn

j

2
+M∆x̃A(xj+1/2,tn)+O(M∆x̃2),

Π̃
∗,θ
j+1/2=

p̃n
j+1+ p̃n

j

2
+θj+1/2M∆x̃B(xi+1/2,tn)+O(M∆x̃2),

Π̃
∗,θ
j+1/2ũ∗

j+1/2=
(ũn

j+1+ũn
j )( p̃n

j+1+ p̃n
j )

4
+M∆x̃C(xi+1/2,tn)+Mθj+1/2∆x̃D(xi+1/2,tn)

+O(M∆x̃2).

The rest of the analysis follows the same line as the proof of Proposition 4.1. Using (4.3)
we get





L̃jρ̃
n+1−
j = ρ̃n

j ,

L̃j(ρ̃ũ)n+1−
j =(ρ̃ũ)n

j −
∆t̃

M2
∂x̃ p̃+O

(
θ∆x̃∆t̃

M

)
+O

(
∆x̃2∆t̃

)
,

L̃j(ρ̃jṽ)
n+1−=(ρ̃ṽ)n

j ,

Lj(ρ̃Ẽ)n+1−
j =(ρ̃Ẽ)n

j −∆t̃∂x̃( p̃ũ)+O(M∆x̃∆t̃)+O(Mθ∆x̃∆t̃)+O(∆x̃2∆t̃),

L̃j=1+∆t̃∂x̃ũ+O(M∆x̃∆t̃)+O(∆x̃2∆t̃),

(5.5a)

(5.5b)

(5.5c)

(5.5d)

(5.5e)

and (4.4) yields again

1

∆t̃
(ϕ̃n+1

j − L̃j ϕ̃
n+1−
j )+∂x̃(ϕ̃ũ)=O(∆x̃)+O(M∆x̃). (5.6)

Relations (5.5) and (5.6) provides the desired results.

Remark 5.1. In the light of the truncation error that appears in (4.7), one can see that it
is not necessary to involve a correction for the energy flux term in (5.3c). It would be
possible to consider a numerical scheme with the definition (3.8a) for the velocity at the
interface, the modified pressure (5.1) for interface pressure terms and Π∗u∗ for the energy
flux.
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5.2 Approximate Riemann solver for the modified acoustic scheme

The modified numerical scheme (5.3) for the acoustic step belongs to the category of flux-
based solver. Indeed, this solver relies on an update formula (5.3a) that involves the
modified flux (5.3c). We will prove in this section that this modified flux solver can also
be obtained thanks to an approximate Riemann solver in the sense of Harten, Lax and
van Leer [1, 20], see also Annex B for a quick refresh on this, that is consistent with the
integral form of (3.6). This formalism is useful to establish stability properties. We have
the following proposition.

Proposition 5.2. There exists a simple approximate Riemann solver that is an approxi-
mation of the Riemann problem associated with the relaxed acoustic problem (3.6) and
whose associated flux matches the flux of the modified acoustic solver. More precisely,
there exists a self-similar function

Wθ
RP

(m

t
;WL,WR

)
=(τ,u,v,E,Π)

(m

t
;WL,WR

)
=





WL, if m/t<−a,

W∗,θ
L , if −a≤m/t<0,

W∗,θ
R , if 0≤m/t<+a,

WR, if +a≤m/t,

(5.7)

such that

Fθ(WR,WL)=F(WL)−
∫ 0

−∞
[Wθ

RP(ξ;WL,WR)−WL]dξ

=F(WR)+
∫ +∞

0
[Wθ

RP(ξ;WL,WR)−WR]dξ. (5.8)

The states W∗,θ
L =(τ∗,θ

L ,u∗,θ
L ,v∗,θ

L ,Π∗,θ
L )T and W∗,θ

R =(τ∗,θ
R ,u∗,θ

R ,v∗,θ
R ,Π∗,θ

R )T are given by

τ∗,θ
L =τL+

1

a
(u∗−uL), τ∗,θ

R =τR+
1

a
(uR−u∗),

u∗,θ
L =u∗+

1

2
(θ−1)(uR−uL), u∗,θ

R =u∗+
1

2
(1−θ)(uR−uL),

v∗,θ
L =vL, v∗,θ

R =vR,

E∗,θ
L =EL+

1

a
(ΠLuL−Π∗,θu∗), E∗,θ

R =ER+
1

a
(Π∗,θu∗−ΠRuR)

Π
∗,θ
L =Π∗, Π

∗,θ
R =Π∗.

(5.9a)

(5.9b)

(5.9c)

(5.9d)

(5.9e)

Proof. Suppose that Wθ
RP is consistent with the integral form of the relaxed acoustic prob-

lem (3.6) then for a given WL and WR we have

F(WR)−F(WL)=−a(W∗,θ
L −WL)+a(WR−W∗,θ

R ),

which reads

W∗,θ
R +W∗,θ

L =WR+WL−
1

a

(
F(WR)−F(WL)

)
. (5.10)



C. Chalons, M. Girardin and S. Kokh / Commun. Comput. Phys., 20 (2016), pp. 188-233 203

If the resulting flux of this approximate Riemann solver is Fθ(WL,WR) then (5.8) is veri-
fied and yields

2Fθ(WL,WR)=F(WR)+F(WL)−a(W∗,θ
L −WL)−a(WR−W∗,θ

R )

or equivalently

W∗,θ
R −W∗,θ

L =WR−WL+
1

a

(
2Fθ(WL,WR)−F(WL)−F(WR)

)
. (5.11)

Both (5.10) and (5.11) provide

W∗,θ
L =WL−

1

a

(
Fθ(WL,WR)−F(WL)

)
, W∗,θ

R =WR+
1

a

(
Fθ(WL,WR)−F(WR)

)
.

This yields the desired results.

Using this approximate Riemann solver, we can deduce that the modified acoustic
solver (5.3) is stable under the same CFL conditions (3.15) that does not depend on the
Mach number M. Moreover, when θ=1 the self-similar function Wθ

RP defined in Proposi-
tion 5.2 degenerates to the exact solution of the Riemann problem associated with relaxed
acoustic system (3.6).

Finally, if one takes into account the equilibrium projection step of the relaxation strat-
egy into the approximate Riemann solver of Proposition 5.2, we have ΠL = pEOS(τL,eL),
and ΠR = pEOS(τR,eR). Under this assumption, it is easy to check that the first coordi-
nates (τ,u,v,E) of the self similar function Wθ

RP are consistent with the integral form of
the acoustic system (3.4).

5.3 Properties of the modified operator splitting scheme

We start this section by examining the ability of the modified operator splitting scheme
to satisfies a discrete entropy inequality. In the sequel, I(b,b′)⊂R will denote the interval
whose bounds are b∈R and b′ ∈R. We consider the following slightly more restrictive
subcharacteristic condition

τ∗
L >0, −∂τ pEOS(τ,sL)≤ a2, ∀τ∈ I(τL,τ∗

L ),

τ∗
R >0, −∂τ pEOS(τ,sR)≤ a2, ∀τ∈ I(τR,τ∗

R),
(5.12)

and we start with the two following technical results. we also refer the reader to Annex
B for a quick refresh on this topic.

Lemma 5.1. Consider the solution of Riemann problem for the relaxed acoustic system (3.6).
Suppose that (5.12) is verified. Let sk = sEOS(τk,ek), k= L,R, we have

e∗k −eEOS(τ∗
k ,sk)−

(
pEOS(τ∗

k ,sk)−Π∗
)2

2a2
≥0. (5.13)



204 C. Chalons, M. Girardin and S. Kokh / Commun. Comput. Phys., 20 (2016), pp. 188-233

Proof. We consider the case k=R and set for τ∈ I(τR,τ∗
R)

φ(τ)=eEOS(τ,sR)−
pEOS(τ,sR)

2

2a2
−eEOS(τ∗

R,sR)+
pEOS(τ∗

R,sR)
2

2a2

+pEOS(τ∗
R,sR)

(
τ+

pEOS(τ,sR)

a2
−τ∗

R−
pEOS(τ∗

R,sR)

a2

)
.

We have φ′(τ)=
(

pEOS(τ,sR)−pEOS(τ∗
R,sR)

)(
1−ρ2c2(τ,sR)/a2

)
. If τR >τ>τ∗

R (resp. τR <

τ<τ∗
R) the Weyl assumptions (2.2) provides pEOS(τ,sR)−pEOS(τ∗

R,sR)<0 (resp. pEOS(τ,sR)−
pEOS(τ∗

R,sR)>0) and together with hypothesis (5.12) this yields φ′(τ)≥0 (resp. φ′(τ)≤0).
As φ(τ∗

R) = 0 we obtain that φ(τR)> φ(τ∗
R) = 0 for τ ∈ I(τR,τ∗

R). Using the Riemann in-

variant jump relation (e∗R−
Π∗

2a2 ) = (eR−
ΠR

2a2 ), one obtains 0 < φ(τR) = e∗R−eEOS(τ∗
R,sR)−

1
2a2 (pEOS(τ∗

R,sR)−Π∗)2. The same lines applies for the case k= L.

