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Abstract. We introduce a variational method for demodulating phase maps from fringe
patterns. This new method is based on the mean curvature of the level sets of the phase
surface that is used for regularization. The performance of the method is illustrated
with both synthetic and real data.
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1 Introduction

Fringe analysis techniques are very popular to estimate with reasonable accuracy phys-
ical quantities such as shape of objects, deformation, refractive index and temperature
fields. They achieve these goals by recovering the local phase from one or a collection
of interference fringe pattern images. The mathematical model of a fringe pattern is de-
scribed by the equation

u=a+bcos(p+¢), (1.1)

where a is the background illumination, b is the amplitude modulation, ¢ is the spatial
carrier frequency and ¢ is the phase map to be recovered. The problem of recovering not
only ¢ but also a and b from the above equation is an ill-posed problem. Having only
Eq. (1.1) to recover the three unknowns a, b and ¢, plus the nonlinearity of the cosine
function makes the problem very challenging. Recently, variational techniques that aim
to reduce uncertainty of the solution by introducing more information into the model
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by means of regularization of the unknown variables have proved to deliver a feasible
solution to this problem, see [10,17,30] and references therein. The new information
introduced in the form of a regularizer defines the properties of the variational solution
so a careful selection is advised.

The paper is organized as follows: in Section 2 we review the TV model, its virtues
and drawbacks. In Section 3 we introduce a new curvature based model. In Section 4
we present the numerical solution of the Euler-Lagrange equations. In Section 5 are the
experimental results and Section 6 is used to present our conclusions. In the Appendix at
the end we present the derivation of the Euler-Lagrange equations.

2 Review

The use of regularization to process phase maps can be traced back to the works of [9,
13,18, 25] and references therein. In those works some sort of smooth regularization was
used with the purpose of stabilizing the solution of the proposed algorithms. However,
it is not until very recently that cutting-edge variational techniques, already successfully
proved in the field of image processing, have started to being applied to the modeling of
interferometry problems. For instance, the very popular Total Variation (TV) regularizer
was used in [19] for measurement of planar refractive index profiles with rapid variations
in glass using interferometry. Likewise, in [22] the authors proposed a TV based single-
shot interferogram analysis for accurate reconstruction of step phase objects.

A work of particular interest to us is the one we presented in [17], where a variational
method was proposed for recovering a discontinuous phase map from a single pattern.
This method, applied TV regularization to all three unknowns ¢, a and b as it is shown
below

argmin TV(a,b,gb,g)E{/ (u—g)2d0+)\1/ |Va|ldQ)
a,b,p Q ()

+A2/Q]Vb|d0+)»3/QN¢|dQ}, 2.1)

where Q) C R? is the domain of integration, g is a given fringe patternand A;>0,i=1,2,3
are regularization parameters.

The distinctive feature of (2.1) is that it allows the recovering of sharp phase tran-
sitions, something that other methods, such as those based on L, regularization, fail to
deliver. However, recent studies [4, 24, 29] have shown that TV regularization brings
some unwanted inconveniences as well. The most known being staircasing and the loss
of signal height.

The contribution of this paper is to present a different regularizer, based on the mean
curvature of the level sets of ¢, which overcomes these drawbacks while still retaining
the nice properties of the TV model.
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Staircasing

This phenomenon, which appears in TV regularized image denoising models, such as
[20], causes images to look blocky and has been extensively studied [5,6,16]. Staircasing
can easily been observed in regions with low curvatures values and maybe explained as
the preservation of monotonicity of neighboring values. The model in (2.1) will therefore
transform smooth or piecewise smooth signals into piecewise constant signals.

Loss of signal height

When working on phase retrieval, the right selection of the phase regularizer is quite
relevant since it imposes a set of constraints defining the properties of the phase map
recovered and therefore a careful selection should be done. In metrology, the height of
¢ may represent the amount of deformation that a given physical structure has suffered
due the action of forces acting on it, hence an accurate recovery is expected from the
variational solution. On this matter, it has been documented that the TV regularizer does
not preserve the height of processed signals. In variational image denoising, the authors
in [24] managed to derive a rule for piecewise constant signals which states that “for
piecewise constant image features the change in image intensity due to TV regularization
is directly proportional to the regularization parameter and inversely proportional to the
scale of the image feature”. For the model (2.1), the loss of signal height for ¢ is given by

5= ﬁ/ (2.2)
scale

where 6 stands for the change in signal height, A3 the regularization parameter and scale
is defined as the ratio of the area of the feature to its boundary length.

