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Abstract. In this paper, we will develop a first order and a second order convex split-
ting, and a first order linear energy stable fully discrete local discontinuous Galerkin
(LDG) methods for the modified phase field crystal (MPFC) equation. In which, the
first order linear scheme is based on the invariant energy quadratization approach.
The MPFC equation is a damped wave equation, and to preserve an energy stability,
it is necessary to introduce a pseudo energy, which all increase the difficulty of con-
structing numerical methods comparing with the phase field crystal (PFC) equation.
Due to the severe time step restriction of explicit time marching methods, we introduce
the first order and second order semi-implicit schemes, which are proved to be uncon-
ditionally energy stable. In order to improve the temporal accuracy, the semi-implicit
spectral deferred correction (SDC) method combining with the first order convex split-
ting scheme is employed. Numerical simulations of the MPFC equation always need
long time to reach steady state, and then adaptive time-stepping method is necessary
and of paramount importance. The schemes at the implicit time level are linear or non-
linear and we solve them by multigrid solver. Numerical experiments of the accuracy
and long time simulations are presented demonstrating the capability and efficiency
of the proposed methods, and the effectiveness of the adaptive time-stepping strategy.
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1 Introduction

In this paper, we consider local discontinuous Galerkin (LDG) spatial discretization and
high order semi-implicit time marching methods in a bounded domain Ω∈R

d(d≤2) for
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the modified phase field crystal (MPFC) equation:

∂ttφ+β∂tφ=∇·(M(φ)∇(φ3+(1−ǫ)φ+2∆φ+∆
2φ)), (1.1)

where M(φ)≥0 is a mobility, β>0 and ǫ≤1.
In equation (1.1), when β=0, it is known as the phase field crystal (PFC) equation. The

PFC model was recently proposed by Elder et al. [10,11] to study the nonequilibrium mi-
crostructure formation by introducing a free energy functional of the local-time-averaged
density field. There have been many algorithms developed and simulations performed
for the PFC equation recently, using finite difference methods [17, 23, 27], finite element
methods [13] and local discontinuous Galerkin method [15]. The MPFC equation is an
important extension of the PFC equation, and it was introduced in [20, 21]. The MPFC
equation (1.1) is a nonlinear damped wave equation, which models a viscoelastic re-
sponse to perturbations to the density field. The PFC and MPFC equations have close
relationship, and it is possible to apply numerical methods for the former equation to
the latter one. However, one should keep in mind that the original energy of the MPFC
equation may increase in time on some time intervals, so it is desirable to introduce a
pseudo energy. Thus, we have to be very careful when designing energy stable convex
splitting schemes for the MPFC equation.

There are a few numerical methods for the simulations of the MPFC equation. For
example, Wang et al. [1, 22] developed energy stable and convergent finite difference
schemes for the MPFC equation. Baskaran et al. [2] provided a detailed convergence
analysis for an unconditionally energy stable, second-order accurate convex splitting
scheme for the MPFC equation. In which, the spatial discretization was central finite
difference method, and only second order spatial accuracy was achieved. Grasselli and
Pierre [14] proposed an energy stable and convergence finite element schemes for the
MPFC equation. In this paper, an LDG spatial discretization method will be developed,
obtaining arbitrary high order accuracy by choosing the local approximating basis. For
temporal discretization, we will first construct the first order and second order convex
splitting schemes, the first order linear scheme, and then employ the semi-implicit spec-
tral deferred correction (SDC) method [24] to achieve high order temporal accuracy. To
the best of our knowledge, the first order linear scheme and the second order convex
splitting scheme are novel combined with the pseudo energy that we define.

The discontinuous Galerkin (DG) method is a class of finite element methods, using
completely discontinuous, piecewise polynomials as the solution and the test spaces. It
was first designed as a method for solving hyperbolic conservation laws containing only
first order spatial derivatives, e.g. Reed and Hill [18] for solving linear equations, and
later Cockburn et al. [5–8] for solving nonlinear equations.

It is not straightforward to apply the DG method directly to PDEs containing higher
order spatial derivatives, therefore the LDG method was introduced. There are usually
two steps to implement the LDG method: first rewriting the problem into a form which
contains only first order derivatives, and then applying the DG method by choosing ap-
propriate numerical fluxes to ensure stability. The first LDG method was constructed
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by Cockburn and Shu [9] for solving time dependent convection diffusion systems, mo-
tivated by the work of Bassi and Rebay [3] for compressible Navier-Stokes equations.
Following these pioneering papers, LDG methods have been successfully designed and
applied in a number of models involving diffusion and dispersive problems (see for ex-
ample the review paper [25]). DG and LDG methods also have several attractive prop-
erties, for example: allowing for efficient h, p adaptivity and having excellent parallel
efficiency.

The MPFC equation is a sixth-order nonlinear damped wave equation, and explicit
time marching methods require extremely small time step to maintain stability. There-
fore, it would be desirable to introduce implicit or semi-implicit time discretization tech-
niques to alleviate this problem. In this paper, we will develop the first order and second
order semi-implicit schemes for the MPFC equation and prove the corresponding un-
conditional energy stability. However, the schemes are only first order or second order
accurate in time. To improve the temporal accuracy, we employ the semi-implicit SDC
method [24], combining with the proposed first order convex splitting scheme.

The MPFC equation itself always experience long time evolution therefore computa-
tional efficiency is essential to map out the whole dynamics from initial state to steady
state. The proposed semi-implicit time marching methods allow larger time step and in-
deed improve the efficiency. To further improve the efficiency of our schemes, we will
employ the adaptive time-stepping strategy. We know that the energy is an important
quantity in the MPFC equation and here the adaptive time steps are determined based
on the time derivative of the energy. In which, when the energy decays rapidly, small
time steps are adopted, and when the energy decays slowly, large time steps will be
used. Zhang et al. [27] employed this idea for solving the PFC equation and showed that
the adaptive time-stepping technique was efficient numerically.

The rest of the paper is organized as follows. In Section 2, we give a brief review
on the properties of the MPFC equation and present the first order and second order
schemes. In Section 3, we develop LDG methods for the proposed schemes, and prove
the corresponding fully discrete schemes are unconditionally energy stable. In Section 4,
we combine the semi-implicit SDC method with the first order convex splitting scheme
to obtain high order temporal accuracy. We also give a simple description of the adaptive
time-stepping strategy. Section 5 contains numerical results, demonstrating the accuracy
and effectiveness of the proposed numerical methods. Finally, we give concluding re-
marks in Section 6.

2 The MPFC equation and proposed semi-implicit temporal

schemes

2.1 The MPFC equation

We consider a dimensionless energy of the form
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E(φ)=
∫

Ω

{
1

4
φ4+

1−ǫ

2
φ2−|∇φ|2+ 1

2
(∆φ)2

}
, (2.1)

where Ω∈R
d, φ : Ω→R is the atomic density field, and ǫ is a constant. We assume here

that Ω = (0,Lx)×(0,Ly) and that φ and ∆φ are periodic on ∂Ω for simplicity. Then the
MPFC equation is the pseudo-gradient flow

∂ttφ+β∂tφ=∇·(M(φ)∇µ), (2.2)

where µ is the chemical potential with respect to E and takes the following form

µ :=
δE

δφ
=φ3+(1−ǫ)φ+2∆φ+∆

2φ. (2.3)

For simplicity, we take M to be a constant and consider the simpler equation

∂ttφ+β∂tφ=M∆µ, µ=φ3+(1−ǫ)φ+2∆φ+∆
2φ. (2.4)

The presence of the term ∂ttφ is a nontrivial modification from the mathematical point
of view. Indeed, different from the sixth order parabolic type PFC equation, the MPFC
equation (2.4) is not a gradient equation, and the energy (2.1) may actually increase in
time on some time intervals, we will show the phenomenon numerically in Section 5.
However, solutions of the MPFC equation do dissipate a pseudo energy. Therefore, in
order to design numerical schemes that preserve an energy stability, it is necessary and
of great importance to introduce an appropriate pseudo energy.

