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Abstract. Partial differential equations (PDE) on manifolds arise in many areas, in-
cluding mathematics and many applied fields. Due to the complicated geometrical
structure of the manifold, it is difficult to get efficient numerical method to solve PDE
on manifold. In the paper, we propose a method called point integral method (PIM) to
solve the Poisson-type equations from point clouds. Among different kinds of PDEs,
the Poisson-type equations including the standard Poisson equation and the related
eigenproblem of the Laplace-Beltrami operator are one of the most important. In PIM,
the key idea is to derive the integral equations which approximates the Poisson-type
equations and contains no derivatives but only the values of the unknown function.
This feature makes the integral equation easy to be discretized from point cloud. In the
paper, we explain the derivation of the integral equations, describe the point integral
method and its implementation, and present the numerical experiments to demon-
strate the convergence of PIM.
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1 Introduction

Partial differential equations (PDE) on manifolds arise in many areas, including geomet-
ric flows along manifolds in geometric analysis [8], movements of particles confined to
surfaces in quantum mechanics [9, 29], and distributions of physical or chemical quanti-
ties along interfaces in fluid mechanics [10], among others. It is well-known that one can
extract the geometric information of the manifolds by studying the behavior of partial
differential equations or differential operators on the manifolds. This observation has
been exploited both in mathematics, especially geometric analysis [39], and in applied
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fields, including machine learning [3, 17], data analysis [28], computer vision and image
processing [21], geometric processing of 3D shapes [19,25,26]. Poisson equation on man-
ifolds and the related eigenproblem of the Laplace-Beltrami operator are one of the most
important, and have found applications in many fields. For instance, the eigensystem
of the Laplace-Beltrami operator has been used for representing data in machine learn-
ing for dimensionality reduction [2], and for representing shapes in computer vision and
computer graphics for the analysis of images and 3D models [25, 26].

In this paper, we propose a method to solve the Poisson equations on manifolds from
point clouds with convergence guarantees. Unlike a mesh or a Euclidean grid, which
may be difficult to generate or may introduce extra complexity, point cloud is the sim-
plest way of representing a manifold, which is often made ready for use in practice and
whose complexity depends only on the manifold itself. The main observation is that the
Poisson equations can be approximated by certain integral equations which can be eas-
ily discretized and has a faithful approximation from point clouds. More precisely, we
consider the Poisson equation with Neumann boundary condition:

{

−∆u(x)= f (x), x∈M,
∂u
∂n(x)= g(x), x∈∂M,

(1.1)

where M is a k dimensional submanifold isometrically embedded in R
d. We show that

its solution is well approximated by the solution of the following integral equation:

− 1

t

∫

M
(u(x)−u(y))R

( |x−y|2
4t

)

dx

=
∫

M
f (x)R̄

( |x−y|2
4t

)

dx+2
∫

∂M
g(x)R̄

( |x−y|2
4t

)

dx, (1.2)

where the function R(r) :R+→R
+ is either compactly supported or decays exponentially

and

R̄(r)=
∫ +∞

r
R(s)ds. (1.3)

One choice of the function R is the well-known Gaussian. As the integral equation in-
volves no derivatives of the unknown function u but only the function values, it can
be easily discretized from a point cloud which samples the underlying manifold. We
call this method point integral method (PIM) as it only requires the approximation of
integrals from the discrete point clouds. It has been shown that PIM has convergence
guarantees for solving the Poisson-type equations on manifolds. The readers who are
interested in the convergence analysis are referred to our companion papers [32–34]. In
this paper, we focus on describing the point integral method and its implementation, and
presenting the numerical experiments to demonstrate the convergence of PIM.



230 Z. Li, Z. Shi and J. Sun / Commun. Comput. Phys., 22 (2017), pp. 228-258

Related work

Finite Element method is one of the most widely used method to solve the Poisson equa-
tions on surfaces. It has many good features. FEM converges fast: quadratically in L2

and linearly in H1 [14]. FEM also works for solving the eigensystem of Laplace-Beltrami
operator [13, 36, 38]. In computational aspect, for Poisson equation, the stiffness matrix
obtained by FEM is symmetric, positive definite and sparse. There are lots of research
on the fast solver for this kind of linear systems. Despite all these advantages, FEM re-
quires a globally consistent mesh with well-shaped elements, which is very difficult to
generate for curved manifolds. It is well-known that bad shaped elements may increase
the condition number of the linear systems in FEM and hence reduce the accuracy of the
solution [31]. However, for a curved manifold, it is already very difficult to obtain a glob-
ally consistent mesh [16], let alone to generate a mesh with well-shaped elements [11].

Level set method embeds the manifolds into ambient spaces, and extends the differ-
ential equations into ambient spaces, where the discretization of the differential equations
can be done using Euclidean grids of the ambient space [6]. Level set method also has
other advantages. For instance, with the help of implicit function, it becomes easy to
estimate the normals and the curvatures of the manifold. See the discussion in [6, 7] for
more details. However, the main shortcoming of the level set method is that Euclidean
grids are not intrinsic to the manifold and may introduce extra computational complexity,
especially in the case where the ambient dimension is high.

There are other methods which solves PDEs on manifolds directly from point clouds.
Liang and Zhao [20] and Lai et al. [18] propose the methods to locally approximate the
manifold and discretize the PDE using this local approximation, and assemble them to-
gether into a global linear system for solving the PDE.

Closest point method gives another approach to solve the PDEs on point cloud [23,
24, 27]. The main idea is to extend the function on manifold to the whole space by a
”closest point function” and replace the derivatives on manifold by the derivatives over
the whole embedding space.

The point integral method is also related to the graph Laplacian with Gaussian weights.
In [3, 5, 15, 17], it is shown that the graph Laplacian with Gaussian weights converges
pointwisely to the Laplace-Beltrami operator when the vertices of the graph are assumed
to sample the underlying manifold. The eigensystem of the weighted graph Laplacian is
shown to converge to the eigensystem of the Laplace-Beltrami operator when there is no
boundary [4, 12], or there is Neumann boundary [35]. Their proofs are done by relating
the Laplacian to the heat operator, and thus it is essential to use the Gaussian kernel.

Organization of the paper: The remaining of the paper is organized as follows. In Sec-
tion 2, we state the problems we want to solve. We derive the integral equations which
approximate the Poisson equations with Neumann and Dirichlet boundary conditions in
Sections 3 and 4 respectively. The details of discretizing the integral equations and its
implementations are given in Section 5. In Section 6, we briefly describe the algorithm
for estimating the volume weights from point clouds. In Section 7 we present several nu-



Z. Li, Z. Shi and J. Sun / Commun. Comput. Phys., 22 (2017), pp. 228-258 231

merical results to show the performance of our method. At last, conclusion and remarks
are made in Section 8.