On one hand, this inconvenient property of the TV regularizer makes it not suitable
for metrology applications where an accurate recovery of the phase map is critical. On
the other hand, we argue that TV, or even L, regularization, might be the right choice
for a and b since in most applications, they are found to be piecewise constant or almost
constant functions.

The analysis above shows that ¢ would benefit from a better selection of the reg-
ularizer. Recently, strong evidence showing that curvature based regularizers such as
mean curvature [29] and Gaussian curvature [4] have much better properties than those
of TV has been presented. Curvature regularizers, as proved in [4,29] do not damage
the height of the phase while still preserving sharp edges and corners. They are able to
preserve smooth regions of the signal avoiding the staircase effect as well. In this paper,
we will introduce a new model based on the mean curvature regularizer and will leave
the study of the Gaussian regularizer for a future work.
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3 A new model for demodulating phase maps

In this section we introduce a model based on the mean curvature of the phase map sur-
face. The rationale of this selection is based upon argumentation of the previous section:
a good phase regularizer should preserve the height of the phase surface for all scales.
If this condition is not satisfied, the phase map may be a misrepresentation of the true
phase map and less useful for metrology applications. The regularizer should also pre-
serve edges and corners.

Therefore, we propose the following model to estimate the phase map, background
illumination and amplitude terms

argmin P(a,b,gb,g)z{/ (u—g)2d0+)\1/ |Va|ldQ)
a,b,¢ Q

+A2/ be|dQ+A3/‘ dQ} 3.1)

where p=1,2. In this paper, we will focus on the case p=1. We will call this model the
mean curvature (MC) model since we are using the mean curvature of the phase surface
to regularize the phase maps. This model estimates with good accuracy phase maps in
the interval [0,77]. To unfold wrapped phase maps, any of the many reported methods in
the literature may be used.

Preliminary analysis of the model

In (3.1) we find three different subproblems, one for each variable, with different char-
acteristics. To begin with, both subproblems for a and b have a TV regularizer which
is known to be convex [17] while the mean curvature regularizer for ¢ makes the sub-
problem for this variable non convex.

The error term defined as E(a,b,¢,8) = [, (1 —g)?dQ), which is common to all three
sub-problems, has the following second order optimality conditions for 4 and b:

W E / 40 >0, (3.2)
2F
Z? :2/Q C052(1/J+<,b)d0 >0. (3.3)

From (3.2), it is clear that E is positive definite for 4, hence following standard argu-
ments [1], it can be shown the existence of a unique minimizer in the BV-space for this
variable. From (3.3), we note that strict inequality is possible due to the presence of the
carrier component. Therefore, E is also positive definite for b and a unique minimizer
also exists.

Finally, a complete study of the subproblem for the phase map is not trivial due to the
high order regularizer and non convexity of both: error term and regularizer. We remark
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that even with the disadvantages described above, the mean curvature regularized model
presented in (3.1) has the very useful property of being independent of the signal height
as proven in [29]. This feature helps the model to avoid decimating the signal height,
a critical requirement for phase recovery algorithms. Further, curvature regularization
does not suffer from staircasing while being able to keeping edges and contours sharp.

Euler-Lagrange equations

To find the minimizers of (3.1) we solve their associated Euler-Lagrange equations. Their
derivation is presented in the Appendix at the end of the manuscript. They are given by

v !g [hle—g)= (3.4)
Vg +halu—g)cos(y+4) = 65
V' (k) V- VP'(x) . -

V'< NI E W’)+A3(u—g>(—bsm(¢+¢>)—o, (3.6)

where xk=—-V- |V ¢| is the mean curvature of the level sets of ¢, ®=x? or ®=|«x| and with

boundary conditions

Ja ob o
v WY
with v the unit outward normal.
All of the above are highly nonlinear anisotropic partial differential equations (PDE).
We note that the first two equations are second order PDEs while the last is fourth order.
Note that in order to avoid division by zero, we have to apply regularization by re-
placing |Va| in (3.4) with |Va|g = \/|Va|>+ B where B >0 is a small parameter. A similar
process is carried out in (3.5) and (3.6) to get |Vb|z and |V |;.