To introduce the pseudo energy, and activated by the idea in [12], we first recast the
MPFC equation (2.4) as the following system of equations





φt=∆u,

∂∆u

∂t
=M∆µ−β∆u.

(2.5)

Then we define the pseudo energy

E(φ,u) :=E(φ)+
1

2M

∫

Ω

|∇u|2dx. (2.6)

The pseudo energy is non-increasing with respect to time t, i.e.

d

dt
E(φ,u)=

∫

Ω

{
φ3φt+(1−ǫ)φφt−2∇φ·∇φt+∆φ∆φt+

1

M
∇u·∇ut

}
dx

=
∫

Ω

{
µφt−

1

M
∆utu

}
dx

=
∫

Ω

{
µ∆u− 1

M
(∆µ−β∆u)u

}
dx

=− β

M

∫

Ω

∇u·∇udx

≤0.
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Then, we will devote to constructing numerical schemes that preserve the energy
stability.

2.2 The discrete time, continuous space schemes

The numerical simulations of the MPFC equation always need long time to reach steady
state. And because of the high stiffness of the MPFC equation, explicit time discretization
methods will suffer from extremely small time step restriction (∆t=O(∆x6)) for stability,
but not for accuracy. Therefore, it would be desirable to develop implicit time marching
methods to alleviate this problem. Here we describe semi-implicit time-discrete schemes
for the MPFC equation (2.5). The first and second order convex splitting schemes are
based on convex splitting approaches that have been widely used for phase field prob-
lems. The first order linear scheme is based on the invariant energy quadratization ap-
proach.

First order convex splitting scheme

In order to develop the convex splitting scheme, we first split the energy (2.1) as E(φ)=
Ec(φ)−Ee(φ), where Ec(φ) and Ee(φ) represent the contractive term and the expansive
term, respectively, and are given as

Ec(φ)=
∫

Ω

{
1

2
(∆φ)2+

1

4
φ4+

1−ǫ

2
φ2

}
dx, Ee(φ)=

∫

Ω

{
|∇φ|2

}
dx. (2.7)

By treating the contractive term Ec(φ) implicitly and the expansive term Ee(φ) explicitly,
we get the convex splitting scheme as follows





φn+1−φn

∆t
=∆un+1,

∆un+1−∆un

∆t
=M∆µn+1−β∆un+1,

µn+1=(φn+1)3+(1−ǫ)φn+1+2∆φn+∆
2φn+1.

(2.8)

Second order convex splitting scheme

Activated by the work in [1], we develop a novel second order convex splitting scheme
for the MPFC equation (2.5) as follows:





φn+1−φn

∆t
=∆un+ 1

2 ,

∆un+1−∆un

∆t
=M∆µn+1−β∆un+ 1

2 ,

µn+1=(1−ǫ)φn+ 1
2 +

(φn+1)2+(φn)2

2
φn+ 1

2 +3∆φn−∆φn−1+∆
2φn+ 1

2 ,

(2.9)
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where φ−1 :=φ0, and

un+ 1
2 =

1

2
(un+1+un), φn+ 1

2 =
1

2
(φn+1+φn).

First order linear scheme

In the following, we will prove the unconditional energy stability of the convex split-
ting schemes (2.8) and (2.9). But as for the unique solvability, the proofs are much more
elusive in the LDG framework. Therefore, we will then develop a linearly first order,
unconditionally energy stable scheme for the MPFC equation inspired by the invariant
energy quadratization approach [26] to discrete the nonlinear term.

In order to develop the linear scheme, we first introduce an auxiliary function as
follows

U=φ2. (2.10)

We recast the energy functional (2.1) as

E(φ,U)=
∫

Ω

{
1

4
U2+

1−ǫ

2
φ2−|∇φ|2+ 1

2
(∆φ)2

}
,

and the equivalent equation is given as




φt=∆u,

∂∆u

∂t
=M∆µ−β∆u,

µ=Uφ+(1−ǫ)φ+2∆φ+∆
2φ,

(2.11)

where U satisfies Ut=2φφt. Then the corresponding first order linear scheme is




φn+1−φn

∆t
=∆un+1,

∆un+1−∆un

∆t
=M∆µn+1−β∆un+1,

µn+1=Un+1φn+(1−ǫ)φn+1+2∆φn+∆
2φn+1,

Un+1−Un

∆t
=2φn φn+1−φn

∆t
.

(2.12)

3 Fully discrete energy stable local discontinuous Galerkin

schemes

In this section, we will develop local discontinuous Galerkin (LDG) spatial discretization
methods for the first order convex splitting scheme (2.8), the second order scheme (2.9)
and the first order linear scheme (2.12), to obtain fully discrete stable LDG schemes for
the MPFC equation, and prove the corresponding unconditional energy stabilities.
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3.1 Notations

We consider a subdivision Th of Ω with shape-regular elements K. Let Eh denote the
union of the boundary faces of elements K∈Th, i.e. Eh =

⋃
K∈Th

∂K, and E0 = Eh\∂Ω. Let

P k(K) be the space of polynomials of degree at most k≥0 on K∈Th. The discontinuous
Galerkin finite element spaces are denoted by

Vh=
{

ϕ : ϕ|K ∈P k(K), ∀K∈Th

}
,

Σ
d
h=
{

Φ=(φ1,··· ,φd)
T : φl|K ∈P k(K), l=1,··· ,d, ∀K∈Th

}
.

Notice that functions in Vh and Σ
d
h are allowed to be completely discontinuous across

element interfaces.
In order to describe the flux functions, we need to introduce some notations. Let e

be an interior face shared by the “left” and “right” elements KL and KR and define the
normal vectors νL and νR on e pointing exterior to KL and KR, respectively. For our
purpose, “left” and “right” can be uniquely defined for each face according to any fixed
rule. For example, we choose ν0 as a constant vector. The left element KL to the face
e requires that νL ·ν0 < 0, and the right one KR requires νL ·ν0 ≥ 0. If ψ is a function on
KL and KR, but possibly discontinuous across e, let ψL denote (ψ|KL

)|e and ψR denote
(ψ|KR

)|e, the left and right trace, respectively.