Lemma 5.2. Let θ∈R, and e∗,θ
k =E∗,θ

k −(u∗,θ
k )2/2 for k= L,R then we have

e∗,θ
k −eEOS(τ∗,θ

k ,sk)−
1

2a2

(
pEOS(τ∗,θ

k ,sk)−Π∗
)2

+
(1−θ)2(uR−uL)

2

8
≥0, k= L,R. (5.14)

Proof. One has u∗,θ
R = u∗+(1−θ)(uR−uL)/2 and Π∗,θ =Π∗+(1−θ)a(uR−uL)/2 and to-

gether with (5.9) one obtains e∗,θ
R = e∗R−(1−θ)2(uR−uL)

2/8. Injecting this relation into

(5.13) and noticing that τ∗,θ
R = τ∗

R provides the desired result for k= R. The case k= L is
obtained with the same lines.

It is now clear that the inequalities

−
1

2a2

(
pEOS(τ∗,θ

k ,sR)−Π∗
)2

+
(1−θ)2(uR−uL)

2

8
≤0, k= L,R (5.15)

can help us equip the modified numerical scheme with a discrete entropy inequality.

Proposition 5.3. Let s∗,θ
k = sEOS(τ∗,θ

k ,e∗,θ
k ) for k= L,R. If assumption (5.15) is verified, we

have
0≤−a(s∗,θ

L −sL)+a(sR−s∗,θ
R ). (5.16)

Inequality (5.16) implies that the modified scheme (5.3) for the acoustic step is consistent
with the integral form of the entropy inequality

∂ts(τ,e)≤0. (5.17)

Moreover, the explicit modified scheme (5.3) is equipped with a discrete entropy inequal-
ity. Indeed there exists a numerical flux function qn

j+1/2 = q(Wn
j ,Wn

j+1) that is consistent

with 0 when ∆t and ∆x tend to 0 such that

s(τn+1−
j ,en+1−

j )−s(τn
j ,en

j )+τn
j

∆t

∆x
(qn

j+1/2−qn
j−1/2)≤0. (5.18)
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Proof. Let k= L,R, under hypothesis (5.15), we have that e∗,θ
k ≥ eEOS(τ∗,θ

k ,sk). According

to (2.2) ǫ 7→ sEOS(τ∗,θ
k ,ǫ) is increasing, thus sEOS(τ∗,θ

k ,e∗,θ
k )= s∗,θ

k ≥ sEOS(τ∗,θ
k ,eEOS(τ∗,θ

k ,sk))=
sk. Inequality (5.16) follows trivially. Relation (5.16) expresses the consistency with the
integral form of (5.17) and it provides the entropy inequality (5.18) (see [1, Chap. 2] and
Annex B).

We can now state the following entropic property for the full modified operator split-
ting explicit scheme composed by (5.3) and (3.12).

Proposition 5.4. If the assumptions (5.15), (3.15) and (3.16) are verified, then the explicit
scheme defined by (5.3) and (3.12) verifies the following discrete entropy inequality

ρn+1
j s(τn+1

j ,en+1
j )−ρn

j s(τn
j ,en

j )+
∆t

∆x

(
gn

j+1/2−gn
j−1/2

)
≤0, (5.19)

where the numerical entropy flux is defined by

gn
j+1/2=(u∗

j+1/2)
+ρn+1−

j s(τn+1−
j ,en+1−

j )+(u∗
j+1/2)

−ρn+1−
j s(τn+1−

j+1 ,en+1−
j+1 )+qn

j+1/2. (5.20)

Proof. Let φ∈ (ρ,ρu,ρv,ρE), under the CFL assumption (3.16) the transport scheme (3.12)
expresses φn+1

j as a convex combination of φn+1−
i , i= j−1, j, j+1, indeed one has

φn+1
j =

∆t

∆x
(u∗

j−1/2)
+φn+1−

j−1 +

(
1−

∆t

∆x
((u∗

j+1/2)
−−(u∗

j−1/2)
+)

)
φn+1−

j +
∆t

∆x
(u∗

j+1/2)
−φn+1−

j+1 .

As the mapping (ρ,ρu,ρv,ρE) 7→−(ρs)(τ,e) is a strictly convex function (see for ex-
ample [18]) we obtain that

−(ρs)(τn+1
j ,en+1

j )≤−
∆t

∆x
(u∗

j−1/2)
+(ρs)(τn+1−

j−1 ,en+1−
j−1 )

−

(
1−

∆t

∆x
((u∗

j+1/2)
−−(u∗

j−1/2)
+)

)
(ρs)(τn+1−

j ,en+1−
j )

−
∆t

∆x
(u∗

j+1/2)
−(ρs)(τn+1−

j−1 ,en+1−
j+1 ).

Using relation (5.18) one obtains (5.19).

We now sum up the main properties of the modified operator splitting scheme.

Theorem 5.1. Suppose that (3.15), (3.16) (3.10) are satisfied, the explicit scheme defined by (5.3)
and (3.12) verifies

1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy
ρE,

2. the density ρn
j is positive for all j and n>0 provided that ρ0

j is positive for all j,
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3. if θ=O(M), then the truncation error of the numerical scheme is uniform with respect to
M<1,

4. if (5.15) is verified then the numerical scheme is equipped with a discrete entropy inequality,

5. if (5.15) is verified then en
j >0 for all j∈Z and all n∈N.

It is clear from (5.4b) that the choice θ =O(M) is natural for the modified scheme to
have an equivalent equation which is satisfactory when M ≪ ∆x̃ (uniform consistency
w.r.t. M). At this stage θ =O(M) is not made precise, see Section 6 below. Let us now
discuss the new condition which is related to the correction θ.

5.3.1 Behavior of condition (5.15) in the low-Mach regime for a perfect gas equation

of state

We have just seen that the scheme is entropic provided that (5.15) is satisfied. In this
section, we study the compatibility in the low Mach regime between the condition (5.15)
that is required to obtain a discrete entropy inequality and the condition θ =O(M) that
is required to have uniform consistency with respect to M (see Section 5). If |uR−uL|=0,
any value of θ ∈R verifies condition (5.15), we can then assume that |uR−uL|> 0. We
consider the case of a Perfect Gas EOS defined by pEOS(ρ,e) = (γ−1)ρe, where γ is the

specific heat ratio. First, let us recall that τ∗,θ
k =τ∗

k and Πk= pEOS(τk,sk), k=R,L. For k=R,
relation (5.15) reads

|1−θ|≤
2

a

|pEOS(τ∗
R,sR)−Π∗|

|uR−uL|
. (5.21)

Let us remark that the right hand side of this inequality does not depend on θ. The
Perfect Gas assumption provides that pEOS(τ∗

R,sR)=ΠR (τR/τ∗
R)

γ, therefore thanks to the
definition of Π∗ we get

pEOS(τ∗
R,sR)−Π∗=ΠR (τR/τ∗

R)
γ−

ΠL+ΠR

2
+

a

2
(uR−uL). (5.22)

The definition of τ∗,θ
R = τ∗

R by (5.9) using the dimensionless parameters defined by (4.1)
gives τ̃∗

R = τ̃R+(Π̃R−Π̃L)/(2ã2)+M(ũR−ũL)/(2ã). If one now supposes that the flow
is locally in the low Mach regime, then we have ∂x̃Π̃ =O(M2), therefore ΠR−ΠL =
O(M2∆x̃). Thus we obtain

τ̃∗
R

τ̃R
=1+M

ũR−ũL

2ãτ̃R
+O(M2∆x̃).

Injecting the above relation into (5.22), we obtain

pEOS(τ∗
R,sR)−Π∗

p0
=−

M

2

[
1−

γΠ̃R

ã2τ̃R

]
ã(ũR−ũL)+O(M2∆x̃).
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Using the fact that γpEOS(τR,sR)=γΠR=ρR(cR)
2 for a Perfect Gas in the previous relation

allows to recast (5.21) into

|1−θ|≤

∣∣∣∣∣1−
(

ρ̃R c̃R

ã

)2

+O

(
M∆x̃

|ũR−ũL|

)∣∣∣∣∣. (5.23)

Let us recall that by definition : ã=Kmax(ρ̃R c̃R,ρ̃L c̃L) with K≥1. Suppose without loss
of generality that ρ̃R c̃R=max(ρ̃R c̃R,ρ̃L c̃L) then (ρ̃R c̃R)

2/ã2=1/K and the condition (5.23)
becomes

|1−θ|≤

∣∣∣∣∣1−
(

1

K

)2

+O

(
M∆x̃

|ũR−ũL|

)∣∣∣∣∣.

Behavior when M→0. When M→0 the above inequality yields that θ≥(1/K)2 if one wants
to enforce uniform consistency with respect to M by setting θ =O(M). This leads to a
contradiction. As a conclusion, a correction scheme with θ=O(M) does not provide an
entropic scheme in the asymptotic limit M→0. On the contrary, θ=1 which correspond to
the classic unmodified scheme is still entropic. Nevertheless, it is reasonable to consider
that in the limit M→0, the solution of the gas dynamics equation is smooth and therefore
the consistency with an entropy criterion is a less critical matter.