=0,

4 Numerical solution

The numerical solution of the above three PDEs is very challenging due to their own
nature. The well known and easy to implement Euler explicit algorithm has the drawback
that the time-step needs to be selected very small for stability reasons. In particular,
applying the Euler algorithm to solve (3.6) may take thousands of iterations, as reported
in [3] for solving a similar problem, to reach a meaningful solution due to the stiffness
of the PDE. Thus, the need of state of the art numerical algorithms. In this work we
decided to use fixed point and Nesterov algorithms. Other techniques such as augmented
Lagrangian methods [7, 14], convexity splitting [2], non linear multigrid [3], homotopy
methods [28] and so on may result in a more efficient solution and will be part of our
future work.
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We now proceed to describe in detail the fixed point algorithm for each one of the
variables.

A fixed point algorithm for a

To solve (3.4), we adapted the fixed point method [26] to this new PDE. This is done by
expressing (3.4) as a linear system of the form

Lo (a") a1 =, (4.1)

for k=0,1,2,--- as follows

Vv
<_VW+)\11> ﬂk+1:A1(—bCOS(¢+¢)+g), (42)
where
fa=A(—bcos(P+¢)+g), (4.3)
\V4

Ly(d)=-V - —— + 1. 44

An initial estimation a° is provided and a converging sequence of solutions {a* }~1 is
constructed using (4.2). The nonlinear differential operator L,(a") is linearized by lagging
the nonlinear coefficients |[Va*|~! at every k-iteration. L,(a*) is then positive definite
and diagonally dominant. To solve the linear system at each iteration, we use Cholesky
preconditioning together with the conjugate gradient (CG) method.

A fixed point algorithm for b

To solve (3.5), we apply the same approach by rewriting it as the following iterative equa-
tion:

(—V-W—ka| + s cos? (1/J+<,b)> V= )y (—a+g)cos(p+¢). (4.5)

This time the right-hand side and the linear operator are defined by
fo=A2(—a+g)cos(p+¢), (4.6)
Lh(bk)E—V-’V—VbH—FAzcosz(tlH—(P). 4.7)

In this case, L, (b¥) also has the nice property of being positive definite and diagonally
dominant. The linear system

Ly(bF)0 ! = f, (4.8)

can also be solved with a preconditioned CG algorithm.
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Nesterov accelerated gradient descent for ¢

In our experiments, the fixed point method for ¢ did not work well, mainly due to the
matrix not being positive definite nor diagonally dominant. Therefore, we decided to use
Nesterov algorithm [15].

By defining the left hand side of (3.6) as VP(¢), Nesterov accelerated gradient descent
consists of the sequences in Algorithm 1.

Algorithm 1 Nesterov accelerated gradient descent for solving (3.6)
Require: ag=0,8,MAX and arbitrary initial point ¢y =1yo
fork=1,2,---, MAX do
1+4/1+4a2

K = 5
_ 1-ag g
V1= %,

Y =Pr—1— %VP(WA)

P = (1= Yk—1) Yk +Yk-1Yk-1
end for

The numerical algorithm

Finally, to compute the minimizers of (3.1) we solve the three PDEs iteratively using a
Gauss-Seidel process alike. This is made clear in Algorithm 2.

Algorithm 2 Solves the minimization problem (3.1)
Require: ¢°,a°,b°, MAX
fork=0,1,2,---, MAX do
- compute a**! from (4.1) for a*,b*,¢F.
- compute b**! from (4.8) for a¥+1,bk,¢*.
- compute ¢! from Algorithm 1 for a*+1,pk+1 k.
end for

We note that rigorous mathematical proof of the convergence of Algorithm 2 and each
one of the fixed point methods (4.1) and (4.8) is not ready and will be part of our future
work. However, experimental evidence shows that this may be the case.