3.2 First order fully discrete LDG scheme

To construct the LDG method for the first order convex splitting scheme (2.8), we first
rewrite it as a first order system:

φn+1−φn

∆t
=∇·sn+1, (3.1a)

s
n+1=∇un+1, (3.1b)

∇·sn+1−∇·sn

∆t
=M∇·pn+1−β∇·sn+1, (3.1c)

p
n+1=∇(rn+1+2qn+qn+1

2 ), (3.1d)

qn+1
2 =∇·qn+1

1 , (3.1e)

q
n+1
1 =∇qn+1, (3.1f)

qn+1=∇·wn+1, (3.1g)

w
n+1=∇φn+1, (3.1h)

rn+1=(φn+1)3+(1−ǫ)φn+1. (3.1i)

To simplify the notation, we still use φn+1,un+1, qn+1
2 ,qn+1,rn+1, sn+1,pn+1,qn+1

1 ,wn+1

as the numerical solution. The LDG scheme to solve the system (3.1) becomes the follow-
ing: Find φn+1,un+1, qn+1

2 ,qn+1,rn+1∈Vh, and sn+1,pn+1,qn+1
1 ,wn+1∈Σ

d
h, such that, for all
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test functions ϕ1,ϕ2,ϕ3,ϕ4,ϕ5∈Vh and θ1,θ2,θ3,θ4∈Σ
d
h, we have

∫

K

φn+1−φn

∆t
ϕ1dK=−

∫

K
s

n+1 ·∇ϕ1dK+
∫

∂K
ŝ

n+1 ·νϕ1ds, (3.2a)
∫

K
s

n+1 ·θ1dK=−
∫

K
un+1∇·θ1dK+

∫

∂K
ûn+1

θ1 ·νds, (3.2b)

0=
∫

K

sn+1−sn

∆t
·∇ϕ2dK−

∫

∂K

(ŝn+1− ŝ
n)·ν

∆t
ϕ2ds (3.2c)

−
∫

K
(Mp

n+1−βs
n+1)·∇ϕ2dK+

∫

∂K
(M p̂

n+1−βŝ
n+1)·νϕ2ds,

∫

K
p

n+1 ·θ2dK=−
∫

K
(rn+1+2qn+qn+1

2 )∇·θ2dK+
∫

∂K
(r̂n+1+2q̂n+ q̂n+1

2 )θ2 ·νds,

(3.2d)
∫

K
qn+1

2 ϕ3dK=−
∫

K
q

n+1
1 ·∇ϕ3dK+

∫

∂K
q̂

n+1
1 ·νϕ3ds, (3.2e)

∫

K
q

n+1
1 ·θ3dK=−

∫

K
qn+1∇·θ3dK+

∫

∂K
q̂n+1

θ3·νds, (3.2f)
∫

K
qn+1ϕ4dK=−

∫

K
w

n+1·∇ϕ4dK+
∫

∂K
ŵ

n+1·νϕ4ds, (3.2g)
∫

K
w

n+1·θ4dK=−
∫

K
φn+1∇·θ4dK+

∫

∂K
φ̂n+1

θ4·νds, (3.2h)
∫

K
rn+1ϕ5dK=

∫

K
((φn+1)3+(1−ǫ)φn+1)ϕ5dK. (3.2i)

The “hat” terms in scheme (3.2) in the cell boundary terms from integration by parts
are the so-called “numerical fluxes”, which are functions defined on the edges and should
be designed based on different guiding principles for different PDEs to ensure stability
and local solvability of the intermediate variables. It turns out that we can take the simple
choices such as

p̂
n+1= p

n+1
L , ûn+1=un+1

R , ŝ
n+1= s

n+1
L , q̂n+1

2 =qn+1
2R , r̂n+1= rn+1

R ,

q̂
n+1
1 =q

n+1
1L , q̂n+1=qn+1

R , ŵ
n+1=w

n+1
L , φ̂n+1=φn+1

R . (3.3)

We remark that the choice for the fluxes (3.3) is not unique. Considering the compact-
ness of the stencil and the optimal accuracy, the crucial part is taking ŝ

n+1, p̂n+1 and ûn+1

from opposite sides, ŝ
n+1 and r̂n+1,q̂n+1,q̂n+1

2 from opposite sides, q̂
n+1
1 ,ŵn+1 and φ̂n+1

from opposite sides, and q̂n+1 and ŵ
n+1 from opposite sides.

It is easy to see that the first order fully discrete LDG scheme (3.2) is mass conserva-
tive, by choosing the test function ϕ1=1 in scheme (3.2).

Proposition 3.1. The solution to the LDG scheme (3.2) with the periodic boundary con-
dition satisfies the mass conservation

∫

Ω

φn+1dx=
∫

Ω

φndx. (3.4)
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Next, we will prove the energy stability for the fully discrete LDG scheme (3.2) with
the choice of the numerical fluxes (3.3).

Proposition 3.2. (Energy stability for the first order fully discrete LDG scheme). The so-
lution to the LDG scheme (3.2) with the numerical fluxes (3.3) and the periodic boundary
condition satisfies the energy stability

Eh(q
n+1,wn+1,sn+1,φn+1)−Eh(q

n,wn,sn,φn)≤0, (3.5)

where

Eh(q,w,s,φ)=
∫

Ω

(
1

2
q2−w·w+

1

2M
s·s+ 1

4
φ4+

1−ǫ

2
φ2

)
dx.

Proof. Let Dφ denote φn+1−φn. For Eqs. (3.2g) and (3.2h) of the LDG scheme, subtracting
the equations at time level tn from the equations at time level tn+1, respectively, we get

∫

K
Dqϕ4dK=−

∫

K
Dw·∇ϕ4dK+

∫

∂K
Dŵ·νϕ4ds,

∫

K
Dw·θ4dK=−

∫

K
Dφ∇·θ4dK+

∫

∂K
Dφ̂θ4·νds,

where Dq=qn+1−qn and Dw=wn+1−wn. Then taking the test functions

ϕ4=
1

∆t
qn+1, θ4=− 1

∆t
q

n+1
1 − 2

∆t
w

n,

we obtain

1

∆t

∫

K
Dqqn+1dK=− 1

∆t

∫

K
Dw·∇qn+1dK+

1

∆t

∫

∂K
Dŵ·νqn+1ds, (3.6)

− 1

∆t

∫

K
Dw·(qn+1

1 +2w
n)dK=

1

∆t

∫

K
Dφ∇·(qn+1

1 +2w
n)dK

− 1

∆t

∫

∂K
Dφ̂(qn+1

1 +2w
n)·νds. (3.7)

For Eq. (3.2g), choosing the test function ϕ4=− 2
∆tDφ at time level tn leads to

− 2

∆t

∫

K
qnDφdK=

2

∆t

∫

K
w

n·∇DφdK− 2

∆t

∫

∂K
ŵ

n·νDφds. (3.8)

For other equations in scheme (3.2), we choose the test functions

ϕ1= rn+1+2qn+qn+1
2 , θ1=−p

n+1+
β

M
s

n+1+
1

M∆t
Ds, ϕ2=− 1

M
un+1,

θ2= s
n+1, ϕ3=− 1

∆t
Dφ, θ3=

1

∆t
Dw, ϕ5=− 1

∆t
Dφ,
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respectively, to get

1

∆t

∫

K
Dφ(rn+1+2qn+qn+1

2 )dK=−
∫

K
s

n+1 ·∇(rn+1+2qn+qn+1
2 )dK

+
∫

∂K
ŝ

n+1 ·ν(rn+1+2qn+qn+1
2 )ds, (3.9)

∫

K
s

n+1 ·
(

1

M∆t
Ds−p

n+1+
β

M
s

n+1

)
dK=−

∫

K
un+1∇·

(
1

M∆t
Ds−p

n+1+
β

M
s

n+1

)
dK

+
∫

∂K
ûn+1

(
1

M∆t
Ds−p

n+1+
β

M
s

n+1

)
·νds,

(3.10)