5.4 Extension to several space dimensions with unstructured grids

Without loss of generality, we suppose that Ω⊂R
2 is a polygonal domain that is covered

by a set of N polygonal cells (Ωj)1≤j≤N . Let Γ be a face of a cell Ωj, 1≤ j≤N. If Γ⊂∂Ω, we
suppose that there exists a single k>N that will help to index ghost values for boundary
conditions and we shall note Γ=Γjk. If Γ∩∂Ω=∅, we suppose that the mesh is admissible

in the sense that there exists a single 1≤k≤N such that Γ=Ωj∩Ωk. Moreover, for 1≤ j≤N

and 1≤k≤N we suppose that Ωi∩Ωj can either be empty, a vertex or a single face of the
mesh. If Γjk be the face of a cell Ωj then njk will denote the unit vector normal to Γjk

pointing out of Ωj. We define N (j) the set of indices k such that Γjk is a face of Ωj. Let
E={(j,k) | 1≤ j,k≤N, k∈N (j)} and Eext={(j,k) | 1≤ j≤N, k∈N (j),Γjk⊂∂Ω}. In sequel

x=(x1,x2)∈R
2 will denote the space variable.

We will now present a natural extension of our discretization strategy for the case of
multi-dimensional problems with unstructured grids. Within this framework, the clas-
sical Lagrange-Remap algorithm involves tracking a genuine multi-dimensional moving
mesh. This task is a very delicate matter as the mesh may be dramatically distorted
during the simulation. We will here present a much simpler approach that relies on the
alternative guideline proposed in Section 3. Concerning multi-dimensional Lagrange-
Remap strategies we refer the reader to [14]. Methods for implementing a Lagrange-
Remap method without Lagrangian mesh have been proposed in [13] for deriving and
explicit schemes for two-component interface problems and more recently in [31]. Let
us also mention that the present strategy is being investigated independently by another
team within the framework of HPC implementations [16].



208 C. Chalons, M. Girardin and S. Kokh / Commun. Comput. Phys., 20 (2016), pp. 188-233

Ωk

Ωj

njk

N

S

Figure 1: the face Γjk =Ωj∩Ωk defined the segment (NS) has a unit normal vector njk oriented from Ωj to
Ωk.

Consider the operator splitting of (2.1) into the following systems





∂tρ+ρdiv(u)=0,

∂t(ρu)+ρudiv(u)+∇p=0,

∂t(ρE)+ρEdiv(u)+div(Pu)=0,

(5.24a)

(5.24b)

(5.24c)

and 



∂tρ+(u·∇)ρ=0,

∂t(ρu)+(u·∇)ρu=0,

∂t(ρE)+(u·∇)ρE=0.

(5.25a)

(5.25b)

(5.25c)

Before going any further, let us note that we obtain similar properties as for the systems
(3.2) and (3.3). Indeed system (5.24) is a quasilinear hyperbolic system that involves the
two nonlinear acoustic waves of velocity ±c and two null velocity contact discontinu-
ities waves. System (5.24) only involves acoustic phenomena while freezing the material
transport, while (5.25) is pure multi-dimensional transport system at the material velocity
u.

We adopt the same strategy as in Section 3: given a fluid state (ρ,ρu,ρE)n
j ,

• update the fluid state to the value (ρ,ρu,ρE)n+1−
j by approximating the solution of

(5.24),

• update the fluid state to the value (ρ,ρu,ρE)n+1
j by approximating the solution of

(5.25).

Approximation of the acoustic system (5.24)
System (5.24) can be expressed

∂tτ−τ(x,t)div(u)=0, ∂tu+τ(x,t)∇p=0, Et+τ(x,t)div(pu)=0.
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Using the same lines as in Section 3 we consider a Suliciu-type relaxation approximation

∂tτ−τ(x,t)div(u)=0, ∂tu+τ(x,t)∇Π=0,

Et+τ(x,t)div(pu)=0, Πt+τ(x,t)a2div(u)=ν(p−Π),

in the regime ν →+∞. Once again, for t ∈ [tn,tn+∆t), this task is achieved by setting
Π(x,tn)= p(x,tn) and then solving the relaxation system for ν=0. We approximate again
τ(x,t)∂xr by τ(x,tn)∂xr for r=1,2 when t∈ [tn ,tn+∆t). In the regime λ=0 our approxima-
tion of (5.24) becomes

∂tτ−τ(x,tn)div(u)=0, ∂tu+τ(x,tn)∇Π=0,

Et+τ(x,tn)div(pu)=0, Πt+τ(x,tn)a2div(u)=0. (5.26)

If b is a flow parameter and bn
j is an approximation of 1

|Ωj|

∫
Ωj

b(x,tn)dx, we solve (5.26)

thanks to the following classical Finite-Volume method





un+1−
j =un

j −τn
j ∆t ∑

k∈N (j)

σjk Π
∗,θ
jk njk,

Πn+1−
j =Πn

j −τn
j ∆t ∑

k∈N (j)

σjk (ajk)
2u∗

jk,

τn+1−
j =τn

j +τn
j ∆t ∑

k∈N (j)

σjk u∗
jk,

En+1−
j =En

j −τn
j ∆t ∑

k∈N (j)

σjk Π
∗,θ
jk u∗

jk,

(5.27a)

(5.27b)

(5.27c)

(5.27d)

where σjk = |Γjk|/|Ωj|.

The three scalar quantities ajk , Π
∗,θ
jk and u∗

jk that respectively represent an average

sound velocity, a pressure and the normal velocity at the face Γjk. In order to define
these quantities, we classically take advantage of the fact that (5.26) is rotational invari-
ant. This allows to associate in the referential of each face Γjk a Suliciu-type relaxation
approximation of a one-dimensional Riemann problem in the frame of the face. Noting
♯∈{n,n+1−}, this leads us to set

ajk ≥max[(ρc)n
j ,(ρc)n

k ],

u∗
jk =

1

2
nT

jk(u
♯
j +u

♯
k)−

1

2ajk
(Π♯

k−Π
♯
j ),

Π
∗,θ
jk =

1

2
(Π♯

j +Π
♯
k)−

ajkθjk

2
nT

jk(u
♯
k−u

♯
j ).

(5.28a)

(5.28b)

(5.28c)

When ♯=n the solver is explicit and when ♯=n+1−, the solver is implicit.
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Approximation of the transport system (5.25)
In order to approximate the solution of (5.25), we simply use an upwind Finite-Volume
scheme. Let ϕ∈{ρ,ρu1,ρu2,ρE}, we set

ϕn+1
j = ϕn+1−

j −∆t ∑
k∈N (j)

σjk u∗
jk ϕn+1−

jk +∆tϕn+1−
j ∑

k∈N (j)

σjk u∗
jk, (5.29)

where ϕn+1−
jk is defined by the upwind choice with respect to the sign of u∗

jk, namely

ϕn+1−
jk =

{
ϕn+1−

j , if u∗
jk >0,

ϕn+1−
k , if u∗

jk ≤0.

Proposition 5.5. The overall numerical scheme composed by the discretization steps
(5.27a)-(5.27d) and (5.29) is conservative with respect to the variable ρ, ρu and ρE, for
both the implicit solver and the explicit solver. The update of these variables from tn to
tn+1 reads

ρn+1
j −ρn

j +∆t ∑
k∈N (j)

σjk ρn+1−
jk u∗

jk =0,

(ρu)n+1
j −(ρu)n

j +∆t ∑
k∈N (j)

σjk

(
(ρu)n+1−

jk u∗
jk+Π

∗,θ
jk njk

)
=0,

(ρE)n+1
j −(ρE)n

j +∆t ∑
k∈N (j)

σjk

(
(ρE)n+1−

jk +Π
∗,θ
jk

)
u∗

jk =0.

(5.30a)

(5.30b)

(5.30c)

The semi-implicit solver obtained for ♯= n+1− can be decomposed along the fol-
lowing steps: the acoustic step first involves solving the linear system (5.27a)-(5.27b) for
computing the acoustic velocity un+1−

j and pressure term Πn+1−
j . The acoustic step is

completed by the update of τn+1−
j and En+1−

j thanks to the explicit procedures (5.27c)

and (5.27d). The last stage of the semi-implicit solver is achieved thanks to the explicit
transport scheme (5.29).

We want now to investigate further the implicit system involved with the semi-implicit
method for the specific case of wall-boundary conditions that we implement by impos-
ing ghost values Πn+1−

k and nT
jkun+1−

k for a boundary face Γjk ⊂ ∂Ω, where 1≤ j≤N and

k∈N (j), k>N with

Πn+1−
k =Πn+1−

j , nT
jkun+1−

k =−nT
jkun+1−

j . (5.31)

We have the following proposition.