Discretization

We proceed to outline the discretization scheme we use. We choose the continuous
domain as Q = [0,m] x [0,n] which ensures that the spatial steps are h, =h, =1 and
let (hy,hy) represent a vector of finite mesh sizes. Then we define the infinite grid by
Gn={(x,y):x=x;i=ihy, y=yj=jhy; i,j € Z} and the cell-centered grid ), = QNG
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For illustration purposes we select u to represent any continuous variable defined on
Q). Then, its discrete version is given by uj, =uy,(x,y) =uy(x;,y;) = up(ihy, jhy,). We will use
(+)o to denote the derivative with respect to any variable o.

To approximate the divergence operator, at some discrete point or pixel (i,j), acting
on any vector field V = (V1,V?), ie. V-V =(V'),+(V?),, we use central differences
between ghost half-points as follows

1 1 2 32
(Vi vhy) (V2 -vEy)
Tty I, '

V-Vij= (4.9)

The mean curvature operator is approximated using

(ux)i+%,j (”x)i_%,j (”y)i,j+- (y)z]—l

— 2
’V”’ﬁr%,j |V”|i—%,j [Vl Vul

Lj=2

Kl',]' =
ij+1

partial derivatives in x by the central differencing of two adjacent whole points
(”x)lur%,]‘ = (uip1,;—uij)/h,
(1), = (1t i1 /b,
(q);c)i+%,j = < i+1,j_q)i,‘) /h,
(P))i1,= (@,j‘ i 1]) /h,
13, = () g 2 ()44 )2 B

partial derivatives in y by the min-mod of (-),’s at two adjacent whole points
1 1
(”y)1+1 ]—mzn -mod h(ul+1]+1_ul+1] 1) _h(ul]+1 ul] 1)

1 1
(4y);_1 j=min-mod <E(ui,j+1—ui,j1),ﬁ(ui1,j+1—ui1,j1)> ,

(CID’)ZJrl j=min-mod (Z,8) with

1 1
C:ﬂ( §+1,j+1—q’§+1,]‘—1) and ﬁzﬂ( i1 ;,j—l)/

(@), 1 j=min-mod(Z,8) with

1
@——( i+ ;,j—l) and 19:§< ;—1,j+1_q)§—1,j—l)r

(Vuli_y = ()i ) ()2
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. . . . . . 2 2
By using a similar procedure, we can obtain the approximations for V., and V;

it i=3
Finally, the Neumann’s boundary condition on d() is treated as
Ui0=Ui1, Wini1="MUin, Uoj=Ulj, Upmilj=Un,. (4.10)
The min-mod function is defined below
b
min-mod (a,b) = <m>mm(|a1,]bl). (4.11)

5 Experimental results

In this section we present some experimental results to illustrate the virtues of our model.

We begin with the synthetic problem shown in Fig. 1(a), consisting of a vertical fringe
pattern as the ones used in metrology in the semiconductor industry. The results of ap-
plying to this problem the TV model (2.1) and the MC model (3.1) with different values
of the regularization parameter A3 are shown in the left and right columns of Fig. 2, re-
spectively. It can be seen that for the right choice of the parameter, i.e. A3 =0.001 both
models deliver a very good reconstruction of the phase map. However, when the pa-
rameter value is increased, the TV model starts suffering from loss of signal height while
the MC model manages to deliver a much better result. This is important since the right
value of A3 is not known in advance and usually difficult to find.