2 Statement of the problems

In this paper, we consider the Poisson equation on a compact k-dimensional submanifold
M in R

d with two kinds of boundary conditions: the Neumann boundary condition

{

−∆Mu(x)= f (x), x∈M,
∂u
∂n (x)= g(x), x∈∂M,

(P1.a)

and the Dirichlet boundary condition,

{

−∆Mu(x)= f (x), x∈M,

u(x)= g(x), x∈∂M,
(P2.a)

where ∆M is the Laplace-Beltrami operator on M, and n is the outward normal of
∂M. Let G be the Riemannian metric tensor of M. Given a local coordinate system
(x1,x2,··· ,xk), the metric tensor G can be represented by a matrix (Gij)k×k,

Gij =

〈

∂

∂xi
,

∂

∂xj

〉

, i, j=1,··· ,k. (2.1)

Let (Gij)k×k is the inverse matrix of (Gij)k×k, then it is well known that the Laplace-
Beltrami operator is

∆M=
1√

detG

∂

∂xi

(

Gij
√

detG
∂

∂xj

)

. (2.2)

If M is an open set in R
d with standard Euclidean metric, then ∆M becomes standard

Laplace operator, i.e. ∆M=∑
d
i=1

∂2

∂xi2
.

The other problem we consider is the following eigenproblem of the Laplace-Beltrami
operator with the Neumann boundary

{

−∆Mu(x)=λu(x), x∈M,
∂u
∂n(x)=0, x∈∂M,

(P1.b)

or the Dirichlet boundary

{

−∆Mu(x)=λu(x), x∈M,

u(x)=0, x∈∂M.
(P2.b)

A pair (λ,u) solving the above equations is called an eigenvalue and the corresponding
eigenfunction of the Laplace-Beltrami operator ∆M. It is well known that the spectrum of
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the Laplace-Beltrami operator is discrete and all eigenvalues are nonnegative. Suppose
0 = λ0 ≤ λ1 ≤ λ2 ··· are all eigenvalues listed in the ascending order and φ0, φ1, φ2, ···
are their corresponding eigenfunctions. Then the problem we are interested in is how to
compute these eigenvalues and the corresponding eigenfunctions from point clouds.

So far, all the problems are stated in the continuous setting. Next, we will introduce
the discretization of the manifold M. Typically, the explicit form of the submanifold M
is not known. Instead, M is represented by a set of sample points P= {pi| i= 1,··· ,n},
and the boundary of ∂M is sampled by a subset S={si| i=1,··· ,m}⊂P. In addition, we
may assume the following two vectors are given. The first one is V=(V1,··· ,Vn) where
Vi is the volume weight of pi on M. The second one is A=(A1,··· ,Am) where Ai is the
volume weight of si on ∂M. These two vectors are used to evaluate the integrals over M
and ∂M. For example, for any Lipschitz function f on M and g on ∂M,

∫

M f (x)dµx and
∫

∂M f (x)dτx can be approximated by ∑
n
i=1 f (pi)Vi and ∑

m
i=1 f (si)Ai respectively.

Remark 2.1. We emphasize that the estimation of V and A requires only local informa-
tion, which is for sure no more difficult than generating a mesh from the given point
cloud. If they are not given, V and A can be estimated as follows.

(1) If a mesh with the vertices P approximating M is given, both weight vectors V and
A can be easily estimated from the given mesh by summing up the volume of the
simplices incident to the vertices. One can obtain the input data which h-integral
approximates M and ∂M if the size of the elements in the mesh is of order h and
the angle between the normal space of an element and the normal space of M at
the vertices of the element is of order h1/2 [38]. Note that unlike in FEM, there is
no requirement on the shape of the elements to obtain from the mesh an h-integral
approximation.

(2) If the points in P(S) are independent samples from uniform distribution on M,
then V can be taken as the constant vector 1/n. The integral of the functions on M
can be estimated using Monte Carol method up to the volume of M, and similarly
for ∂M.

(3) Finally, following [22], one can estimate the vectors V and A by locally approximat-
ing tangent spaces of M and ∂M, respectively. Specifically, for a point p∈P, project
the samples near to p in P onto the approximated tangent space at p and take the
volume of the Voronoi cell of p as its weight. In this way, one avoids constructing
globally consistent meshes for M and ∂M.

In the paper, we assume that the submanifold M and its boundary ∂M are well
resolved by the point set P and S in the sense that the integral of any C1 function on M
and ∂M can be well approximated from the function values on P and S respectively. The
issue becomes how to solve the Poisson equation on (M,∂M) from the sample points P
and S with guaranteed accuracy.
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3 The Neumann boundary condition

Let us consider the Poisson equation with the Neumann boundary condition given by
(P1.a). Given only unstructured point sets P and S without mesh information, it is dif-
ficult to discretize the Laplace-Beltrami operator, which is a differential operator. Our
strategy is to first approximate the Poisson equation by an integral equation which in-
volves no differentials but only the values of the unknown function, and then discretize
the integral equation, which is relatively straightforward even without mesh.

We assume that the solution of the Neumann problem (P1.a) is regular enough, at
least belongs to C3(M). According to the theory of elliptic equations, this assumption
could be true as long as f , g, the submanifold M and its boundary ∂M are smooth
enough. Furthermore, we assume the function R : R

+→R
+ is C1(R+) and R(r)= 0 for

∀r>1. Under these assumptions, we can have the following main theorem of this section.

For a parameter t, let

Rt(x,y)=CtR

( |x−y|2
4t

)

and R̄t(x,y)=CtR̄

( |x−y|2
4t

)

,

where Ct is a normalizing factor. Recall that R̄(r) =
∫ +∞

r R(s)ds. Define the following
operator for any function u on M which makes the definition meaningful

Ltu(x)=
1

t

∫

M
Rt(x,y)(u(x)−u(y))dµy. (3.1)

Let us call Lt is the integral Laplace operator, which is clearly defined over L2(M).

In PIM, the approximate solution of the Neumann problem (P1.a) is obtained by solv-
ing the following integral equation with small t

Ltu(y)=2
∫

∂M
g(x)R̄t(x,y)dx+

∫

M
f (x)R̄t(x,y)dx. (3.2)

Similarly, one can approximate the eigenproblem of the Laplace-Beltrami operator with
the Neumann boundary given by (P1.b) by solving the following integral equation with
small t

Ltu(y)=λ
∫

M
u(x)R̄t(x,y)dµx. (3.3)

Note that all the terms in (3.2) and (3.3) are in the integral form, which is ready to be
discretized by the point sets P and S, and the associated volume weights V and A. See
Section 5 for the discretization of the above integral equations.