0=−
∫

K

sn+1−sn

M∆t
·∇un+1dK+

∫

∂K

ŝ
n+1 ·ν− ŝ

n ·ν
M∆t

un+1ds

+
∫

K
(p

n+1− β

M
s

n+1)·∇un+1dK−
∫

∂K
(p̂

n+1 ·ν− β

M
ŝ

n+1 ·ν)un+1ds,

(3.11)
∫

K
p

n+1 ·sn+1dK=−
∫

K
(rn+1+2qn+qn+1

2 )∇·sn+1dK

+
∫

∂K
(r̂n+1+2q̂n+ q̂n+1

2 )sn+1 ·νds, (3.12)

− 1

∆t

∫

K
qn+1

2 DφdK=
1

∆t

∫

K
q

n+1
1 ·∇DφdK− 1

∆t

∫

∂K
q̂

n+1
1 ·νDφds,

(3.13)

1

∆t

∫

K
q

n+1
1 ·DwdK=− 1

∆t

∫

K
qn+1∇·DwdK+

1

∆t

∫

∂K
q̂n+1Dw·νds,

(3.14)

− 1

∆t

∫

K
rn+1DφdK=− 1

∆t

∫

K
((φn+1)3+(1−ǫ)φn+1)DφdK. (3.15)

Let (3.6)+(3.7)+···+(3.14)+(3.15), and after a careful calculation we obtain

1

∆t

∫

Ω

(
1

M
Ds·sn+1+Dqqn+1−2Dw ·wn

)
dx+

∫

Ω

β

M
s

n+1 ·sn+1dx

+
1

∆t

∫

Ω

((φn+1)3+(1−ǫ)φn+1)Dφdx=0.

with the help of the alternating numerical fluxes (3.3). Notice that

((φn+1)3+(1−ǫ)φn+1)Dφ=
1

4
(φn+1)4+

1−ǫ

2
(φn+1)2− 1

4
(φn)4− 1−ǫ

2
(φn)2

+
1

4
(2−2ǫ+2(φn+1)2+(φn+φn+1)2)(φn+1−φn)2.
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Therefore we have

1

∆t

∫

Ω

(
1

M
Ds·sn+1+Dqqn+1−2Dw ·wn

)
dx

+
1

∆t

∫

Ω

(
1

4
(φn+1)4+

1−ǫ

2
(φn+1)2− 1

4
(φn)4− 1−ǫ

2
(φn)2

)
dx≤0,

which implies the energy stability result (3.5).

Lemma 3.1. [19] For any uh∈V0
h :={v∈Vh : (v,1)=0}, we have

||uh||∞ ≤C(1+||zh||)
√

log(1+||∆huh||), (3.16)

where ∆h is the “discrete Laplacian” operator and zh satisfies

∫

K
zh ·θdK=−

∫

K
uh∇·θdK+

∫

∂K
ûhθ·νds, θ∈Σ

d
h.

Theorem 3.1 (Estimate for ||φn||∞). The solution to the LDG scheme (3.2) satisfies

||φn||≤C,

||qn||≤C,

||wn||≤C,

||φn||∞ ≤C,

where C>0 is independent of h.

Proof. From the energy stability result (3.5), we have

Eh(q
n,wn,sn,φn)≤Eh(q

0,w0,s0,φ0)≤C,

where the last inequality is because of the choice of the initial condition q0 = Pq(x,0),
w0=Πw(x,0), s0=Πs(x,0), φ0=Pφ(x,0), where P and Π are the standard L2 projection.

Eh(q
n,wn,sn,φn)=

∫

Ω

(
1

2
(qn)2−w

n ·wn+
1

2M
s

n ·sn+
1

4
(φn)4+

1−ǫ

2
(φn)2

)
dx

≥
∫

Ω

(
2−ǫ

2
(φn)2+

1

2
(qn)2+

1

2M
s

n ·sn−w
n ·wn

)
dx.

For Eqs. (3.2g) and (3.2h) of the LDG scheme, choosing the test functions ϕ4=φn, θ4=wn

at time level tn leads to
∫

K
qnφndK=−

∫

K
w

n·∇φndK+
∫

∂K
ŵ

n·νφnds, (3.17)
∫

K
w

n·wndK=−
∫

K
φn∇·wndK+

∫

∂K
φ̂n

w
n·νds. (3.18)
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Let (3.17)+(3.18), we have

∫

Ω

w
n ·wndx=−

∫

Ω

qnφndx≤
∫

Ω

(
δ

2
(qn)2+

1

2δ
(φn)2

)
dx. (3.19)

Thus

Eh(q
n,wn,sn,φn)≥

∫

Ω

(
(

2−ǫ

2
− 1

2δ
)(φn)2+(

1−δ

2
)(qn)2+

1

2M
s

n ·sn

)
dx

≥
∫

Ω

(
C((φn)2+(qn)2)+

1

2M
s

n ·sn

)
dx

≥
∫

Ω

(
C(

(φn)2+(qn)2

2
+w

n ·wn)+
1

2M
s

n ·sn

)
dx,

which implies
||φn||≤C, ||qn||≤C, ||wn||≤C.

Using Lemma 3.1, we have

||φn||∞ ≤C(1+||wn||)
√

log(1+||∆hφn||). (3.20)

By the definition of the discrete Laplacian operator, we have

∫

K
qnζdK=

∫

K
∆hφnζdK, ζ∈Vh. (3.21)

Choosing ζ=∆hφn in (3.21), we get

||∆hφn||2 =
∫

Ω

qn
∆hφndx≤||qn||·||∆hφn||. (3.22)

Combining (3.20) and (3.22), we can obtain the result ||φn||∞ ≤C.

3.3 Second order fully discrete LDG scheme

To construct the LDG method for the second order convex splitting scheme (2.9), we first
rewrite it into the system form:

φn+1−φn

∆t
=∇·sn+ 1

2 , (3.23a)

s
n+1=∇un+1, (3.23b)

∇·sn+1−∇·sn

∆t
=M∇·pn+1−β∇·sn+ 1

2 , (3.23c)

p
n+1=∇(rn+1+3qn−qn−1+q

n+ 1
2

2 ), (3.23d)



R. Guo and Y. Xu / Commun. Comput. Phys., 24 (2018), pp. 123-151 135

qn+1
2 =∇·qn+1

1 , (3.23e)

q
n+1
1 =∇qn+1, (3.23f)

qn+1=∇·wn+1, (3.23g)

w
n+1=∇φn+1, (3.23h)

rn+1=(1−ǫ)φn+ 1
2 +

1

2
((φn+1)2+(φn)2)φn+ 1

2 , (3.23i)

which contains only first order spatial derivatives, and

s
n+ 1

2 =
1

2
(sn+1+s

n), q
n+ 1

2
2 =

1

2
(qn+1

2 +qn
2).