Proposition 5.6. We consider the case of the semi-implicit solver with implementation of
wall boundary conditions (5.31) and a uniform choice of a, i.e. ajk = a for all 1≤ j≤N and
k∈N (j). If τn

j >0 for all 1≤ j≤N, then the linear system (5.27a)-(5.27b) always possesses

a single solution for any ∆t>0 and θjk >0.
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Proof. For the sake of readability, we shall note here un+1−
j = uj and Πn+1−

j = Πj. The

finite-dimension linear system (5.27a)-(5.27b) reads




|Ωj|uj+τn
j ∆t ∑

k∈N (j)

|Γjk|

[
1

2
(Πj+Πk)−

aθjk

2
nT

jk(uk−uj)

]
njk = |Ωj|u

n
j ,

|Ωj|Πj+τn
j ∆t ∑

k∈N (j)

|Γjk|a
2

[
1

2
nT

jk(uj+uk)−
1

2a
(Πk−Πj)

]
= |Ωj|Π

n
j .

(5.32a)

(5.32b)

This system admits a unique solution if and only if uj = 0, Πj = 0, 1≤ j≤ N is the only
solution of the particular case obtained for un

j = 0, Πn
j = 0, 1≤ j ≤ N. Thus, let us now

suppose that the right members of (5.32) are null, we proceed using an energy estimate

type proof. Left multiply (5.32a) by
2uT

j

τn
j ∆t and sum over j, we obtain

0=
N

∑
j=1

2|Ωj||uj|
2

τn
j ∆t

+
N

∑
j=1

∑
k∈N (j)

|Γjk|(Πj+Πk)(u
T
j njk)

−
N

∑
j=1

∑
k∈N (j)

|Γjk|aθjk(u
T
j njk)(uk−uj)

Tnjk. (5.33)

Accounting for the fact that ∑k∈N (j) |Γjk|njk =0, the second term of (5.33) verifies

N

∑
j=1

∑
k∈N (j)

|Γjk|(Πj+Πk)(u
T
j njk)=

N

∑
j=1

∑
k∈N (j)

|Γjk|ΠkuT
j njk.

Using boundary conditions (5.31), the third term of (5.33) reads

N

∑
j=1

∑
k∈N (j)

|Γjk|aθjk(u
T
j njk)(uk−uj)

Tnjk

= ∑
(j,k)∈E

|Γjk|aθjk

[
(uT

j njk)(uk−uj)
Tnjk+(uT

k nkj)(uj−uk)
Tnkj

]

+ ∑
(j,k)∈Eext

|Γjk|aθjk(u
T
j njk)(uk−uj)

Tnjk

=− ∑
(j,k)∈E

|Γjk|aθjk

[
(uk−uj)

Tnjk

]2
−2 ∑

(j,k)∈Eext

|Γjk|aθjk

[
(uT

j njk)
]2

.

Finally we see that (5.33) is equivalent to

0=
N

∑
j=1

2|Ωj||uj|
2

τn
j ∆t

+
N

∑
j=1

∑
k∈N (j)

|Γjk|ΠkuT
j njk+ ∑

(j,k)∈E

|Γjk|aθjk

[
(uk−uj)

Tnjk

]2

+2 ∑
(j,k)∈Eext

|Γjk|aθjk

[
(uT

j njk)
]2

. (5.34)
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Let us turn to the pressure equation (5.32b), we multiply by
2Πj

τn
j a2∆t

and sum over all 1≤

j≤N, this yields

0=
N

∑
j=1

2|Ωj|Π
2
j

τn
j a2∆t

+
N

∑
j=1

∑
k∈N (j)

|Γjk|n
T
jk(uj+uk)Πj−

N

∑
j=1

∑
k∈N (j)

1

a
|Γjk|(Πk−Πj)Πj. (5.35)

Using once again ∑k∈N (j) |Γjk|njk =0, we have for the second term of (5.35) that

N

∑
j=1

∑
k∈N (j)

|Γjk|n
T
jk(uj+uk)Πj=

N

∑
j=1

∑
k∈N (j)

|Γjk|n
T
jkukΠj.

Accounting for (5.31), the third term of (5.35) verifies

N

∑
j=1

∑
k∈N (j)

|Γjk|

a
(Πk−Πj)Πj

=
1

a ∑
(j,k)∈E

|Γjk|
[
(Πk−Πj)Πj−(Πj−Πk)Πk

]
+

1

a ∑
(j,k)∈Eext

|Γjk|(Πk−Πj)Πj

=−
1

a ∑
(j,k)∈E

|Γjk|(Πk−Πj)
2.

Then, we see that (5.35) also reads

0=
N

∑
j=1

2|Ωj|Π
2
j

τn
j a2∆t

+
N

∑
j=1

∑
k∈N (j)

|Γjk|n
T
jkukΠj+

1

a ∑
(j,k)∈E

|Γjk|(Πk−Πj)
2. (5.36)

We now remark that

N

∑
j=1

∑
k∈N (j)

|Γjk|n
T
jkukΠj = ∑

(j,k)∈E

|Γjk|(n
T
jkukΠj+nT

kjujΠk)+ ∑
(j,k)∈Eext

|Γjk|n
T
jkukΠj

= ∑
(j,k)∈E

|Γjk|n
T
jk(ukΠj−ujΠk)− ∑

(j,k)∈Eext

|Γjk|n
T
jkujΠj,

and also that

N

∑
j=1

∑
k∈N (j)

|Γjk|ΠkuT
j njk = ∑

(j,k)∈E

|Γjk|(ΠkuT
j njk+Πju

T
k nkj)+ ∑

(j,k)∈Eext

|Γjk|ΠkuT
j njk

= ∑
(j,k)∈E

|Γjk|n
T
jk(Πkuj−Πjuk)+ ∑

(j,k)∈Eext

|Γjk|Πjn
T
jkuj.

Therefore
N

∑
j=1

∑
k∈N (j)

|Γjk|Πju
T
k njk+

N

∑
j=1

∑
k∈N (j)

|Γjk|ΠkuT
j njk =0.
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Thus, summing (5.34) and (5.36), we obtain

0=
N

∑
j=1

2|Ωj|

τn
j ∆t

(
|uj|

2+
Π2

j

a2

)
+ ∑

(j,k)∈E

|Γjk|

{
aθjk

[
(uk−uj)

Tnjk

]2
+
(Πk−Πj)

2

a

}

+2 ∑
(j,k)∈Eext

|Γjk|
{

aθjk [(u
T
j njk)]

2
}

.

This implies that |uj|=Πj =0 for all 1≤ j≤N.

Remark 5.2. It is possible to derive a similar proof for the case of periodic boundary
conditions.

We now examine the stability of the multi-dimensional operator splitting strategy
(5.27), (5.28) and (5.29). The acoustic step (5.27) in the explicit cases ♯=n is stable under
the CFL condition

∆t max
1≤j≤N

[
τn

j

(
max

k∈N (j)
σjkajk

)]
≤

1

2
. (5.37)

For both the explicit scheme ♯= n and semi-implicit scheme ♯= n+1−, the transport
step (5.29) is stable under the CFL condition

∆t max
1≤j≤N


 ∑

k∈N (j)

∣∣∣σjk(n
T
jku∗,θ

jk )
∣∣∣


≤1. (5.38)

When one uses the semi-implicit scheme ♯=n+1−, the condition (5.38) becomes implicit

as the computation of u∗,θ
jk depends on a given ∆t. In our simulations with the semi-

implicit scheme, we chose to compute ∆t thanks to the CFL condition (5.38) with the

value u∗,θ
jk given by the fully explicit scheme ♯=n. It is then possible to check a posteriori

that this ∆t value matches (5.38).
We gather thereafter the properties of the explicit and semi-implicit multi-dimensional

schemes.

Theorem 5.2. Suppose that (5.37), (5.38) and (3.10) are satisfied. The explicit scheme defined by
(5.27) and (5.29) with ♯=n verifies

1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy
ρE,

2. the density ρn
j is positive for all j and n>0 provided that ρ0

j is positive for all j,

3. if θ=O(M), then the truncation error of the numerical scheme is uniform with respect to
M<1,

4. if (5.15) is verified then the numerical scheme is equipped with a discrete entropy inequality,

5. if (5.15) is verified then en
j >0 for all j∈Z and all n∈N.
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Theorem 5.3. Suppose that (5.38) and (3.10) are satisfied. The semi-implicit scheme defined by
(5.27) and (5.29) with ♯=n+1− verifies

1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy
ρE,

2. the density ρn
j is positive for all j and n>0 provided that ρ0

j is positive for all j,

3. if θ=O(M), then the truncation error of the numerical scheme is uniform with respect to
M<1.

Let us note that the implicit treatment of the acoustic step leads to a CFL restriction
(5.38) based only on (slow) material waves.

6 Numerical results

In this section, we present numerical results computed thanks to the general operator
splitting strategy (5.27), (5.28) and (5.29) with the following schemes:

• EX(θ=1): the explicit operator splitting scheme obtained for θjk =1 and ♯=n,

• EX(θ =O(M)) : the explicit modified operator splitting scheme obtained with the

low Mach correction θjk =min
(
|u∗

jk|/max(cn
j ,cn

k ),1
)

and ♯=n,

• EX(θ = 0) : the explicit modified operator splitting scheme with centered pressure
gradient θjk =0 and ♯=n,

• IMEX(θ=1) : the semi-implicit operator splitting scheme with θjk=1 and ♯=n+1−,

• IMEX(θ =O(M)) : the modified semi-implicit operator splitting scheme with ♯=
n+1− and a low Mach correction θjk defined as in the case of EX(θ=O(M)),

• IMEX(θ=0) : the modified semi-implicit operator splitting scheme with a centered
pressure gradient θij =0 and ♯=n+1−.