Then following theorem indicts that the integral equation (3.2) approximate the Neu-
mann problem (P1.a) in the sense that the truncation error is small.
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Theorem 3.1. Let u(x) be the solution of the Neumann problem given by (P1.a), if u∈C3(M),
then

∥

∥

∥

∥

−Ltu(y)+2
∫

∂M
g(x)R̄t(x,y)dx+

∫

M
f (x)R̄t(x,y)dx

∥

∥

∥

∥

L2(M)

=O(t1/4).

Remark 3.1. Theorem 3.1 by itself does not imply that the solution of the integral equa-
tion (3.2) respectively (3.3) converges to the solution of (P1.a) respectively (P1.b) as t→0.
The convergence requires the stability of the operator Lt. The rigorous proof for the con-
vergence of the above integral equations is out of the scope of this paper. The interested
readers are referred to the companion paper [33].

To present the main idea but without getting involved with many technical details,
we will prove Theorem 3.1 for the case where M is an open set of Euclidean space R

k.
For a general submanifold, the proof follows from the same idea, which can be found
in [33]. In what follows, we denote Ω the open set M in R

k. First, we prove a technical
lemma.

Lemma 3.1. For any function u∈C3(Ω), we have

1

2t

∫

Ω
(x−y)·∇u(x)Rt(x,y)dx=

1

2t

∫

Ω
(u(x)−u(y))Rt(x,y)dx+

1

2

∫

Ω
∆u·R̄t(x,y)dx

− 1

2

∫

∂Ω
((x−y)⊗n) :Hu(x)R̄(x,y)dx+O(t1/2), (3.4)

where Hu(x) is the Hessian matrix of u at x, n is the outer normal vector of ∂Ω.

Proof. The Taylor expansion of the function u tells us that

u(x)−u(y)=(x−y)·∇u(x)− 1

2
(x−y)THu(x)(x−y)+O(‖x−y‖3). (3.5)

Then, we have

1

2t

∫

Ω
(x−y)·∇u(x)Rt(x,y)dx=

1

2t

∫

Ω
(u(x)−u(y))Rt(x,y)dx

+
1

4t

∫

Ω
(x−y)THu(x)(x−y)Rt(x,y)dx+O(t1/2). (3.6)

Here we use the fact that
∫

Ω
‖x−y‖nRt(x,y)dx=O(tn/2). Now, we turn to calculate the
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second term of (3.6)

1

4t

∫

Ω
(x−y)THu(x)(x−y)Rt(x,y)dx

=
1

4t

∫

Ω
(xi−yi)(xj−yj)∂iju(x)Rt(x,y)dx

=− 1

2

∫

Ω
(xi−yi)∂iju(x)∂j (R̄t(x,y))dx

=
1

2

∫

Ω
∂j(xi−yi)∂iju(x)R̄t(x,y)dx+

1

2

∫

Ω
(xi−yi)∂ijju(x)R̄t(x,y)dx

− 1

2

∫

∂Ω
(xi−yi)nj∂iju(x)R̄t(x,y)dx

=
1

2

∫

Ω
∂iiu(x)R̄t(x,y)dx− 1

2

∫

∂Ω
(xi−yi)nj∂iju(x)R̄t(x,y)dx+O(t1/2)

=
1

2

∫

Ω
∆u(x)R̄t(x,y)dx− 1

2

∫

∂Ω
((x−y)⊗n) :Hu(x)R̄t(x,y)dx+O(t1/2). (3.7)

Here we used Einstein’s summation convention. In the derivation of the second equality,
we use the fact that

∂jR̄t(x,y)=− 1

2t
(xj−yj)Rt(x,y),

and for the fourth equality, we use the assumption that u∈C3(Ω) to bound ∂ijju(x) and

thus the second term is of the order O(t1/2). The lemma is proved by combining (3.6)
and (3.7).

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Multiplying R̄t(x,y) on both sides of the Poisson equation, and by
integral by parts, we have

∫

Ω
∆u·R̄t(x,y)dx=−

∫

Ω
∇u·∇R̄t(x,y)dx+

∫

∂Ω

∂u

∂n
R̄t(x,y)dx

=
1

2t

∫

Ω
(x−y)·∇u(x)Rt(x,y)dx+

∫

∂Ω

∂u

∂n
R̄t(x,y)dx. (3.8)

By Lemma 3.1, we have

∫

Ω
∆u·R̄t(x,y)dx=

1

2t

∫

Ω
(u(x)−u(y))Rt(x,y)dx+

1

2

∫

Ω
∆u·R̄t(x,y)dx

+
∫

∂Ω

∂u

∂n
R̄t(x,y)dx− 1

2

∫

∂Ω
((x−y)⊗n) :Hu(x)R̄t(x,y)dx+O(t1/2),
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which implies that

∫

Ω
∆u·R̄t(x,y)dx=

1

t

∫

Ω
(u(x)−u(y))Rt(x,y)dx+2

∫

∂Ω

∂u

∂n
(x)R̄t(x,y)dx

−
∫

∂Ω
((x−y)⊗n) :Hu(x)R̄t(x,y)dx+O(t1/2). (3.9)

Estimate the third term on the right hand side

∫

Ω

∣

∣

∣

∣

∫

∂Ω
((x−y)⊗n) :Hu(x)R̄t(x,y)dx

∣

∣

∣

∣

2

dy

≤‖Hu(x)‖∞

∫

Ω

(

∫

∂Ω
‖x−y‖R̄t(x,y)dx

)2

dy

≤‖Hu(x)‖∞

∥

∥

∥

∥

∫

∂Ω
‖x−y‖R̄t(x,y)dx

∥

∥

∥

∥

∞

∫

∂Ω

(

∫

Ω
‖x−y‖R̄t(x,y)dy

)

dx.

Notice that
∥

∥

∥

∥

∫

∂Ω
‖x−y‖R̄t(x,y)dx

∥

∥

∥

∥

∞

=O(1) and
∫

Ω
‖x−y‖R̄t(x,y)dy=O(t1/2). (3.10)

Then we have

∫

Ω

∣

∣

∣

∣

∫

∂Ω
((x−y)⊗n) :Hu(x)R̄t(x,y)dx

∣

∣

∣

∣

2

dy=O(t1/2). (3.11)

Now if u(x) be the solution of (P1.a), it satisfies

∫

Ω
∆u(x)R̄t(x,y)dx=−

∫

Ω
f (x)R̄t(x,y)dx, ∀y∈Ω. (3.12)

We have proved the theorem.

Remark 3.2. Theorem 3.1 also holds for those R which decays exponentially, such as the
Gaussian function. The proof is similar.