The LDG scheme for the system (3.23) is defined as: Find φn+1,un+1, qn+1
2 ,qn+1,rn+1∈

Vh and pn+1,sn+1,qn+1
1 ,wn+1∈Σ

d
h, such that, for all test functions ϕ1,ϕ2,ϕ3,ϕ4,ϕ5∈Vh and

θ1,θ2,θ3,θ4∈Σ
d
h, we have

1

∆t

∫

K
Dφϕ1dK=−

∫

K
s

n+ 1
2 ·∇ϕ1dK+

∫

∂K
ŝ

n+ 1
2 ·νϕ1ds, (3.24a)

∫

K
s

n+1 ·θ1dK=−
∫

K
un+1∇·θ1dK+

∫

∂K
ûn+1

θ1 ·νds, (3.24b)

0=
∫

K

sn+1−sn

∆t
·∇ϕ2dK−

∫

∂K

(ŝn+1− ŝ
n)·ν

∆t
ϕ2ds (3.24c)

−
∫

K
(Mp

n+1−βs
n+ 1

2 )·∇ϕ2dK+
∫

∂K
(M p̂

n+1−βŝ
n+ 1

2 )·νϕ2ds,
∫

K
p

n+1 ·θ2dK=−
∫

K
(rn+1+3qn−qn−1+q

n+ 1
2

2 )∇·θ2dK (3.24d)

+
∫

∂K
(r̂n+1+3q̂n− q̂n−1+ q̂

n+ 1
2

2 )θ2 ·νds,
∫

K
qn+1

2 ϕ3dK=−
∫

K
q

n+1
1 ·∇ϕ3dK+

∫

∂K
q̂

n+1
1 ·νϕ3ds, (3.24e)

∫

K
q

n+1
1 ·θ3dK=−

∫

K
qn+1∇·θ3dK+

∫

∂K
q̂n+1

θ3·νds, (3.24f)
∫

K
qn+1ϕ4dK=−

∫

K
w

n+1·∇ϕ4dK+
∫

∂K
ŵ

n+1·νϕ4ds, (3.24g)
∫

K
w

n+1·θ4dK=−
∫

K
φn+1∇·θ4dK+

∫

∂K
φ̂n+1

θ4·νds, (3.24h)

∫

K
rn+1ϕ5dK=

∫

K

(
(1−ǫ)φn+ 1

2 +
1

2
((φn+1)2+(φn)2)φn+ 1

2

)
ϕ5dK. (3.24i)

The second order fully discrete LDG scheme (3.24) is also mass conservative. Next,
we will prove the unconditional energy stability for the second order fully discrete LDG
scheme (3.24).
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Proposition 3.3. (Energy stability for the second order fully discrete LDG scheme). The
solution to the LDG scheme (3.24) with the numerical fluxes (3.3) and the periodic bound-
ary condition satisfies the energy stability

Fh(q
n+1,wn+1,wn,sn+1,φn+1)−Fh(q

n,wn,wn−1,sn,φn)≤0, (3.25)

where

Fh(q,w1,w2,s,φ)=
∫

Ω

(
1

2
(q2+

1

M
s·s+(w1−w2)·(w1−w2)) (3.26)

−w1 ·w1+
1

4
φ4+

1−ǫ

2
φ2

)
dx,

namely

Fh(q
n+1,wn+1,wn,sn+1,φn+1)=Eh(q

n+1,wn+1,sn+1,φn+1)

+
1

2

∫

Ω

(wn+1−w
n)·(wn+1−w

n)dx.

Proof. Let q
n+ 1

2
1 := 1

2(q
n+1
1 +qn

1) and qn+ 1
2 := 1

2(q
n+1+qn). For (3.24b), (3.24e), (3.24f), taking

the sum between time level tn+1 and tn, and choosing test functions

θ1=
1

M∆t
Ds+

β

M
s

n+ 1
2 −p

n+1, ϕ3=−Dφ

∆t
, θ3=

Dw

∆t
,

respectively, we have
∫

K
s

n+ 1
2 ·( 1

M∆t
Ds+

β

M
s

n+ 1
2 −p

n+1)dK=−
∫

K
un+ 1

2 ∇·( 1

M∆t
Ds+

β

M
s

n+ 1
2 −p

n+1)dK

+
∫

∂K
ûn+ 1

2 (
1

M∆t
Ds+

β

M
s

n+ 1
2 −p

n+1)·νds,

(3.27)

− 1

∆t

∫

K
q

n+ 1
2

2 DφdK=
1

∆t

∫

K
q

n+ 1
2

1 ·∇DφdK− 1

∆t

∫

∂K
q̂

n+ 1
2

1 ·νDφds, (3.28)

1

∆t

∫

K
q

n+ 1
2

1 ·DwdK=− 1

∆t

∫

K
qn+ 1

2 ∇·DwdK+
1

∆t

∫

∂K
q̂n+ 1

2 Dw·νds. (3.29)

For (3.24g), (3.24h), taking the difference between time level tn+1 and tn, and choosing
test functions

ϕ4=
1

∆t
qn+ 1

2 , θ4=
1

∆t
(wn−1−3w

n−q
n+ 1

2
1 ),

respectively, we have

1

∆t

∫

K
Dqqn+ 1

2 dK=− 1

∆t

∫

K
Dw·∇qn+ 1

2 dK+
1

∆t

∫

∂K
Dŵ·νqn+ 1

2 ds, (3.30)

1

∆t

∫

K
Dw·(wn−1−3w

n−q
n+ 1

2
1 )dK=− 1

∆t

∫

K
Dφ∇·(wn−1−3w

n−q
n+ 1

2
1 )dK

+
1

∆t

∫

∂K
Dφ̂(wn−1−3w

n−q
n+ 1

2
1 )·νds. (3.31)
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For (3.24g), choosing the test function ϕ4=− 3Dφ
∆t at time level tn and ϕ4=

Dφ
∆t at time level

tn−1 show that

− 3

∆t

∫

K
qnDφdK=

3

∆t

∫

K
w

n·∇DφdK− 3

∆t

∫

∂K
ŵ

n·νDφds, (3.32)

1

∆t

∫

K
qn−1DφdK=− 1

∆t

∫

K
w

n−1·∇DφdK+
1

∆t

∫

∂K
ŵ

n−1·νDφds. (3.33)

For (3.24a), (3.24c), (3.24d) and (3.24i), taking the test functions

ϕ1= rn+1+3qn−qn−1+q
n+ 1

2
2 , ϕ2=− 1

M
un+ 1

2 , θ2= s
n+ 1

2 , ϕ5=−Dφ

∆t
,

respectively, we have

1

∆t

∫

K
Dφ(rn+1+3qn−qn−1+q

n+ 1
2

2 )dK=−
∫

K
(sn+ 1

2 ·∇(rn+1+3qn−qn−1+q
n+ 1

2
2 ))dK

+
∫

∂K
ŝ

n+ 1
2 ·ν(rn+1+3qn−qn−1+q

n+ 1
2

2 )ds, (3.34)

0=−
∫

K

Ds

M∆t
·∇un+ 1

2 dK+
∫

∂K

Dŝ·ν
M∆t

un+ 1
2 ds (3.35)

+
∫

K
(p

n+1− β

M
s

n+ 1
2 )·∇un+ 1

2 dK−
∫

∂K
(p̂

n+1− β

M
ŝ

n+ 1
2 )·νun+ 1

2 ds,
∫

K
p

n+1 ·sn+ 1
2 dK=−

∫

K
(rn+1+3qn−qn−1+q

n+ 1
2

2 )∇·sn+ 1
2 dK (3.36)

+
∫

∂K
(r̂n+1+3q̂n− q̂n−1+ q̂

n+ 1
2

2 )sn+ 1
2 ·νds,

− 1

∆t

∫

K
rn+1DφdK=− 1

∆t

∫

K

(
(1−ǫ)φn+ 1

2 +
1

2
((φn+1)2+(φn)2)φn+ 1

2

)
DφdK. (3.37)

Let (3.27)+(3.28)+···+(3.36)+(3.37), with the help of the alternating numerical fluxes (3.3),
and after a careful calculation, we obtain

1

2∆t

∫

Ω

((qn+1)2−(qn)2+
1

M
s

n+1 ·sn+1− 1

M
s

n ·sn)dx+
β

4M

∫

Ω

(sn+1+s
n)·(sn+1+s

n)dx

+
1

∆t

∫

Ω

(
1−ǫ

2
((φn+1)2−(φn)2)+

1

4
((φn+1)4−(φn)4)

)
dx

+
1

∆t

∫

Ω

(wn−1−3w
n)·(wn+1−w

n)dx=0.