Remark 6.1. The choice of the modification θjk =min(
|u∗

jk|

max(cn
j ,cn

k )
,1) corresponds to a low

Mach correction. Indeed, this choice is non-dimensional, in (0,1), such that θ =O(M)
in the low Mach regime and θ = 1 for large Mach numbers. In this latter case, we then
recover the classical scheme without modification.

In the sequel, we shall consider that the fluid follows a perfect gas equation of state
p=(γ−1)ρe with a specific heat ratio γ=1.4. We will test schemes on both low Mach and
order 1 Mach number test cases.

6.1 Low Mach number examples

In this section we will consider low Mach tests and try to examine two questions: the ac-
curacy gain for simulations on coarse grid in the low Mach regime thanks to the proposed
correction, then the benefit of using a semi-implicit strategy in term of CPU time.
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Vortex in a Box for Mach Number of Magnitude 10−2

We consider a test performed in [5]. The computational domain is Ω = [0,1]2 with an
initial condition given by

ρ0(x1,x2)=1−
1

2
tanh

(
x2−

1

2

)
, u0(x1,x2)=2sin2(πx1)sin(πx2)cos(πx2),

p0(x1,x2)=1000, v0(x1,x2)=−2sin(πx1)cos(πx1)sin2(πx2).

(6.1a)

(6.1b)

No-slip boundary conditions are imposed on the domain boundaries. The Mach number
for the resulting flows is of order 0.026, so that we are in the low Mach regime (see Fig. 6).
We compute a reference solution Wref obtained thanks to the EX(θ=1) scheme on a trian-
gular 161312-cell mesh M. Mapping of the velocity and pressure are displayed in Fig. 2,
3, 5 and 6.

We first use the schemes EX(θ = 1) with a 400×400-cell and a 50×50-cell mesh. As
expected the scheme performs poorly on the coarse mesh and the gain of accuracy is
obvious when one refines the mesh: a mesh size of order M is required, but it comes at
a much higher price in terms of CPU time as we can see in Table 1. The EX(θ =O(M))
scheme gives good results even with the coarse 50×50-cell grid. With the low Mach
correction scheme the connection between the accuracy of the solution and the mesh
size does not seem to be constrained by M. Therefore, for a given target accuracy on a
relatively coarse mesh, this numerical scheme is also much cheaper in term of CPU time.

Let us now turn to the semi-implicit strategies where the time step was chosen in
agreement with the material CFL condition (5.38). While the IMEX(θ = 1) is not CPU
intensive on a coarse mesh the results are very altered by the numerical diffusion. The
IMEX(θ=O(M)) scheme performs fast and allows to recover numerical results that are
as good as EX(θ =O(M)). As with the EX(θ=O(M)) scheme the accuracy seems much
less constrained by the Mach number when it comes to choosing the time step and the
mesh size. As we can see in Table 1, the IMEX(θ=O(M)) scheme is 3.34 times faster than
the EX(θ=O(M)).

Fig. 4 shows a cut along the x1 = 0.5 axis of the velocity magnitude obtained with
different Cartesian mesh steps and the different solvers. The solution obtained with the
θ =O(M) schemes on 50×50-cell mesh are clearly closer to the reference solution, even
when compared to the 400×400-cell mesh. Now let W∆x denote an approximate solution
obtained using a Cartesian grid with a regular space step ∆x=∆y, and let us note W∆x

the interpolation of this solution on the triangular mesh M. In practice this operation
was performed thanks to the filter Resample With Dataset of Paraview. Then we note
Err(∆x)= ‖uref(t= 0.125)/u∆x(t= 0.125)−1‖L1(Ω) and we use this function in order ex-
amine the behavior of our schemes when ∆x→0. The profile of ∆x 7→Err is presented in
Fig. 3. It appears that for considered space step values, the accuracy gain is obvious for
θ=O(M) scheme. Let us underline that for small ∆x values, the results may be ambigu-
ous as we reached the space step discretization of our reference solution. Nevertheless
it is clear that the convergence rate of the θ =O(M) seem much lower than the θ = 1
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Table 1: Vortex in a box test case for M∼10−2 with a Cartesian mesh. Comparison of the number of iterations
and CPU time of EX(θ= 1), EX(θ=O(M)), IMEX(θ= 1) and IMEX(θ=O(M)) schemes to obtain solutions
of Fig. 2 and Fig. 3.

Numerical scheme EX(θ=1) EX(θ=1) EX(θ=O(M)) IMEX(θ=1) IMEX(θ=O(M))

Mesh 400×400 50×50 50×50 50×50 50×50

Number of iterations 18 457 2 306 2 305 43 56

CPU time (s) 9 263.04 (2h34min) 17.14 19.3 3.75 5.77

(a) (b) (c) (d)

Figure 2: Vortex in a box test case for M∼10−2 with a Cartesian mesh. Profile at time t=0.125s of the velocity
magnitude for (a) EX(θ = 1), (b) EX(θ =O(M)) with a 50×50-cell Cartesian mesh, (c) velocity magnitude
obtained with EX(θ=1) using a 400×400 Cartesian mesh and (d) velocity magnitude of the reference solution.

(a) (b)
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IMEX(θ = 1)

IMEX(θ = O(M))

(c)

Figure 3: Vortex in a box test case for M ∼ 10−2 with a Cartesian mesh. Profile at time t = 0.125s of the
velocity magnitude for the IMEX(θ = 1) scheme (a) and the IMEX(θ =O(M)) scheme (b) on a 50×50-cell
Cartesian mesh. Profile of the Convergence rate estimate ∆x 7→Err(∆x) for the EX/IMEX scheme with θ= 1
and θ=O(M).

scheme. As a consequence, when the order of ∆x becomes comparable with the Mach
number magnitude the θ=O(M) scheme could be preferable to the θ=1 scheme.
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Figure 4: Vortex in a box test case for M ∼ 10−2 with a Cartesian mesh. Profiles at time t= 0.125s of the
velocity magnitude along the line x1 = 0.5 obtained with a 50×50-cell mesh (left) and a 400×400-cell mesh
(right).

(a) (b) (c) (d)

Figure 5: Vortex in a box test case for M∼10−2. Mapping of the pressure at t=0.125s for (a) EX(θ=1), (b)
EX(θ=O(M)) with a 50×50-cell Cartesian mesh, (c) EX(θ=1) using a 400×400 Cartesian mesh and (d) the
reference solution.

(a) (b) (c)

Figure 6: Vortex in a box test case for M∼10−2. Mapping of the pressure at t=0.125s for (a) IMEX(θ=1),
(b) IMEX(θ=O(M)) with a 50×50-cell and (c) profile of the Mach number for the reference solution.

Vortex in a box for Mach number of magnitude 10−5

We consider again the vortex in a box test of Section 6.1 for another range of Mach values.
The test settings are the same except that we use p0(x1,x2)=109Pa in Ω as initial condi-
tion. We consider again a reference solution computed thanks to the EX(θ = 1) scheme
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Figure 7: Vortex in a box test case for M ∼ 10−5 with a Cartesian mesh. Profiles at time t= 10−4 s of the
velocity magnitude along the line x1 = 0.5 obtained with a 50×50-cell mesh (left) and a 400×400-cell mesh
(right).

(a) (b) (c) (d)

Figure 8: Vortex in a box test case for M∼10−5 with a Cartesian mesh. Mapping at t=10−4s of the velocity
magnitude for (a) EX(θ=1), (b) EX(θ=O(M)) with a 50×50-cell Cartesian mesh. Velocity magnitude obtained
with (c) EX(θ=1) and (d) EX(θ=O(M)) using a 400×400 Cartesian mesh.

on a triangle mesh composed of 161312 cells. As seen in Fig. 8 the resulting flow the
magnitude of the Mach number flow is 2.62×10−5. Fig. 7 shows a velocity magnitude
cut along the x1 = 0.5 axis obtained with a ∆x ∈ {1/50,1/400} regular Cartesian mesh.
A full mapping of the velocity magnitude is displayed in Figs. 8 and 9. For the schemes
EX(θ=O(M)), IMEX(θ=1) IMEX(θ=O(M)), we have that ‖p(t=10−4)/p0−1‖L∞(Ω) is
equal to the zero-machine, while for the EX(θ=1) scheme we obtain a value of magnitude
10−6. We again clearly see that the results for the θ =O(M) schemes are more accurate
that those of the θ=1 schemes. They confirm that when the space step ∆x=1/400 is too
large with respect to the Mach number M∼10−5 the gain of accuracy is substantial with
the θ=O(M) schemes compared to the θ=1 results.