4 The Dirichlet boundary condition

In this section, we consider the Poisson equation with the Dirichlet boundary given by
(P2.a). We bridge the Neumann boundary and the Dirichlet boundary using the so-called
the Robin boundary. More specifically, consider the following problem

{

−∆u(x)= f (x), x∈M,

u(x)+β ∂u
∂n (x)= g(x), x∈∂M,

(P3.a)
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where β>0 is a parameter.
As there is a Neumann component in the Robin boundary, we can solve the Robin

problem (P3.a) using the framework of solving Neumann problem (P1.a) in Section 3.
Specifically, we approximate the Robin problem (P3.a) by the following integral equation

Ltu(y)−
2

β

∫

∂M
(g(x)−u(x))R̄t(x,y)dτx=

∫

M
f (x)R̄t(x,y)dµx. (4.1)

Similarly, the corresponding eigenproblem of the Laplace-Beltrami operator with zero
Robin boundary (i.e., g=0) can be approximated by the following integral equation

Ltu(y)+
2

β

∫

∂M
u(x)R̄t(x,y)dτx=λ

∫

M
u(x)R̄t(x,y)dµx. (4.2)

Theoretically, it can be shown that the solution of (P3.a) is a good approximation of the
solution of the Dirichlet problem (P2.a) when β is small.

Theorem 4.1 ([34]). Suppose u is the solution of the Dirichlet problem (P2.a) and uR,β is the
solution of the Robin problem (P3.a), then

‖u−uR,β‖H1(M)≤Cβ1/2‖u‖H2(M). (4.3)

Therefore, we can approximate the Dirichlet problem (P2.a) and the corresponding
eigenproblem using the integral equation (4.1) and (4.2) respectively by choosing small
enough β. In a companion paper [34], it is shown that the above approximations indeed
converge as t goes to 0. Note that the choice of β depends on t and has to go to 0 as t goes
to 0. Again the integral equations (4.1) and (4.2) are ready to be discretized by the input
data (P,S,V,A). See Section 5 for the discretization of the above integral equations.

4.1 Iterative solver based on augmented Lagrangian multiplier

Notice that when β is small, the linear system derived from the above approach becomes
ill-conditioned. We now propose an iterative method based on the Augmented Lagrange
method (ALM) to alleviate the dependence on the choice of β.

It is well known that the Dirichlet problem can be reformulated using the following
constrained variational problem:

min
v∈H1(M)

1

2

∫

M
|∇v(x)|2dx+

∫

M
f (x)v(x)dx, subject to: v(x)|∂M= g(x), (4.4)

and the ALM method can be used to solve the above problem as follows. Recall that for
a constrained optimization problem

min
x

F(x), subject to: g(x)=0, (4.5)

the ALM method solves it by the following iterative process
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Procedure 1 ALM for Dirichlet Problem

1: k=0, w0=0.
2: repeat

3: Solving the following integral equation to get vk,

Ltv
k(y)− 2

β

∫

∂M
(g(x)−vk(x)+βwk(x))R̄t(x,y)dτx =

∫

M
f (x)R̄t(x,y)dµx.

4: wk+1=wk+ 1
β(g−(vk|∂M)), k= k+1

5: until ‖g−(vk−1|∂M)‖==0
6: u=vk

• xk =argminx L(x,wk), where L(x,w)=F(x)+<w,g(x)>+ 1
2β‖g(x)‖2;

• wk+1=wk+ 1
β g(xk).

In essence, the ALM method solves a constrained problem by iteratively solving a se-
quence of unconstrained problem. It is well known that the convergence of ALM method
is robust to the choice of the parameter β.

Applying the ALM method directly to the problem (4.4), the unconstrained problem
which need to be solved iteratively is

min
v

1

2

∫

M
|∇v(x)|2dµx+

∫

M
f (x)·v(x)dµx

+
∫

∂M
wk(x)·(g(x)−v(x))dτx+

1

2β

∫

∂M
(g(x)−v(x))2dτx. (4.6)

Using the variational method, one can show that the solution to (4.6) is exactly the solu-
tion to the following Poisson equation with the Robin boundary:

{

∆v(x)= f (x), x∈M,

v(x)+β ∂v
∂n (x)= g(x)+βwk(x), x∈∂M.

(4.7)

Therefore, we have derived a method to solve the Dirichlet problem (P2.a) by solving a
sequence of the Robin problem in (4.7) with the iteratively updated wk. If the iterative
process converges, we obtain the correct boundary condition, i.e., v(x)=g(x) for x∈∂M.
In fact, wk converges to ∂v

∂n(x) for x ∈ ∂M. So, it is not necessary to choose β small to
achieve the prescribed Dirichlet boundary. Finally, we summarize the above iterative
method for solving the Dirichlet problem in Procedure 1 (ALM for Dirichlet Problem).

5 Discretization of the integral equations

In this section, we discretize the integral equations derived in Section 3 and Section 4
over the given input data (P,S,V,A). We assemble three matrices from the input data
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(P,S,V,A) which are used to do numerical integral.
The first matrix, denoted L, is an n×n matrix defined as for any pi,pj∈P

Lij =

{

− 1
t Rt(pi,pj)Vj if i 6= j,

−∑i 6=jLij if i= j.
(5.1)

For any function u∈C1(M), let u=(u1,··· ,un) with ui =u(pi) for any pi ∈P. Then Lu is
used to approximate the integral

1

t

∫

M
Rt(x,y)(u(x)−u(y))dµy. (5.2)

The matrix L was introduced as a discrete Laplace operator in [3].
The second matrix, denoted I , is also an n×n matrix defined as for any pi,pj∈P

Iij = R̄t(pi,pj)Vj. (5.3)

For any function f ∈C1(M), let f=( f1,··· , fn) with fi = f (pi) for any pi ∈ P. Then If is
used to approximate the integral

∫

M
R̄t(x,y) f (y)dµy. (5.4)

The third matrix, denoted B, is an n×m matrix defined as for any pi∈P and any sj∈S

Bij = R̄t(pi,sj)Aj. (5.5)

For any function g∈C1(∂M), let g=(g1,··· ,gn) with gi = g(si) for any si ∈S Then Bg is
used to approximate the integral

∫

∂M
R̄t(x,y)g(y)dτy. (5.6)

Now we are ready to describe the algorithms to solve the Poisson equation with dif-
ferent boundary conditions. As we will see, they are simple and easy to implement.
The following algorithm PoissonNeumann is used to solve the Poisson equation with the
Neumann boundary. The derivation of the algorithm is described in the Section 3.

Algorithm 2 PoissonNeumann(P,S,V,A,f,g,t)

1: Compute the matrices L,I ,B.
2: Set b=2Bg+If.
3: Solve the linear system Lu=b and obtain u=(u1,··· ,un).
4: Output u.

The eigenvalues and the eigenfunctions of the Laplace-Beltrami operator with the
Neumann boundary condition are approximated by that of the generalized eigenproblem
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Algorithm 3 EigenNeumann(P,S,V,A,t)

1: Compute the matrices L,I .
2: Solve the generalized eigenproblem Lv= γIv and obtain the eigenvalues 0= γ0 ≤

γ1≤γ2,··· and the corresponding eigenvectors v0, v1, v2,···
3: Output γi and vi.