Now we move to illustrate the good performance of our MC model to changes of fea-
ture scale. In Fig. 1(b), we show a synthetic problem including a phase map with features
at two different scales. On one hand, the results of applying model (2.1) to recover the
phase map are shown in the first two rows (from top to bottom) of Fig. 3. In the first row,

Test signal

1.0 PLIIEILIL £
o oo, 0.8

0.6

00t o ] .' 1 0.4
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10 2 30 a0 50 60 70 0 20 40 60

(a) Test problem 1 (b) Test problem 2

Figure 1: Test problem 1 is a synthetic piecewise signal with constant and smooth regions. Test problem 2 is a
synthetic piecewise signal with features at two different scales.
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Figure 2: In all plots, the red dotted line is the recovered phase map and the blue dotted line the ground
truth. The results from the TV model (2.1) are presented in the top row and from the MC model (3.1) in
the bottom row. From left to right, the values for the regularization parameter were selected as follows: first
column A3=0.01, second column Az =1, third column A3=10, fourth column A3=100.
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Figure 3: Top row, are the results for the TV regularized model using A3=0.05 and A3=0.25 respectively. The
bottom row are the results for the MC model using the same values of A3.
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Figure 4: To the left the MSE between the ground truth phase and the recovered phase from the TV model for
Test problem 1. To the right, the same for the Test problem 2. In both plots, the red line is the MSE for the
TV base model while the blue line is the MSE for the MC model. Clearly, the MC model, outperforms in both
cases the TV model by having a smaller MSE. The values of A3 tested are in the interval [0.001,5].

where A3=0.05 has been used, it can be seen that the TV model is incapable of recovering
the right height of the feature with the smallest scale and some staircasing is present. The
second row shows how the TV model completely wipes out the feature with smallest
scale when the regularized parameter is increased to A3 =0.25. On the other hand, the
results of using our MC model (3.1) are shown in the third and fourth rows. The same
values for the regularization parameter A3 =0.05 and A3 =0.25 were used. In contrast to
the TV model, the MC model delivered a very good phase recovering without decimating
the signal heights no matter the scale of the features.

A good selection of the regularization parameter in a variational model maybe crit-
ical to obtaining good results. We suggest to use the L-curve method [27] to select all
regularization parameters in the MC based model. To illustrate the performance of the
TV and MC models for different values of A3, we present some results in Fig. 4 where
we plot the mean square error (MSE) for both models. It can be seen that for almost all
values of Az, the MC model performs better than the TV model and is less affected by
overregularization.

We also present an experiment consisting of processing a fringe pattern obtained from
a holographic interferometry experiment [11], which consisted of the height measure-
ment of a micro-thin film. The fringe pattern obtained from this experiment is shown in
Fig. 5(a). The fringe pattern was demodulated using Fourier-based quadrature transform
method described in [21]. During the demodulation process, first the following terms are
estimated: background, modulation, and spatial carrier. Then, we subtract the carrier
term from the wrapped phase and the phase term is unwrapped if needed [11]. These
estimations are used as initial values in our method. On one hand, comparing the result
of our model, shown in Fig. 5(d), against the result obtained from the very well known
Schwinder-Hariharan algorithm [11] and shown in Fig. 5(b), we first remark that our



38 C. Brito-Loeza et al. / Commun. Comput. Phys., 24 (2018), pp. 27-43

(b) Estimated phase using the Schwinder-

Hariharan algorithm
" i | | ';l. .’_' ) .

(c) Estimated phase using the TV regularized (d) Estimated phase using our curvature based
model [17] model

Figure 5: (a) An experiment consisting of processing a fringe pattern obtained from a holographic interferometry
experiment, which consisted of the height measurement of a micro-thin film. In (b), (c) and (d) are the resulting
phase maps from the Schwinder-Hariharan algorithm, the TV model and the MC model respectively.

model is able to deliver a similar phase recovery by preserving the dynamic range of the
phase. On the other hand, comparing the result of our model against the result from the
TV regularized model, shown in Fig. 5(c), we appreciate that they differ in smoothness,
i.e. model (2.1) delivers a piecewise constant signal while model (3.1) a smoother signal.
An important remark here is that our model is equipped with the right tool to recover
small scale features, something that the Schwinder-Hariharan and TV algorithms most
likely will miss.

Finally, we warn that our model has multiple solutions due to the non convexity of
the mean curvature regularizer. This may pose a problem since variations in ¢ as well
as b may explain the interference pattern. To solve this problem, a numerical algorithm
capable of finding the global minimum is the solution. In [23], the authors reported that
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multigrid method is more likely to converge to the global minimizer of a particular non-
convex variational problem than unilevel methods. Therefore, in the future we will be
implementing a multigrid algorithm for the MC model.