Backward facing step

We consider now the case of an inviscid flow passing a backward facing step as derived
from [7]. The computational domain is Ω=[0,22]×[0,2]r(0,4)×(0,1). The initial condi-
tion is given by

ρ0(x1,x2)=10, u0(x1,x2)=1, p0(x1,x2)=105, v0(x1,x2)=0.
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(a) (b) (c)

Figure 9: Vortex in a box test case for M∼10−5 with a Cartesian mesh. Profile at time t=10−4s of the velocity
magnitude for the IMEX(θ = 1) scheme (a) and the IMEX(θ =O(M)) scheme (b) on a 50×50-cell Cartesian
mesh. Mapping of the Mach number values (c) obtained on a 400×400-cell mesh with the EX(θ=1) scheme.

We impose an inlet boundary condition at {0}×[1,2] and an outlet boundary condition
at {22}×[0,2]. Wall boundary conditions are set on other boundaries. This configuration
leads to a low Mach flow with the order of magnitude 10−3 ≤ M ≤ 10−2. All tests are
performed with a 220×20 Cartesian space grid. For the sake of comparison, we also
computed a reference solution using the EX(θ = 1) scheme with a 100962-cell triangular
mesh.

We display a mapping of the velocity magnitudes along with the streamlines obtained
with the (IM)EX(θ = 1) schemes, the (IM)EX(θ =O(M)) and the reference solutions in
Fig. 11 and the Mach number values of the reference solutions in Fig. 12 at t= 2s. The
θ=1 schemes fail to reproduce the vortex when the flow passes the step, while the results
obtained with θ=O(M) show a vortex that agrees with the reference solution.

We now compare the evolution of the velocity obtained on the 220×20 Cartesian
mesh and the reference velocity computed on the triangular mesh. We note W (resp.
Wref) an approximate solution obtained on a Cartesian grid (resp. the reference solu-
tion). We consider W∆x an interpolation of this solution on the triangular mesh M (per-
formed thanks to the filter Resample With Dataset of Paraview) and we set ∆ref(u)(t)=
‖uref(t)−u(t)1‖L1(Ω)/max0≤r≤2‖uref(r)‖L1(Ω). The evolution of ∆ref(u)(t) for t∈ (0,2) is
presented in Fig. 10. It appears clearly that after a transitory period the difference be-
tween the (IM)EX(θ =O(M)) results and the reference velocity field seems to stabilize
while it is steadily increasing with the (IM)EX(θ=1) schemes.

In term of CPU cost, measure are presented in Table 2. We observe that the IMEX(θ=
O(M)) scheme is 175.31 times faster than the EX(θ=O(M)) scheme thanks to the implicit
treatment of the acoustic step, thanks to the use of material velocity CFL condition (5.38).

Table 2: Backward facing step test case. Comparison of the number of iterations and CPU time of EX(θ=1),
EX(θ=O(M)), IMEX(θ=1) and IMEX(θ=O(M)) schemes to reach t=2.0s.

Numerical scheme EX(θ=1) EX(θ=O(M)) IMEX(θ=1) IMEX(θ=O(M))

Number of time steps 210402 210396 184 206

CPU time (s) 3220.05s≃53min 3339.78s≃55min 21.06s 19.05s
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Figure 10: Backward facing step test case. Evaluation of the evolution of the velocity in norm L1 with respect
to the velocity obtained by the reference solution.

(a)

(b)

(c)

(d)

(e)

Figure 11: Backward facing step test case. Profile at t=2s of the velocity magnitude and stream lines for the
reference solution (a) and the schemes EX(θ=1) (b), EX(θ=O(M)) (c), IMEX(θ=1) (d), IMEX(θ=O(M))
(e), on a 220×20-cell Cartesian mesh.

Figure 12: Backward facing step test case. Mapping at t= 2s of the Mach number values of the reference
solution.
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6.2 Compressible flow examples

In this section, we assess the ability of our operator splitting scheme to handle cases
where the flow may not remain uniformly in the same Mach regime over the whole com-
putational domain Ω. We will see that even with a centred pressure discretization (which
corresponds to the choice θ=0), the solution remains stable but may be less precise in area
where the Mach number is of order 1. The semi-implicit scheme becomes slower than the
explicit scheme when the Mach number is of order 1 as the benefit from using a material
CFL (5.38) condition instead of an acoustic CFL (5.37) becomes less beneficial but requires
solving a linear system.

1D Sod shock tube

We consider a variant of the classical Sod shock tube [29], that consists in solving the one-
dimensional Riemann problem over Ω=[0,1] defined by the initial conditions (ρ,u,P)=
(1.0,0.0,105) for x<0.5 and (ρ,u,P)=(0.1,0.0,104) for x>0.5. We impose Neumann bound-
ary conditions during the test. The domain is discretized over a 1000-cell grid. This re-
sulting Mach number verifies 0< M< 0.95, so that we have both low Mach and order 1
Mach values. We plot the solution at t=3.1×10−4 s.

Fig. 13 displays the results obtained with EX(θ) and IMEX(θ) for θ=O(M) and θ=1.
We use as reference solution an approximation computed with EX(θ=1) using a 10 000-
cell mesh. All schemes show a good agreement with the reference solution. The schemes
EX(θ = 0) and IMEX(θ = 0) schemes are slightly less diffused than the EX(θ = 1) and
IMEX(θ=1) schemes results. Let us underline that despite part of the solutions clearly do
not belong to the low Mach regime since M≃0.95, the schemes EX(θ=0) and IMEX(θ=0)
are stable and provide good numerical results while involving a centered pressure dis-
cretization with θij =0.

2D-Riemann problem

We consider a 2D Riemann problem that consists of 4 shock waves [25]. We consider the
domain Ω=[0,1]2. The initial condition is

(ρ,u1,u2,P)(x1,x2,t=0)=





(0.1380, 1.206, 1.206, 0.029), for x1<0.5, x2<0.5,

(0.5323, 0.000, 1.206, 0.300), for x1>0.5, x2<0.5,

(0.5323, 1.206, 0.000, 0.300), for x1<0.5, x2>0.5,

(1.5000, 0.000, 0.000, 1.500), for x1>0.5, x2>0.5.

We impose Neumann boundary conditions. This configuration leads to a Mach number
that ranges from 10−5 to 3.15, i.e. according to the regions of the computation domain,
the flow belongs to the low Mach regime or the order 1 Mach regime. We consider as a
reference solution the approximation obtained with EX(θ=1) for a 200×200-cell Cartesian
mesh. Figs. 14, 15, 16 and 17 display the result at t=0.4s.



222 C. Chalons, M. Girardin and S. Kokh / Commun. Comput. Phys., 20 (2016), pp. 188-233

Figure 13: 1D Sod shock tube test case. Profile at t=3.1×10−4s of the density (top left), velocity magnitude
(top right), pressure (bottom left) and Mach number (bottom right) for the EX(θ=1), EX(θ=0), IMEX(θ=1),
IMEX(θ=0) using a 1000-cell grid, together with reference solution.

We observe in Fig. 14 and Fig. 15 that EX(θ = 0) and IMEX(θ = 0) schemes are stable
for this test case with both low Mach and order 1 Mach number values regions. Both
figure show that the wave pattern at the center of the domain shape is better captured
with coarse meshes when one uses the corrected schemes (θ = 0). A 1D cut along the
axis y = x as depicted in Fig. 16, also corroborates this observation: the approximation
obtained with EX(θ=0) and IMEX(θ=0) schemes are closer to the 200×200-cell reference
solution thanks to the numerical diffusion reduction. Nonetheless, we observe on a 1D
cut along the x = 0.75 axis in Fig. 17 a spurious overshot for both density and pressure
located at the shock front with EX(θ=0) and IMEX(θ=0). This suggests that a small value
of θ allows to improve the precision of the scheme by reducing the numerical diffusion
but it may cause overshoots if the value of θ becomes too small relatively to the local
behavior of flow. In all our numerical experiments the scheme seems to remain stable for
any value of θ ∈ (0,1). Let us note that even if the pressure gradient is given a centred
treatment (θ=0), the transport step introduce some numerical diffusion (independent of
M) that stabilize the scheme see (5.4).

In Table 3 we observe that the choice of θ does not impact the number of time steps
and CPU time. For this case, while the number of time steps is slightly reduced by about
30%, the semi-implicit schemes are much slower due to the time required for solving the
linear system involved with the schemes.
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Table 3: 2D Riemann problem test case. Comparison of the number of time steps and CPU time necessary for
reaching t=0.4s with a 50×50-cell Cartesian grid with EX(θ=1), EX(θ=0), IMEX(θ=1) and IMEX(θ=0).

Numerical scheme EX(θ=1) EX(θ=0) IMEX(θ=1) IMEX(θ=0)

Number of iterations 323 343 216 218

CPU time (s) 2.59 2.79 10.28 10.33

(a) (b) (c) (d)

Figure 14: 2D Riemann problem with a Cartesian mesh. Profile at t= 0.4s of the velocity magnitude for (a)
EX(θ=1), (b) EX(θ=0) with a 50×50-cell mesh, (c) velocity magnitude and (d) Mach number with EX(θ=1)
using a 200×200 mesh.