Notice that

(wn−1−3w
n)·(wn+1−w

n)

=−w
n+1 ·wn+1+w

n ·wn+
1

2
(wn+1−2w

n+w
n−1)·(wn+1−2w

n+w
n−1)

+
1

2
(wn+1−w

n)·(wn+1−w
n)− 1

2
(wn−w

n−1)·(wn−w
n−1).
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Therefore, we have

Fh(q
n+1,wn+1,wn,sn+1,φn+1)−Fh(q

n,wn,wn−1,sn,φn)≤0.

This completes the proof.

Remark 3.1. The unconditional energy stability of the convex splitting schemes are proved.
But as for the unique solvability and the convergence analysis, the proofs are much more
elusive in the LDG framework. Even though the auxiliary variables in the LDG method
give the easy treatment for nonlinear and high order derivatives terms, the theoretical
analysis of solvability for the LDG method is more troublesome because of the auxiliary
variables. In addition, the main technical difficulty of convergence analysis is the lack of
control on the auxiliary variables in the LDG method which are approximations to the
derivatives of the solution, and the lack of control on the interface boundary terms. We
will leave them as our future work.

3.4 First order linear fully discrete LDG scheme

The LDG method to solve the first order linear scheme (2.12) is similar as (3.2), except
replacing (3.2i) by

∫

K
rn+1ϕ5dK=

∫

K
(Un+1φn+(1−ǫ)φn+1)ϕ5dK, (3.38)

and adding
∫

K

Un+1−Un

∆t
ζdK=

∫

K
2φn φn+1−φn

∆t
ζdK, ζ∈Vh. (3.39)

In the following, we will prove the energy stability for the fully-discrete LDG scheme
to solve (2.12) with the choice of the numerical flux (3.3).

Proposition 3.4. (Energy stability for the first order linear LDG scheme). The solution
to the first order linear LDG scheme with the numerical fluxes (3.3) and the periodic
boundary condition satisfies the energy stability

Eh(q
n+1,wn+1,sn+1,φn+1,Un+1)−Eh(q

n,wn,sn,φn,Un)≤0, (3.40)

where

Eh(q,w,s,φ,U)=
∫

Ω

(
1

2
q2−w·w+

1

2M
s·s+ 1

4
U2+

1−ǫ

2
φ2

)
dx.

Proof. For (3.38), choosing the test function ϕ5=− 1
∆tDφ leads to

− 1

∆t

∫

K
rn+1DφdK=− 1

∆t

∫

K
(φnUn+1+(1−ǫ)φn+1)DφdK. (3.41)
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Taking the test function ζ= 1
2Un+1 in (3.39) and using the identity

2(a−b,a)= |a|2−|b|2+|a−b|2,

we can get

1

4∆t

∫

K

(
(Un+1)2−(Un)2+(Un+1−Un)2

)
dK=

1

∆t

∫

K
φnUn+1DφdK. (3.42)

Let (3.6)+(3.7)+. . . +(3.14)+(3.41)+(3.42) and use the same technique as the proof of Propo-
sition (3.2), we can get the energy stability result (3.40) immediately.

Remark 3.2. For the second order convex splitting scheme (2.9) and the first order linear
scheme (2.12), we can also obtain the estimation of ||φn||∞ similar as Theorem 3.1 based
on the corresponding energy stability result. We will omit the proof in this paper.

Remark 3.3. Eqs. (3.2), (3.24) and (2.12) at the implicit time level are nonlinear or linear,
we will employ a nonlinear full approximation storage (FAS) multigrid method [4] or
linear multigrid solver to solve the equations. The theoretical analysis of the convergence
of multigrid solvers is more troublesome. However, numerical experiments are presented
to show that the multigrid solver is robust and converges with optimal (or near optimal)
complexity.

4 A high order and adaptive time-stepping strategy

The most important property of LDG methods is high order accurate, which motivates us
to develop high order temporal accuracy scheme to get the goal of obtaining high order
accuracy in both space and time together with robust stability conditions.

The proposed first order and second order schemes are unconditionally energy sta-
ble, thus allowing for large time stepping. However, the schemes are only first order
or second order accurate in time. In order to improve the temporal accuracy, the semi-
implicit SDC method combining with the first order convex splitting scheme (3.2) will be
employed to solve the MPFC equation.

4.1 Semi-implicit spectral deferred correction method

The SDC method is driven iteratively by the chosen low order method, such as the first
order convex splitting scheme (3.2) here. An advantage of the SDC method is that it
is a one step method and can be constructed easily and systematically for any order of
accuracy. For convenience, the convex splitting scheme (3.2) can be written as

{
φn+1=φn+∆tF(un+1),

∆un+1=∆un+∆t(L1(u
n+1)+L2(φ

n+1)+N(φn)),
(4.1)
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where F(u), L1(u) represent the linearly implicit part, L2(φ) represents the nonlinearly
implicit part and N(φ) represents the linearly explicit part of the scheme, namely

F(u)=∆u, L1(u)=−β∆u,

L2(φ)=M∆(φ3+(1−ǫ)φ+∆
2φ), N(φ)=2M∆(∆φ).

Suppose now the time interval [0,T] is divided into M intervals by the partition 0=t0<

t1< . . .< tn < . . .< tM=T. Let ∆tn = tn+1−tn and un denotes the numerical approximation
of u(tn), with u0 = u(0). Then divide the time interval [tn,tn+1] into P subintervals by
choosing the points tn,m for m=0,1,··· ,P such that tn=tn,0<tn,1<···<tn,m<···<tn,P=tn+1.
Let ∆tn,m = tn,m+1−tn,m and uk

n,m denotes the kth order approximation to u(tn,m). The
points {tn,m}P

m=0 can be chosen to be the Tchebychev Gauss-Lobatto nodes on [tn,tn+1] to
avoid the instability of approximation at equispaced nodes for high order accuracy. We
can also choose the Gauss nodes, or Legendre Gauss-Radau nodes or Legendre Gauss-
Lobatto nodes. Starting from un and φn, we give the algorithm to calculate un+1 and φn+1

in the following.

Compute the initial approximation:

u1
n,0=un and φ1

n,0=φn.

Use the convex splitting scheme (4.1) to compute a first order accurate approximate so-
lution u1 and φ1 at the nodes {tn,m}P

m=1, i.e.