Lv=γIv. Specifically, the kth smallest eigenvalue γk and its corresponding vk are used
to approximate λk and φk respectively. See Algorithm 3 EigenNeumann.

For the Dirichlet problem, we approximate the solutions using those of the Robin
problem with small β. The algorithms for solving the Dirichlet problem and the cor-
responding eigenproblems are summarized in Algorithm 4 PoissonDirichlet and Algo-
rithm 5 EigenDirichlet, respectively. In the following algorithm, for any subset X⊂P, use
X to also denote the set of indices of the elements in X.

Algorithm 4 PoissonDirichlet(P,S,V,A,f,g,t,β)

1: Compute the matrices L,I ,B.
2: Set b= 2

βBg+If.

3: Set K=L and modify K(P,S)=K(P,S)+ 2
βB

4: Solve the linear system Ku=b and obtain u=(u1,··· ,un).
5: Output u.

Algorithm 5 EigenDirichlet(P,S,V,A,t,β)

1: Compute the matrices L,I ,B.
2: Set K=L and modify K(P,S)=K(P,S)+ 2

βB
3: Solve the generalized eigenproblem Kv= γIv and obtain the eigenvalues 0< γ1 ≤

γ2≤γ3,··· and the corresponding eigenvectors v0, v1, v2,···
4: Output γi and vi.

Note that the choice of β in the above two algorithms has to be small to achieve a good
approximation. On the other hand, it can not be too small and is theoretically at least of
order

√
t (see Theorem 2.1 [34]) for u computed by the algorithm PoissonDirichlet to

converge.

In all the above algorithms, there is a parameter t, whose choice depends on the input
data, in particular, the density of P and S. In Section 7, we will show how to empirically
choose t to achieve the best accuracy. For the choice of t with theoretically guaranteed
convergence, the readers are referred to [32–34].

Finally, we write down the ALM iterative algorithm for solving the Dirichlet problem
given in (P2.a). Recall in this method, the Dirichlet problem is modeled as a constrained
optimization problem and is solved by an ALM iterative procedure where each iteration
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consists of solving a Robin problem as given in (4.7). See the algorithm ALMDirichlet.
The purpose of the ALM iteration is to alleviate the requirement for β being small, which
is demonstrated empirically in Section 7.

Algorithm 6 ALMDirichlet(P,S,V,A,f,g,t,β)

1: Compute the matrices L,I ,B.
2: Set b0=If.
3: Set K=L and modify K(P,S)=K(P,S)+ 2

βB.

4: Set w=0.
5: repeat
6: Set b=b0+2B( 1

β g+y).

7: Solve the linear system Ku=b and obtain u=(u1,··· ,un).
8: Modify w=w+ 1

β(g−u(S)).

9: until ‖g−u(S)‖ = 0 .
10: Output u.

6 Volume weight estimations

In this section, for the sake of completeness, we give a brief description of the approach
proposed in [22] to estimate the volume weight vector V from the point sets P. Using
the same approach, the weight vector A can be estimated from S. The basic idea is to
construct a local patch around a sample point, from which the weight of that point is
computed. The detailed algorithm is described in Algorithm 7 EstimateWeights.

Algorithm 7 EstimateWeights(P,k,n)

1: for each point p∈P do

2: Find the n-nearest neighbors of p in P, denoted Np.

3: Set δ= 1
|Np| ∑q∈Np

‖p−q‖ and Nδ = {q ∈ P|‖p−q‖< δ} be the points in P within δ

distance to p.
4: Estimate the tangent space at p by a k-dimensional subspace T̃p estimated from Nδ

using weighted least squares.
5: Project the points in Nδ into T̃p and denote them by Ñδ

6: Compute the Voronoi diagram of Ñδ on T̃p.
7: The volume weight Vp is estimated as the volume of the Voronoi cell.
8: end for

Theoretically, if δ in Algorithm 7 is fixed to be a fraction of the reach of M, then we
have the following theorem which guarantees that the integral of any Lipschitz function
on M can be well approximated using the volume weights Vp estimated by Algorithm 7.



242 Z. Li, Z. Shi and J. Sun / Commun. Comput. Phys., 22 (2017), pp. 228-258

A sampling P of M is an (ǫ,η)-sampling if for any point x∈M, there is a point p∈P, so
that |x−p|<ǫ and for any two different sample points p,q∈P, |p−q|>η.

Theorem 6.1 ([22]). Given an (ǫ,η)-sampling P of M with ǫ sufficiently small, compute the
volume weight Vp for each p∈P using Algorithm 7. Then for any Lipschitz function f we have
that

∣

∣

∣

∣

∣

∫

M
f − ∑

p∈P

Vp f (p)

∣

∣

∣

∣

∣

= O(ǫ+ǫ3/η2),

implying that for η=Ω(ǫ3/2−ξ) with any positive constant ξ, we have

lim
ǫ→0

∣

∣

∣

∣

∣

∫

M
f − ∑

p∈P

Vp f (p)

∣

∣

∣

∣

∣

= 0.

The reach of M is usually unknown. In practice, δ is estimated using the average
distance to the n-nearest neighbors as described in Algorithm 7, which works well. If M
has boundary, for a point p near to the boundary, we take as the volume weight Vp the
volume of the Voronoi cell which is inside the Convex hull of Ñδ.

7 Numerical results

In this section, we run our point integral method on several examples, including unit
disk, unit ball, and unit sphere (2-submanifold in R

3), 3D rotation group SO(3) (3-
submanifold in R

9) and finally a few general 2-submanifolds in R
3.

The approximation error is computed in L2: err= ‖u−ugt‖/‖ugt‖ where u is the so-
lution obtained by numerical methods and ugt is the ground truth, and the L2 norm is

evaluated as ‖ f‖=
√

∑pi∈P f 2
i Vi for a function f over M and ‖ f‖=

√

∑si∈S f 2
i Ai for a

function f over ∂M. In all experiments, we choose the kernel function R to be Gaussian.

7.1 Unit disk

We discretize unit disk using a Delaunay mesh with 684 vertices shown in Fig. 1(a). This
mesh is generated using Triangle [30]. We obtain a sequence of refined meshes with
2610, 10191 and 40269 vertices by subdividing it once, twice and three times. In each
subdivision, a triangle in the mesh is split into four smaller ones using the midpoints of
the edges. Note that the mesh size is reduced by half but the number of vertices roughly
get quadrupled for each subdivision. Fig. 1(b) shows the mesh after one subdivision. For
point integral method, we remove the mesh topology and only retain the vertices as the
input point set P. Those vertices on the boundary of the mesh are taken as the input point
set S.