Figure 15: 2D Riemann problem test case. Profile at t=0.4s of the velocity magnitude for IMEX(θ=1) (left)
and IMEX(θ=0) (right) on a 50×50-cell Cartesian mesh.

As a partial conclusion of this section, we can observe that for tests that strongly
involve the compressibility of the fluid both semi-implicit and explicit schemes seem
to be very robust, independently of the choice of θ within [0,1]. However, if the low
Mach correction is too important, i.e. the value of θ is too close to 0 we witnessed a
deterioration of the numerical approximation with the appearance of overshoots in the
vicinity of shock fronts. Then some numerical criterion may be constructed with good

properties, θij =min(
|u∗

ij|

max(cn
i ,cn

j )
,1) for instance. We also observed that the benefit in terms

of CPU time of the semi-implicit scheme vanishes when the Mach number becomes of
order 1.

The implementation of the criterion on θ to recover a discrete entropy inequality does
not allow to recover a good low Mach behaviour as it was expected from its low Mach
analysis. Finding from a theoretical point of view a criterion on θ that allows to recover
a good low Mach behaviour and avoid spurious phenomenon that may occur if θ is too
small for a given configuration is still an open problem.
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Figure 16: 2D Riemann problem test case. Cut profile along y=x at t=0.4s of the density, velocity magnitude,
pressure and Mach number for EX(θ=1), EX(θ=0), IMEX(θ=1) and IMEX(θ=0) using a 50×50 mesh together
with the 200×200-cell reference solution.

Figure 17: 2D Riemann problem test case. Cut profile along x = 0.75 at t = 0.4s of the density, velocity
magnitude, pressure and Mach number for EX(θ=1), EX(θ=0), IMEX(θ=1) and IMEX(θ=0) using a 50×50
mesh together with the 200×200-cell reference solution.
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Remark 6.2. The robustness of the scheme with respect to the modification θ ≥ 0 seems
to be linked to the Lagrange-Projection decomposition approach, and more precisely to
the fact that the projection step is kept unchanged and thus contains a sufficient amount
of numerical diffusion to stabilize the scheme. On the other hand, numerical evidences
which are not reported here show indeed that a direct Eulerian approach built on a simi-
lar modified relaxation scheme turns out to be unstable outside of the low-Mach regime
for (too) small values of θ. For instance, the Sod shock test tube requires θ > 0.63 to be
stable with such a direct approach. The results can be found in [17, p. 109].

7 Conclusion

We proposed a conservative operator splitting based Lagrange-Projection like numeri-
cal strategy for approximating the gas dynamics that decouples acoustic and transport
phenomenons. The operator splitting scheme is positive for the density, the internal en-
ergy and entropic under classical CFL conditions. For one-dimensional problem, this
procedure is equivalent to a Lagrange-Projection discretization. We presented an anal-
ysis of the way the truncation error depends on the Mach number for one-dimensional
problems. In the low Mach regime, the truncation error of the scheme showed to be non-
uniform with respect to the Mach number M. This allowed us to modify the operator
splitting scheme in order to recover a uniform truncation error in term of M by altering
the numerical flux in the acoustic approximation. We showed that this modification can
be obtained thanks to a simple approximate Riemann solver that is consistent with the
integral form of the PDEs. This modified operator splitting scheme is conservative and
endowed with good stability properties with respect to the positivity of the density, the
internal energy under classical acoustic CFL conditions that depend on M. The resulting
scheme allows to deal with tests where the flow regime may vary from low to high Mach
values.

We showed that this splitting strategy has a natural extension to multi-dimensional
problems discretized over unstructured meshes. A simple and efficient semi-implicit
scheme that is stable under CFL conditions based on the material velocity is also pro-
posed and leads to an all-regime numerical scheme, following the ideas paved by [6] for
one-dimensional problems.

Future developments include extensions to high-order methods and approximation
of other systems for the simulation of multi-material flows.
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A Classical Lagrange-Projection for one-dimensional gas

dynamics

In this section we briefly recall the classical Lagrange-Projection (or Lagrange-Remap)
procedure for deriving a Finite Volume discretization within a one-dimensional frame-
work. For a detailed description we refer the reader to [14,18]. Let (X,t)R×[tn,tn+∆t) 7→
χ be the mapping defined by

∂tχ=u(χ(X,t),t), χ(X,t= tn)=X.

The pair (X,t) is usually referred to as the Lagrangian system of coordinates: a particle
of fluid at the position X at instant t = tn will be located at x = χ(X,t), t ∈ [tn,tn+∆t].
If (x,t) 7→ b is a mapping that provides an Eulerian representation of a parameter b, one
defines a Lagrangian representation of b as the function (X,t) 7→bLag by setting bLag(X,t)=
b(χ(X,t),t). The system (3.1) is equivalent to

∂tV
Lag(X,t)+τLag(X,tn)∂XFLag(VLag)(X,t)=0,

{
VLag=(τLag,uLag,vLag,ELag)T,

FLag(VLag)=(−uLag,pLag,0,pLaguLag)T.
(A.1)

It is common to introduce a mass coordinate m defined by dm= ρ(X,tn)dX in order to
obtain the equivalent conservation laws (with a slight abuse of notation)

∂tV
Lag(m,t)+∂mFLag(VLag)(m,t)=0. (A.2)

Straightforward calculations show that (A.2) (which is nothing but (3.4)) is hyperbolic
over the phase space ΩLag = {(τLag,uLag,vLag,ELag)T ∈R

4,τLag > 0, eLag > 0}, with eigen-

values given by λ
Lag
1 =−ρc<λ

Lag
2 =0<λ

Lag
3 =ρc, where c still denotes the Eulerian sound

speed. Here again, the extreme characteristic fields associated with λ
Lag
1 and λ

Lag
3 are

genuinely non linear while the intermediate characteristic field associated with λ
Lag
2 is

linearly degenerate. It is important to note that the material transport phenomenons are
frozen in system (A.2) which explains why the characteristics speeds of the system only
involve the sound velocity c.

Before going any further, we introduce classical notations: let ∆t > 0 and ∆x > 0 be
respectively the time and space steps. We define the Eulerian mesh interfaces xj+1/2= j∆x
for j∈Z, and the intermediate times tn = n∆t for n∈N. If b is a fluid parameter, in the
sequel, we will note bn

j (resp. bn+1
j ) the approximate value b respectively within the jth

Eulerian cell [xj−1/2,xj+1/2) at instant t = tn (resp. t = tn+1). We need to introduce a
moving Lagrangian mesh (with respect to the Eulerian mesh) whose cell j at instant tn

is [xj−1/2,xj+1/2) and at instant t= tn+1 is [x∗j−1/2,x∗j+1/2). The value of the parameter b

at instant tn (resp. t = tn+1) in the Lagrangian cell j is noted b
Lag
j (resp. bn+1−

j ). Given

a fluid state (ρ,ρu,ρv,ρE)n
j , j∈Z at instant tn, the Lagrange-Projection strategy proposes

the following update procedure.
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1. Build the discrete Lagrangian fluid state at instant tn by setting (VLag)j =
(τn

j ,un
j ,vn

j ,En
j );

2. Update the Lagrangian fluid state into the value (VLag)n+1−
j =

(τn+1−
j ,un+1−

j ,vn+1−
j ,En+1−

j ) by approximating the solution of (A.2);

3. Build the updated value (ρ,ρu,ρv,ρE)n+1
j by remapping the Lagrangian state

(VLag)n+1−
j onto the Eulerian mesh.

The Lagrangian step (tn → tn+1−)

We propose to approximate the solution of (A.2) using the acoustic scheme [12, 14]. This
leads to 




τn+1−
j =τn

j +
∆t

∆x
τn

j (u
∗
j+1/2−u∗

j−1/2),

un+1−
j =un

j −
∆t

∆x
τn

j (p∗j+1/2−p∗j−1/2),

vn+1−
j =vn

j ,

En+1−
j =En

j −
∆t

∆x
τn

j

(
(pu)∗j+1/2−(pu)∗j−1/2

)
,

(A.3a)

(A.3b)

(A.3c)

(A.3d)

where the interfaces terms are defined by

u∗
j+1/2=

(un
j +un

j+1)

2
+

1

2an
j+1/2

(pn
j −pn

j+1), p∗j+1/2 =
(pn

j +pn
j+1)

2
+

an
j+1/2

2
(un

j −un
j+1),

(pu)∗j+1/2= p∗j+1/2u∗
j+1/2, an

j+1/2 =max((ρc)n
j ,(ρc)n

j+1). (A.4)

The acoustic scheme (A.3) with (A.4) provides the same update of the flow variable as
the scheme (3.7) with (3.8). Let us mention that a direct proof of stability for the acoustic
scheme is available in [12] under the CFL criterion (3.15).