For m=0,··· ,P−1,
{

φ1
n,m+1=φ1

n,m+∆tn,mF(u1
n,m+1),

∆u1
n,m+1=∆u1

n,m+∆tn,m(L1(u
1
n,m+1)+L2(φ

1
n,m+1)+N(φ1

n,m)).
(4.2)

Compute successive corrections:

For k=1,··· ,K,

uk+1
n,0 =un and φk+1

n,0 =φn.

For m=0,··· ,P−1,




φk+1
n,m+1=φk+1

n,m +∆tn,m(F(uk+1
n,m+1)−F(uk

n,m+1))+ Im+1
m (F(uk)),

∆uk+1
n,m+1=∆uk+1

n,m +∆tn,m(L1(u
k+1
n,m+1)−L1(u

k
n,m+1)+L2(φ

k+1
n,m+1)−L2(φ

k
n,m+1))

+∆tn,m(N(φk+1
n,m )−N(φk

n,m))+ Im+1
m (L1(u

k)+L2(φ
k)+N(φk)),

(4.3)

where Im+1
m (F(uk)) is the integral of the P-th degree interpolating polynomial on the P+1

points (tn,m,F(uk
n,m))

P
m=0 over the subinterval [tn,m,tn,m+1], which is the numerical quadra-

ture approximation of

∫ tn,m+1

tn,m

F(τ,u(τ))dτ.

Finally we have un+1=uK+1
n,P and φn+1=φk+1

n,P .
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Remark 4.1. When M(φ) is degenerate, namely, the stiff and non-stiff components of the
MPFC equation can not be well separated, the classical SDC method is not straightfor-
ward anymore. In this case, the novel semi-implicit SDC method proposed in our recent
work [16] can be employed to achieve high order temporal accuracy. Actually, the SDC
method described above is a special case of the method developed in [16].

4.2 Adaptive time-stepping strategy

In the previous subsection, we have proved that the semi-implicit schemes are uncon-
ditionally energy stable, which allows us using large time steps during the numerical
simulations. However, constant large time steps may cause accuracy loss, except in the
time intervals where the solution variation is relatively small. As we know, the energy
is an important quantity in the MPFC equation and here the adaptive time steps are
determined based on the time derivative of the energy similar to [27], which takes the
following form

∆t=max

(
∆tmin,

∆tmax√
1+α|E ′(t)|2

)
, (4.4)

where E is the energy functional defined in (2.6). The constant α, which is used to adjust
the level of adaptivity, is chosen in experience.

5 Numerical experiments

In this section, we present some numerical experiments for solving the MPFC equation.
Specially, we employ the LDG spatial discretization coupled with the semi-implicit SDC
method with adaptive time-stepping technique described in the previous sections. Each
time step we solve the resulting algebraic equations by multigrid solver [4]. We first
present the accuracy tests, which shows the expected optimal convergence rate and the
efficiency of the proposed adaptive time-stepping technique. An energy stability test is
then presented to show the pseudo energy (2.6) is indeed non-increasing. Finally, we
give two long time simulations to illustrate the efficiency and capability of the proposed
approaches.

Example 5.1. (Accuracy test and efficiency test of adaptive time-stepping strategy). Con-
sider the MPFC equation (1.1) in the two-dimensional domain Ω = [0,2π]×[0,2π]. To
verify the convergence rate, we add a source term to the MPFC equation such that the
exact solution is

φ(x,y)= e−2t sin(x)sin(y). (5.1)

Choose the parameters ǫ=0.025, M=1 and β=0.9.
The L2 and L∞ errors and the numerical orders of accuracy at time T = 0.5 for the

first order linear LDG scheme implemented with P0 elements is presented in Table 1. It
shows that the linear scheme is first order accurate in time.
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Table 1: Accuracy test for the MPFC equation at time T = 0.5 obtained with the first order linear scheme.
∆t=0.1∆x.

N L2 error order L∞ error order

16 3.62E-01 – 1.30E-01 –

P0 32 1.75E-01 1.04 6.47E-02 1.01

64 8.59E-02 1.03 3.16E-02 1.03

Table 2: Accuracy test for the MPFC equation at time T=0.5 obtained with the second order convex splitting
method. ∆t=0.1∆x.

N L2 error order L∞ error order

16 2.80E-02 – 2.07E-02 –

P1 32 6.93E-03 2.01 5.24E-03 1.98

64 1.72E-03 2.00 1.31E-03 2.00

Table 3: Accuracy test for the MPFC equation at time T=0.5 obtained with the third order semi-implicit SDC
method. ∆t=0.1∆x.

N L2 error order L∞ error order

16 2.12E-02 – 1.52E-02 –

P1 32 5.33E-03 1.99 3.85E-03 1.99

64 1.33E-03 2.00 9.65E-04 2.00

16 1.58E-03 – 1.31E-03 –

P2 32 1.85E-04 3.09 1.63E-04 3.00

64 2.25E-05 3.04 2.03E-05 3.00

To test the temporal accuracy numerically for the second order convex splitting scheme
(3.24), we choose P1 elements for spatial discretization and present the L2 and L∞ errors
and the numerical orders of accuracy at time T=0.5 in Table 2, which shows second order
accurate in time.

To demonstrate the near optimal complexity (with respect to the spatial step size ∆x)
of the multigrid solver, we provide evidence that the multigrid convergence rate is nearly
independent of ∆x. We fix the time step as ∆t=0.001 and the spatial step size varies from
∆x = 2π/32 to ∆x = 2π/128. The number of multigrid smoothing sweeps is fixed as 5.
The convergence rates of the multigrid solver at the 10th time step is presented in Fig. 1,
we can see the nearly optimal convergence of the solver for P1 and P2 approximations.

To achieve high order accurate in time, we also choose the third order semi-implicit
SDC method described in the previous section. Table 3 shows the L2 and L∞ errors and
the numerical orders of accuracy at time T=0.5, which shows (k+1)-th order of accuracy
for P k approximation. In Fig. 2, we present numerical solutions at the line y=x with dif-
ferent constant time steps, which shows that our numerical scheme with larger constant
time step lose accuracy, i.e., the resolution becomes poorer when the time step becomes
larger.
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Figure 1: Convergence rates of multigrid solver with P1 and P2 approximation.
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Figure 2: The numerical solution at y= x with different constant time steps for the MPFC equation.

Then, we employ the adaptive time-stepping strategy and study its efficiency. In Fig. 3
(a), we present numerical solutions at the line y=x with adaptive time steps ∆t1(∆tmin=
0.01,∆tmax = 0.1,α= 100) and ∆t2(∆tmin = 0.01,∆tmax = 0.25,α= 100). Obviously, we can
see that the numerical accuracy is improved comparing with the results obtained with
constant time steps. We also show the comparison of CPU times consumed with constant
time step and adaptive time step in Fig. 3 (b). For long time simulation, the adaptive
method costs less CPU times, namely, the computational efficiency is improved with
adaptive method.
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Figure 3: (a) The numerical solution at y= x with adaptive time steps ∆t1(∆tmin= 0.01,∆tmax= 0.1,α= 100)
and ∆t2(∆tmin= 0.01,∆tmax= 0.25,α= 100). (b) CPU time comparison between constant time step ∆t= 0.01
and adaptive time step ∆t2.)
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Figure 4: (a) The discrete energy traces obtained using adaptive time-stepping strategy (∆tmin=0.01,∆tmax=
0.25,α=100) and constant time step (∆t=0.01). (b) Adaptive time step evolution.