Choice of Parameters: Our algorithm has two parameters t and β. Here we show how
the approximation error changes with different choices of t and β. Set the boundary
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(a) (b)

Figure 1: Discretization of unit disk. (a) A triangle mesh of unit disk with 684 vertices. (b) The mesh with
2610 vertices obtained by subdividing the triangle mesh in (a) where each triangle is subdivided into four using
the midpoints of the edges.

condition (both Neumann and Dirichlet) as that of the function ugt = cos2πr with r =
√

x2+y2 and see how accurate our algorithm can recover this function.

Fig. 2 shows the plot of the approximation error ‖u−ugt‖/‖ugt‖ as a function of the

parameter
√

t. The approximating solution u is computed by Algorithm 2 for the Neu-
mann boundary and by Algorithm 6 for the Dirichlet boundary. In Algorithm 6, set β=1
and the solution is obtained after 100 iterations. Given a sampling P on M, let δi be the
average distance from pi ∈ P to its 10 nearest neighbors in P and δ is the average of δi

over all points pi ∈P. We observe, from the plots in Fig. 2, that the optimal parameter
√

t
which produces the smallest approximation error remains 0.5δ for the Neumann bound-
ary and 0.75δ for the Dirichlet boundary across the above sequence of refined samplings.
This means only a fixed number of samples are empirically needed in the neighborhood
of size

√
t for PIM to converge. Such choice of parameter t leads to a better empirical

convergence rate than what is predicted in [33, 34]. The theoretical analysis for PIM in
the paper [33, 34] shows that the convergence of PIM requires more and more samples
in the neighborhood of size

√
t as t decreases, and in fact requires infinitely many in the

limit of t going to 0. As we will see below, PIM empirically converges at least linearly
in mesh size, while our analysis in [33, 34] shows that the convergence rate is one fifth
root of mesh size. This phenomenon is also observed on 3D domain, as we will show
in Section 7.2. This suggests that there may be rooms to improve our analysis on the
convergence rate.

To see the choice of the parameter β, we fix the parameter
√

t= 0.75δ. we first show
how the choice of β affects Algorithm 4. Fig. 3 shows the approximation errors for the
solution computed by Algorithm 4 using different β over the above sequence of refined
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Figure 2: Approximation error vs. the parameter t on unit disk: (a) Neumann boundary; (b) Dirichlet boundary.
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Figure 3: Approximation error vs. parameter β by Algorithm 4 on unit disk.

samplings. As we can see, the effect of β is similar across different samplings: the ap-
proximation errors remain small for β in the interval [10−6,10−3] but increases signifi-
cantly as β increases from 10−3 or decreases from 10−6. This phenomenon fits the theory
of PIM [33, 34] well: The smaller the β is, the smaller the approximation error is; and on
the other hand, if β is chosen too small, the linear system becomes numerically unstable
and the approximation error increases. For a technical reason, our analysis in [33,34] also
requires that β and

√
t are of the same order. However, it seems not necessary in our ex-

periments, which means we may improve the analysis to remove this extra requirement.
In the following experiments, we fix β=10−4 in Algorithm 4.
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Figure 4: Choice of parameter β: (a) Convergence of vk on the boundary under different β; (b) Approximation
error vs. parameter β.

Next we show how the choice of β affects Algorithm 6, which employs the approach
of augmented Lagrangian multiplier. We run the algorithm over the sampling with 2610
points. Recall when the ALM iteration converges, the obtained solution should satisfy
the specified boundary condition. Assume vk is the solution obtained after kth iteration.
Fig. 4(a) shows the approximation error ‖vk|∂M−g‖/‖g‖ on the boundary. As we can
see, the smaller the parameter β is, the faster the solution vk converges on the boundary.
However the algorithm diverges if β is too small (less than 5×10−6). Nevertheless, the
solution converges on the boundary over a large range of β. Fig. 4(b) shows the approxi-
mation errors ‖u−ugt‖/‖ugt‖ after 100 iterations. As we can see, although the algorithm
converges at the different speeds for the different β, the difference in the final approxi-
mation errors is small across the different but reasonable choices of β. Thus Algorithm 6
which employs ALM iteration is not sensitive to the choice of β and works over a large
range of β.

Convergence for the Poisson Equation: We fix
√

t= 0.75δ and β= 10−4. We show the
convergence of Algorithm 2 and Algorithm 4 for the Neumann boundary and the Dirich-
let boundary respectively, and also compare them to the results of FEM. In FEM, we
use linear elements. Table 1 shows the approximation error for recovering the function
cos2πr over a sequence of refined meshes or samplings. As we can see, PIM converges
in the linear order h for the Neumann boundary and in the order h3/2 for the Dirichlet
boundary, where h is referred to mesh size. This convergence rate is much faster than the
order h1/5 predicted by our analysis of PIM in [33, 34].

In previous examples, FEM method could give more accurate numerical solution if
the mesh information as shown in Fig. 1 is used. However, if the mesh is not so good.
FEM may fail to give the correct solutions while PIM still is capable to give the solution
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Table 1: Convergence for recovering the function cos2πr. The solution is computed using Algorithm 2 for
Neumann boundary and Algorithm 4 for Dirichlet boundary.

|V| 684 2610 10191 40296

Neumann Boundary

PIM 0.1947 0.1043 0.0513 0.0249

Dirichlet Boundary

PIM 0.1500 0.0428 0.0140 0.0052

Figure 5: A triangle mesh of unit disk.

with reasonable accuracy. Fig. 5 shows a Delaunay triangle mesh with 10000 vertices
randomly sampled on unit disk. In this unstructured points, the mesh is not so good.
Table 2 shows the approximation errors for recovering the function cos2πr and the func-
tion x2−y2. As we can see, FEM may produce solution with no accuracy since the mesh
is bad. However, PIM always produces a solution with reasonable accuracy.

Table 2: The approximation errors of FEM and PIM in solving the Poisson Equations over the mesh shown in
Fig. 5.

Neumann Boundary Dirichlet Boundary

FEM 0.0026 2.0218

PIM 0.0600 0.0673

cos2πr

FEM 1.2003 5.0321

PIM 0.0610 0.0081

x2−y2
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Eigensystem: We compute the eigensystem of Laplacian using Algorithm 3 for the prob-
lem (P1.b) with the homogeneous Neumann boundary and Algorithm 5 for the prob-
lem (P2.b) with the homogeneous Dirichlet boundary. Again we fix

√
t = 0.75δ and

β=10−4.
Fig. 6 shows the first 30 eigenvalues computed using PIM (FEM) over the sampling