6 Conclusions

We presented a new variational model for estimating phase maps from fringe patterns.
The new model differs from others in that it uses a mean curvature regularizer for the
phase map. Up to our knowledge this is the very first work to introduce a curvature
regularizer for phase estimation. Three Euler-Lagrange equations to minimize the model
were derived and fast numerical algorithms for their solution presented. Experimental
results over two synthetic problems and one real life problem were presented to illustrate
the main virtue of our model: signal height or dynamic range preservation to different
feature scales. Part of our future work involves developing even faster algorithms such
as nonlinear multigrids and augmented Lagrangian methods.

Appendix

Here, we derive the first-order optimality conditions or Euler-Lagrange equations for a,b
and ¢. In the formal derivation we assume that the vector fields are smooth enough such
that gradients are well defined and the variation ¢ has compact support over () so that
we can use the divergence theorem to get rid of the boundary terms.

Euler-Lagrange equation for ¢

We start with the regularizer R(¢)= [, ®(x) given in (3.1) and compute the first variation
as it is customary using 6Ry = L R(¢-+€@)|c—o. For convenience, we write (f) = [, fdQ
and the boundary integral as (f)y = [, fds with ds denoting the arc-length element. The
the variation of R is

|
(V| V(69— o s (V9T ). (A1)
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We note that (|$2P|V ? |§g| is the projection of Vé¢ onto V¢ and therefore we can write 6R

as follows

Ry =( & (V- | oV (09)~ 119 (69)] ), (a2)

where 11 is the projection operator onto the normal direction. Then by using the diver-
gence theorem we get

V' (k) 1 >
OR :<— V(6¢)+IIVD' (x V() ), (A.3)
where we have dropped the boundary integrals
V(5¢) > < v (5¢) >
' (x v) and (d(x vy, (A4)
(¥ ), 7T
and v is the unit outward normal vector. Now we apply the divergence theorem again
getting
V&' (k) IV (x) >
0Ry=( V' —7-0¢—V - —=—-50 (A.5)
= (T Yo
where this time we dropped the following boundary integrals
V' (k) > <HVCI>’ () >
) and ) . (A.6)
(Croar Vol "),
From (A.5), we get the first order optimality condition
Vo' (k) TIIVP'(x) >
V- ( - =0. (A7)
Vel Vel
By applying IT to V&' (k) we get
Vo'(k) V'(x)-Vo >
\ < V¢ | =0, (A.8)
Vol veF ?

just like in (3.6).
We now turn to compute the first variation 6F, of the error term F = [, (u—g)?dQ)
with respect to ¢

6Fy={(5((a+bcos(p+¢)—g)?))

=(2((a+Dbcos(p+¢)—g8)(—bsin(p+¢))d¢), (A9)
obtaining the following optimality condition
2(a+bcos(p+¢)—g)(—bsin(p+¢)=0. (A.10)

From (A.8) and (A.10) we obtain the Euler-Lagrange equation for ¢ given in (3.6).
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Euler-Lagrange equations for a,b

For completeness we show how to compute the Euler-Lagrange equations for a and b.
Similar as before we compute the variations dF,,6 F, with respect to a and b respectively

0F,=(2((a+bcos(p+¢)—g)da), (A.11)
0F, = (2((a+bcos(p+¢)—g)cos(p+¢)db). (A.12)

The variation for the regularizers R,= [,|Va|dQ and R,= [|Vb|dQ) it is pretty standard
and can be found in many papers see for instance [20]. It is given by

OR,=((|Val))
Va
:<W‘W“)>

Va
_<_v.—w(sa>, (A1)
where we have dropped the boundary integral
Va >
——da-vds ) . (A.14)
< Val 9

Therefore the optimality condition is given by

Va
_v._’vﬂ’ =0, (A.15)

and similar for b.
Putting all together, (A.12), (A.11) and (A.15) we get the Euler -Lagrange equations
(3.4) and (3.5).
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