The pseudo energy Eh curves are presented in Fig. 4 (a) obtained using adaptive time
step ∆t2 (∆tmin =0.01,∆tmax =0.25,α=100) and constant time step ∆t=0.01, respectively.
We can see that the two curves coincides, hence the solution dynamics can be captured
when an adaptive strategy is employed. In Fig. 4 (b), we also present the corresponding
adaptive time steps.
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Example 5.2. (Energy stability test). In this example, the physical parameters are M=1,
ǫ=0.025, β=0.01 and Ω=[0,32]×[0,32]. The initial condition is taken as

φ0(x,y)=0.07−0.02cos

(
2π(x−12)

32

)
sin

(
2π(y−1)

32

)
+0.02cos2

(
π(x+10)

32

)

cos2

(
π(y+3)

32

)
−0.01sin2

(
4πx

32

)
sin2

(
4π(y−6)

32

)
.

To test the energy stability, we use the first order convex splitting scheme (3.2), second
order convex splitting scheme (3.24) and the first order linear scheme (2.12) with ∆t=0.1
and advance the evolution to T = 100. The traces of energy Eh(φ) defined in (2.1), the
pseudo energy Eh(φ,u) defined in (2.6), Fh defined in (3.26) and the energy Eh(φ,u,U) are
presented in Fig. 5. As mentioned above, the energy Eh may increase in time on some
time intervals, while the pseudo energy Eh and Fh are non-increasing with respect to
time. Hence, it is necessary and meaningful to introduce the pseudo energy.
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Figure 5: The computed discrete energies Eh(φ) (black), Eh(φ,u) (blue), Fh (green) and Eh(φ,u,U) (red)
plotted as functions of time.

Example 5.3. (Long time simulation). In this example, we will show the long time char-
acteristic of the MPFC model with the random initial data on a square domain [0,128]×
[0,128]. The initial data takes φ0

i,j = φ̄+ηi,j, where φ̄ = 0.07 and ηi,j is an uniformly dis-

tributed random number satisfying |ηi,j| ≤ 0.07. The parameters are M= 1, β= 0.9 and
ǫ=0.025.

The computational parameters are the spatial discretization cell size h=128/N with
N = 128 and the piecewise P2 approximation. We employ the third order semi-implicit
SDC method, and the adaptive time step defined in (4.4) with α=105. Numerical results



146 R. Guo and Y. Xu / Commun. Comput. Phys., 24 (2018), pp. 123-151

(a) T=400, adaptive ∆t1 (b) T=800, adaptive ∆t1

(c) T=1500, adaptive ∆t2 (d) T=3000, adaptive ∆t2

(e) T=5000, adaptive ∆t3 (f) T=10000, adaptive ∆t3

Figure 6: Numerical solutions of the MPFC equation obtained using the third order SDC method with adaptive
time-stepping strategy ∆t1, ∆t2 and ∆t3.
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Figure 7: (a)(c) The discrete energy traces of the MPFC equation using the adaptive time-stepping strategy

(∆tmin=0.01,∆tmax =5.0,α=105). (b)(d) The adaptive time steps.

using different adaptive time steps ∆t1(∆tmin=0.01,∆tmax=0.1), ∆t2(∆tmin=0.01,∆tmax=
1.0) and ∆t3(∆tmin = 0.01,∆tmax = 5.0) are presented in Fig. 6. It is observed that the
solution dynamics can be captured correctly with adaptive time-stepping strategy.

The energy curve is presented in Fig. 7 (a), it decays quickly at the early stage and
then the energy decays rather slowly. The corresponding time step are given in Fig. 7 (b),
which agrees with the energy evolution. To show the energy trace and time step more
clearly, we zone them from T = 0 to T = 50 and show the results in Figs. 7 (c) and 7 (d),
respectively.

Example 5.4. (Growth of a polycrystal). The last example presents the growth of a poly-
crystal in a supercooled liquid. To define the initial configuration, we proceed as follows:
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first setting all control variables to a constant value φ̄= 0.285, and then modifying this
constant configuration by setting three perfect crystallites in three small square patches
of the domain. The crystallites are defined as follows:

φ(xl,yl)= φ̄+C

[
cos

(
q√
3

yl

)
cos(qxl)−0.5cos

(
2q√

3
yl

)]
, (5.2)

where xl and yl define a local system of cartesian coordinates that is oriented with the
crystallite lattice. Here, the local coordinates (xl,yl) are defined by an affine transforma-
tion of the global coordinates (x,y), which produces a rotation given by an angle θ. Also,
θ are chosen as −π

4 , 0, and π
4 , respectively, to generate crystallite lattices with different

orientations. We take the parameter C=0.446 and q=0.66.
The square domain is (0,804)×(0,804) with ǫ = 0.25 and M(φ) = 1. The boundary

conditions are periodic in the horizontal direction and homogeneous Neumann on the
top and bottom boundaries. The computational parameters are the spatial discretization
cell size ∆x = 804/N with N = 512 and the piecewise P k polynomials basis with k = 1.
For time discretization, we employ the third order semi-implicit SDC method, and the
adaptive time step defined in (4.4) with ∆tmin =0.1, ∆tmax =1.0, α=100.

In order to study the effect of the damping term, we take β= 0.9 and β= 10, respec-
tively, to simulate our numerical solutions, with the same initial data and parameters.
Numerical results at different times obtained with β= 0.9 are presented in Fig. 8, while
for β=10, the numerical result at time T=3000 is shown in Fig. 10. All these results show
statistically similar patterns in the numerical solutions as those in [1].

Fig. 9 (a) shows the discrete energy trace of the numerical solution, We can see that
the energy is non-increasing in time, which agrees with the theoretical result. In addi-
tion, the energy decays quickly at the early stage and then it decays rather slowly. The
corresponding time step is given in Fig. 9 (b), which agrees with the energy evolution.

6 Concluding remarks

In this paper, we developed several energy stable local discontinuous Galerkin schemes
for the modified phase field crystal equation, and proved the corresponding uncondi-
tional energy stabilities and the boundness of the numerical solution. What made it dif-
ferent and difficult comparing with the numerical scheme for phase field crystal equation
was the treatment of the second-order time derivative ∂ttφ and the introduction of pseudo
energy. The most important property of LDG methods is high order accurate, and in or-
der to achieve higher order temporal accuracy, the semi-implicit spectral deferred correc-
tion method was employed, combining with the first order convex splitting scheme. The
numerical simulations of modified phase field crystal model always need long time to
reach steady state, and therefore adaptive time-stepping strategy was adopted. Numer-
ical experiments were presented to show that the proposed schemes were indeed high
order accurate in time and space. In addition, long time simulations were presented to
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(a) T=200 (b) T=500

(c) T=1000 (d) T=2000

Figure 8: β=0.9: Numerical solutions of the MPFC equation obtained using the third order SDC method with
adaptive time step sizes.
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Figure 9: β=0.9: (a) The discrete energy traces of the MPFC equation obtained using the adaptive time-stepping
strategy (∆tmin=0.1,∆tmax=1.0,α=100). (b) The adaptive time step evolutions.
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Figure 10: β=10: Numerical solutions of the MPFC equation obtained using the third order SDC method with
adaptive time step sizes.

demonstrate the capability and efficiency of our proposed approaches when solving the
modified phase field crystal equation.
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