(mesh) with 2610 points and 10191 points. Both methods give a good estimation for the
eigenvalues. Fig. 7 shows the approximation error of the first 30 eigenfunctions, where
the approximation error is computed as the angle between the eigenspaces of ground
truth and the eigenspaces estimated by PIM or FEM. Let U and V be the two subspaces
in R

n. The angle between U and V is defined as

cos∠U,V= min
x∈U,|x|=1

max
y∈V,|y|=1

x·y. (7.1)
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Figure 6: The eigenvalues of unit disk estimated by FEM and PIM over the meshes or the samplings with 2610
points and 10191 points. (a) Neumann eigenvalues; (b) Dirichlet eigenvalues.
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Figure 7: The approximation errors of the eigenfunctions of unit disk estimated using FEM (PIM) over the
samplings (meshes) with 2610 points and 10191 points. (a) Neumann boundary; (b) Dirichlet boundary.
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It is well-known that when two distinct eigenvalues of a matrix are close to each other,
their eigenvectors computed numerically can be switched.Thus, when we estimate the
approximation error of the eigenfunctions, we merge the eigenspaces of two eigenvalues
close to each other. In Fig. 7 (a), we merge the eigenspace of the 9th (or 10th) eigenvalue
with that of the 11th eigenvalue, and the eigenspace of the 22nd (or 23rd) eigenvalue with
that of the 24the eigenvalue. In Fig. 7 (a), we merge the eigenspace of the 24th (or 25th)
eigenvalue and that of the 26 eigenvalue.

Table 3 and Table 4 shows the error of the 6th eigenvalue and the corresponding eigen-
function computed using PIM. The approximation error of the ith eigenvalue is estimated

as |λi−λ
gt
i | where λ

gt
i is the ground truth and λi is the numerical estimation. The approx-

imation error of the eigenfunction is estimated as the angle between two subspaces.

Table 3: Convergence of the Neumann Eigensystem of unit disk.

|V| 684 2610 10191 40296

Eigenvalue

PIM 0.8244 0.2570 0.0555 0.0212

Eigenfunction

PIM 0.0332 0.0193 0.0100 0.0052

Table 4: Convergence of the Dirichlet Eigensystem of unit disk.

|V| 684 2610 10191 40296

Eigenvalue

PIM 0.3228 0.1778 0.1115 0.0762

Eigenfunction

PIM 0.0313 0.0172 0.0079 0.0034

7.2 Unit ball

The main purpose of this set of experiments is to see how PIM performs on 3D domains
and what are the good ranges of the parameters for 3D domains. We discretize unit
ball using 3D mesh generation package provided by CGAL [37] which is state of the
art in mesh generation and uses the approach of Delaunay refinement and CVT-type
of optimization for improving the mesh quality. We obtain a sequence of four refined
meshes where the mesh size of a mesh is reduced roughly by half from the previous
mesh. The number of vertices of the meshes are 546, 3481, 25606 and 195725. Fig. 8(a)
and (b) shows the mesh with 546 and 25606 vertices respectively. Similarly, for PIM, we
remove the mesh topology and only retain the vertices as the input point set P. Those
vertices on the boundary of the mesh are taken as the input point set S.
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(a) (b)

Figure 8: Discretization of unit ball using tetrahedron mesh. (a) a mesh with 546 vertices, (b) a mesh with
25606 vertices.

Choice of Parameters: What is good choice of β is clear from the previous experiments
on unit disk. In fact, we observe the same effect of the parameter β over the domain of
unit ball, and thus we fix β = 10−4 for the remaining experiments. Similar to the disk
case, we set the boundary condition (Neumann and Dirichlet) as that of the function
ugt = cos2πr with r=

√

x2+y2+z2 and see how accurate our algorithm can recover this
function.

Fig. 9 shows the plot of the approximation errors ‖u−ugt‖/‖ugt‖ as a function of

the parameter
√

t. The approximating solution u is computed by Algorithm 2 for the
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Figure 9: Approximation error vs. parameter t on unit ball: (a) the Neumann boundary; (b) the Dirichlet
boundary.
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Neumann boundary and by Algorithm 4 for the Dirichlet boundary. Given a sampling
P on M, let δi be the average distance from pi ∈ P to its 15 nearest neighbors in P and δ
is the average of δi over all points pi ∈ P. From the above plot, we observe that the best
parameter

√
t is 0.375δ for Neumann boundary and 0.75δ for Dirichlet boundary. Similar

to the disk case, such optimal choice of t leads to much better empirical results than what
is predicted in [33, 34].

Convergence for the Poisson Equation: We fix
√

t=0.375δ for the Neumann boundary,
and

√
t=0.75δ and β=10−4 for the Dirichlet boundary. Table 5 shows the approximation

errors for recovering the function cos2πr. As we can see,

PIM converges in the linear order of h for Neumann boundary and in the order of
h3/2 for Dirichlet boundary, where h is referred to mesh size, which is consistent with the
result in 2D case.

Table 5: Convergence for recovering the function cos2πr. The solution is computed using Algorithm 2 for
Neumann boundary and Algorithm 4 for Dirichlet boundary.

|V| 546 3481 25606 195725

Neumann Boundary

PIM 0.3864 0.1978 0.0845 0.0293

Dirichlet Boundary

PIM 0.7572 0.2881 0.0952 0.0256

Eigensystem: We compute the eigensystem of Laplacian using Algorithm 3 EigenNeu-
mann for the problem (P1.b) and Algorithm 5 EigenDirichlet for the problem (P2.b). We
choose the parameters as before. Fig. 10 shows the first 30 eigenvalues computed using
PIM (FEM) over the sampling (mesh) with 3481 points and 25606 points. Both methods

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

k

λ k

 

 

truth

FEM 3481

PIM 3481

FEM 25606

PIM 25606

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

k

λ k

 

 

truth
FEM 3481
PIM 3481
FEM 25606
PIM 25606

(a) (b)

Figure 10: The eigenvalues of unit ball estimated by PIM (FEM) over the samplings (meshes) with 3481 points
and 25606 points. (a) Neumann eigenvalues; (b) Dirichlet eigenvalues.
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Figure 11: The approximation errors of the eigenfunctions for unit ball estimated using PIM (FEM) over the
samplings (meshes) with 3481 points and 25606 points. (a) Neumann eigenfunctions; (b) Dirichlet eigenfunc-
tions.

give a good estimation for the eigenvalues. Fig. 11 shows the approximation error of
the first 30 eigenfunctions, where the approximation error is computed as before, i.e., the
angle between the eigenspaces of ground truth and the eigenspaces estimated by PIM or
FEM (see Eq. (7.1)).

7.3 Unit sphere S2

Now we apply PIM on curved submanifolds. We start with the simplest unit sphere S2

in R
3. We want to recover the function ugt=x2−y2+z2 by solving a Poisson equation on

S2, where x,y,z are cartesian coordinates of R
3. Since S2 has no boundary, the problem

can be equivalently seen as a Neumann problem with zero boundary values and thus the
algorithm PoissonNeumann can be directly applied here.

We run PIM over both uniform random sampling and non-uniform random sam-
pling. The uniform random sampling of S2 is obtained by projecting into S2 the points
drawn in R

3 according to the isotropic Gaussian distribution

1

(2π)3/2
exp

(

− x2+y2+z2

2

)

.