The projection (or remapping) step (tn+1−→ tn+1)

The aim of this step is to project the solution obtained at the end of the Lagrangian
step onto the Eulerian cells [xj−1/2,xj+1/2). If one notes 1[x∗j−1/2,x∗j+1/2)

the characteris-

tic function of [x∗j−1/2,x∗j+1/2), a standard way to achieve to goal consists in: first, ap-

proximating the position of the Lagrangian mesh interfaces at instant tn+1 by setting
x∗j+1/2 = xj+1/2+u∗

j+1/2∆t; second reaveraging the conservative variable unknowns over

the Eulerian mesh by setting [18]

ϕn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

[

∑
j∈Z

ϕn+1−
j 1[x∗j−1/2,x∗j+1/2)

(x)

]
dx, where ϕ∈{ρ,ρu,ρv,ρE}. (A.5)

Noting ∆x∗j = x∗j+1/2−x∗j−1/2 and ε(j,n) =−sign(u∗
j+1/2)1/2 one obtains the update for-
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mula

ϕn+1
j =

1

∆x

{
∆x∗j ϕn+1−

j −∆t
(

u∗
j+1/2ϕn+1−

j+1/2+ε(j,n)−u∗
j−1/2ϕn+1−

j−1/2+ε(j−1,n)

)}

=
∆t

∆x
(u∗

j+1/2−u∗
j−1/2)ϕn+1−

j

−
∆t

∆x

(
u∗

j+1/2 ϕn+1−
j+1/2+ε(j,n)−u∗

j−1/2ϕn+1−
j−1/2+ε(j−1,n)

)
. (A.6)

The update formula (A.6) matches the classic upwind scheme. Consequently this is the
same numerical scheme as (3.12).

B Approximate Riemann solvers: Harten Lax and van Leer

formalism

We briefly recall the Harten, Lax and van Leer formalism associated with the numerical
approximation of the solutions (x,t) ∈ R×[0,+∞) 7→ U ∈ R

m of the general hyperbolic
system of conservation laws

∂tU+∂xG(U)=0, x∈R, t>0, (B.1)

by means of the so-called approximate Riemann solvers and Godunov-type methods,
where G :Rm→R

m is a smooth function. System (B.1) is supplemented with the validity
of an entropy inequality

∂tη(U)+∂xq(U)≤0, (B.2)

where U 7→ (η,q) is a strictly convex entropy-entropy flux pair (see [18]).
Solving the Riemann problem amounts to find the solution of (B.1) with the following

piecewise constant initial data

U(x,t=0)=

{
UL, if x<0,

UR, if x>0,

for any given UL and UR in the phase space. It is well-known that the exact Riemann
solution U(x/t;UL,UR) is self-similar, i.e. depends only on the ration x/t. In order to ap-
proximate this solution, we consider a (self-similar) simple approximate Riemann solver
URP(x/t;UL,UR) made of l+1 intermediate states Uk separated by discontinuities prop-
agating with velocities λ1≤···≤λl , namely

URP

( x

t
;UL,UR

)
=





U1=UL, if x/t<λ1,
...

Uk, if λk−1< x/t<λk,
...

Ul+1=UR, if x/t>λl .

(B.3)
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From [1,20], if ∆x=(∆xL+∆xR)/2 with ∆xL>0, ∆xR>0 and ∆t>0 are respectively space
and time steps that verify the CFL condition

max
1≤k≤l

|λk|
∆t

min(∆xL,∆xR)
≤

1

2
, (B.4)

such an approximate Riemann solver is said to be consistent with the integral form of
(B.1) over the interval [−∆xL

2 , ∆xR
2 ]×[0,∆t] if

∫∫
[
−∆xL

2 ,
∆xR

2 ]×[0,∆t]
[∂tURP+∂xG(URP)]dxdt=0,

in other words if

G(UR)−G(UL)=
l

∑
k=1

λk(Uk+1−Uk). (B.5)

Regarding the consistency with the entropy inequality (B.2), the simple approximate Rie-
mann solver is said to be consistent with the integral form of (B.2) if and only if under
the CFL condition (B.4) we have

q(UR)−q(UL)≤
l

∑
k=1

λk

(
η(Uk+1)−η(Uk)

)
. (B.6)

Hereafter and using classic notations, (∆xj)j∈Z and ∆t represent the space steps and
constant time step of the mesh under consideration to define the approximate solutions.
More precisely, we define the mesh interfaces xj+1/2= xj−1/2+∆xj for j∈Z, the interme-
diate times tn=n∆t for n∈N, and we note Un

j the approximate value of U at time tn and

on the cell [xj−1/2,xj+1/2). For n=0 and j∈Z, we set U0
j =

1
∆x

∫ xj+1/2

xj−1/2
U0(x)dx where U0(x)

is the initial condition. Then, the explicit in time Godunov-type scheme reads




Un+1
j =Un

j −
∆t

∆xj
(Gn

j+ 1
2
−Gn

j− 1
2
),

Gn
j+ 1

2
=G(Un

j ,Un
j+1),

(B.7a)

(B.7b)

with

G(UL,UR)=
1

2

[
G(UL)+G(UR)−

l

∑
k=1

|λk|(Uk+1−Uk)

]
. (B.8)

Moreover, if the simple approximate Riemann solver is consistent with the entropy in-
equality (B.2), then the numerical scheme defined by (B.7) satisfies the following discrete
entropy inequality 




η(Un+1
j )≤η(Un

j )−
∆t

∆xj
(qn

j+ 1
2
−qn

j− 1
2
),

qn
j+ 1

2
= q̃(Un

j ,Un
j+1),

with

q̃(UL,UR)=
1

2

[
q(UL)+q(UR)−

l

∑
k=1

|λk|
(
S(Uk+1)−S(Uk)

)
]

. (B.10)
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The CFL condition associated with this (explicit in time) Godunov-type scheme reads

max
1≤k≤l

|λk(U
n
j ,Un

j+1) |
∆t

min(∆xj,∆xj+1)
≤

1

2
,

for all j. Again, we refer to [1, 20] for more details. To conclude this paragraph, let
us observe that the numerical flux G(UL,UR) and the entropy numerical flux q̃(UL,UR)
are clearly consistent in the classical sense, namely G(U,U)=G(U) and q̃(U,U)= q(U)
provided that the intermediate states of the approximate Riemann solver are such that
Uk=U for all k=1,··· ,l as soon as UL =UR=U.

C Riemann problem for the relaxation approximation of the acous-

tic system

We consider the Suliciu relaxation approximation of the Lagrangian gas dynamics equa-
tions expressed using a mass coordinate. The system reads





∂tτ−∂mu=0,

∂tu+∂mΠ=0,

∂tv=0,

∂tE+∂m(Πu)=0,

∂tΠ+a2∂mu=λ(p−Π),

(C.1a)

(C.1b)

(C.1c)

(C.1d)

(C.1e)

where a is a constant that verifies the subcharacteristic condition a >max(ρc) in order
to prevent instabilities (see for instance [3] for a rigorous proof). It is easy to prove that
the convective part of (C.1) is strictly hyperbolic with three eigenvalues given by −a, 0
and a which correspond to linearizations of the exact eigenvalues −ρc, 0 and ρc for sys-
tem (A.1). Interestingly, the characteristic fields are linearly degenerate, which allows to
solve analytically the Riemann problem associated with (C.1) with λ=0. More precisely,
the exact Riemann solution

W
(m

t
;UL,UR

)
=(τ,u,v,E,Π)T

(m

t
;UL,UR

)

associated with given left state UL =(τ,u,v,E,Π)T
L and right state UR =(τ,u,v,E,Π)T

R, is
made of three contact discontinuities propagating with velocities −a, a and 0 and sepa-
rating two intermediate states U

∗
L and U

∗
R, namely

W
(m

t
;UL,UR

)
=





UL, if m
t <−a,

U
∗
L, if −a< m

t <0,

U
∗
R, if 0< m

t < a,

UR, if m
t > a.

(C.2)



C. Chalons, M. Girardin and S. Kokh / Commun. Comput. Phys., 20 (2016), pp. 188-233 231

The intermediate states are easily recovered from the following formulas





u∗=u∗
L =u∗

R=
uR+uL

2
−

ΠR−ΠL

2a
, Π∗

L =Π∗
R=Π∗=

ΠR+ΠL

2
−a

uR−uL

2
,

v∗L =vL, v∗R =vR,

τ∗
L =τL+

u∗−uL

a
, τ∗

R =τR+
uR−u∗

a
,

E∗
L =EL+

1

a

(
pLuL−u∗Π∗

)
, E∗

R =ER−
1

a

(
pRuR−u∗Π∗

)
.

(C.3a)

(C.3b)

(C.3c)

(C.3d)

Then, setting UL = (τ,u,v,E)T, the classical scheme can be understood in the Harten,
Lax and van Leer formalism by considering the following approximate Riemann
solver W(m/t;UL,UR) obtained by simply extracting the first four components from
W(m/t;UL,UR), in which we take Π at equilibrium, namely

ΠL= pL, ΠR = pR.

More precisely, we have

W
(m

t
;UL,UR

)
=





UL, m
t <−a,

U∗
L, −a< m

t <0,
U∗

R, 0< m
t < a,

UR, m
t > a,

(C.4)

where the intermediate states are given by (C.3), together with ΠL= pL and ΠR = pR.
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