The non-uniform random sampling of S2 is obtained by projecting into S2 the points
drawn from the anisotropic Gaussian distribution

1

2(2π)3/2
exp

(

− x2

8
− y2

2
− z2

2

)

.

For both distributions, we draw 400, 1600, 6400 and 25600 random points. Fig. 12 shows
both the uniform sampling and the non-uniform sampling of 6400 points.
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(a) (b)

Figure 12: 6400 sample points on S2, The colormap shows the area weight vector V: (a) uniform sampling; (b)
non-uniform sampling.

The relative L2 errors of the PIM solutions are listed in Table 6. Note the neighbor-
hood size δi are estimated as the average distance to its 20 nearest neighbors. Clearly,
for both samplings, the approximation error tend to converge as the number of sample
points increases. In addition, the PIM has smaller approximation errors over uniform
samplings, which is reasonable. The empirical convergence rate is faster than that in unit
disk. This may be due to the lack of boundary.

Table 6: Convergence for recovering the solution ugt = x2−y2+z2 on S2.

|V| 400 1600 6400 25600

Uniform 0.4577 0.1302 0.0318 0.0117

Non-uniform 0.4482 0.1357 0.03830 0.0184

7.4 Rotation group SO(3)

Submanifolds with large intrinsic dimension or embedding dimension may be resolved
easily by point clouds. However, it is difficult to generate meshes for such submanifolds,
which makes FEM inapplicable in these cases. Here we consider the example of 3D rota-
tion group SO(3). SO(3) is defined as

SO(3)={Q∈M3×3(R)|QTQ= I, det(Q)=1},

which is a 3-submanifold in M3×3(R)∼=R
9. The standard inner product in R

9 induces a
Riemannian metric on SO(3)⊂R

9. Clearly, SO(3) lies on a sphere of dimension 8 which
is centered at the origin and of radius

√
3.
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To solve Poisson equations on SO(3) using PIM, we need to resolve SO(3) by point
clouds. Notice that SO(3) can be represented by quaternions as follows. Let φ be the map
from unit sphere S3 in R

4 to SO(3)⊂R
9

φ : S3−→SO(3)

defined as

φ(q0,q1,q2,q3)=





1−2q22−2q32 2(q1q2−q3q0) 2(q1q3+q2q0)
2(q1q2+q3q0) 1−2q12−2q32 2(q2q3−q1q0)
2(q1q3−q2q0) 2(q2q3+q1q0) 1−2q12−2q22



.

It is known that the map φ is a double covering map and locally isometric up to a uniform
scaling. Thus, we can obtain a uniform random sampling of SO(3) by φ mapping a uni-
form random sampling of S3, which can be generated as we have described in Section 7.3
for unit sphere S2.

We consider to recover the function given by ugt = q2
1−q2

2+q2
3, which is well-defined

on SO(3) as φ(q0,q1,q2,q3) = φ(−q0,−q1,−q2,−q3). We generate three uniform random
samplings of SO(3) consisting 2400, 19200 and 155526 points. Table 7 shows the approxi-
mation error of the recovery of ugt. Note SO(3) has no boundary and the problem can be
equivalently seen as a Neumann problem with zero boundary values. We use the same
parameters as unit ball in Section 7.2 except that 25 nearest neighbors are used to estimate
δi. The empirical convergence rate is also faster than that in unit ball. This may be due to
the lack of boundary.

Table 7: Convergence for recovering the solution ugt== q2
1−q2

2+q2
3 on SO(3).

|V| 2400 19200 155526

error 0.4235 0.0936 0.0214

7.5 General submanifolds

In this subsection, we apply PIM to solve the Poisson equations on a few examples of
general submanifolds. In the following experiments, we fix

√
t=0.75δ and β=10−4.

The first example is a model (Lefthand) of the left hand of a human obtained by
3D scanning. The original model is a triangle mesh with 193467 vertices, as shown in
Fig. 13(a). We use Meshlib [1] to simplify the mesh to obtain the triangle meshes with
50205, 12561 and 3147 vertices, over which FEM is applied to solve the Poisson equation.
Fig. 13(b) shows the mesh with 3147 vertices. For PIM, the vertices of the meshes are
taken as the input point sets P, and those on the boundary are taken as the input point
sets S. As there is no analytic solution of the Poisson equation for a general manifold, we
compare the solutions from FEM and PIM to each other, and show that they are consistent
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(a) (b) (c)

Figure 13: Lefthand (a) the original model; (b) the mesh with 3147 points; (c) Solution of the Dirichlet
problem (7.2).

to each other. We solve the following Dirichlet problem over the model Lefthand

{

−∆u(x)= |x|2, x∈M,

u(x)=1, x∈∂M.
(7.2)

Fig. 13 shows the solutions computed by point integral method over the point set with
193467 points. The lefthand model also gives the mesh information although it is not used
in PIM. To estimate the error of the PIM method, we also use FEM to solve the Dirichlet
problem (7.2) over the triangular mesh shown in Fig. 13(b) and compute the relative error
as ‖uPIM−uFEM‖/‖uFEM‖, where uPIM and uFEM are the solutions computed by PIM and
FEM respectively. Table 8 shows the result.

Table 8: The approximation errors ‖uPI M−uFEM‖/‖uFEM‖ where uPI M and uFEM are the solutions of the
Poisson equations (7.2) computed by PIM and FEM respectively.

|V| 3147 12561 50205 193467

Dirichlet 0.7109 0.0259 0.0229 0.0067

Fig. 14 shows the first 30 eigenvalues of Lefthand using FEM over the mesh of 193467
vertices and using PIM over the samplings with different number of points. As we can
see, PIM can accurately estimate the eigenvalues of the Laplace-Beltrami operator with
both the Neumann boundary and the Dirichlet boundary. Finally, Fig. 15 shows the 10th
eigenfunction estimated by PIM over various models.



Z. Li, Z. Shi and J. Sun / Commun. Comput. Phys., 22 (2017), pp. 228-258 255

(a) (b)

Figure 14: (a) Neumann problem; (b) Dirichlet problem.

Figure 15: The 10th eigenfunction: Neumann boundary in the first row and Dirichlet boundary in the second
row. Two models in the rightmost column have no boundary.

8 Conclusion

We have described the point integral method for solving the standard Poisson equation
on manifolds and the eigensystem of the Laplace-Beltrami operator from point clouds,
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and presented a few numerical examples, which not only demonstrate the convergence
of PIM in solving the Poisson-type equations, but also reveal the right choices of the
parameters t and β used in PIM. In addition, the numerical experiments show PIM has
a faster empirical convergence rate than what is predicted by the analysis in [32], which
suggests that the analysis may be improved. We are also considering to generalize PIM
to solve other PDEs on manifolds.
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