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Abstract. Incorrect propagation speed of discontinuities may occur b y straightfor-
ward application of standard dissipative schemes for probl ems that contain stiff source
terms for underresolved grids even for time steps within the CFL condition. By exam-
ining the dissipative discretized counterpart of the Euler equations for a detonation
problem that consists of a single reaction, detailed analysis on the spurious wave pat-
tern is presented employing the fractional step method, whi ch utilizes the Strang split-
ting. With the help of physical arguments, a threshold value s method (TVM), which
can be extended to more complicated stiff problems, is devel oped to eliminate the
wrong shock speed phenomena. Several single reaction detonations as well as multi-
species and multi-reaction detonation test cases with strong stiffness are examined to
illustrate the performance of the TVM approach.

AMS subject classi�cations : 35Q31, 76L05

Key words : Detonation, spurious behavior, reactive Euler equations , threshold values method,
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1 Introduction

In simulating the reactive Euler equations with the homogen eous source terms, often
applied in �eld of combustion and high speed chemical reactin g, a well-known spuri-
ous numerical phenomenon which was observed �rstly by Collel a et al. [1], may occur if
the equations are solved in the under-resolved conditions, namely the coarse grid, large
time step or other combinations in conjunction with the type of spatial scheme and type
of temporal discretization etc. [2–4]. By properly de�ning a model problem with a stiff
source term, LeVeque and Yee [5] reveal that the typical spur ious behavior which is the
propagation error of the detonation wave, is chie�y due to th e numerical dissipation
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contained in the schemes, which smears the discontinuity fr onts and activates the source
terms in a non-physical manner. Since then, this topic has attracted a great deal of atten-
tion.

Lafon and Yee [3,4] indicated that the spurious steady state of nonlinear source terms
can be linked to the wrong shock speed by getting trapped at on e of the stationary solu-
tions, depending on the combination of numerical method, in itial data, time step and grid
spacing. Grif�ths et al. [2] analyzed the different methods o f numerically treating the stiff
source and their accompanied spurious wave propagation phe nomena. Yee et al. [6, 7]
followed to investigate the role of CFL playing in the spurio us behavior and found the
counter-intuitive behavior, which leads to the conclusion that the traditional concept of
CFL guideline needs to be revised when extending to the react ive Euler equation sys-
tems. Recently, Zhang and Wang [8] give a reasonable explanation that the oscillation of
the parameter of an intermediate state which is a decisive factor to decide whether or not
the spurious solution will happen, is the likely cause of the counter-intuitive behavior.

Many other researchers focus on designing the new schemes or models to avoid this
spurious numerical solution in the under-resolved computa tional conditions. During the
last two decades, several innovative numerical methods, such as the level set and front
tracking methods [9–13]; random choice method [14–16]; fractional step method [17];
random projection method (RPM) [18–20]; subcell resolution method [22, 23]; MinMax
Method [21]; equilibrium state method (ESM) [24] and many othe r works [25–31], have
been proposed successively. A comprehensive review of the last two decades of this �eld
can be obtained in [22]. In spite of being able to remove or del ay the appearance of the
spurious solution to some extent, these methods cannot be widely used due to some
limitations. For example, existing methods are either con�n ed to a particular �ow type
or restricted to certain stiffness of the reaction terms. Wh en stiffness of the source term
increases, some of the methods would break down even for a single reaction case.

The present work is a sequel to [8] to extend the idea to the Eul er equations with stiff
detonation. By examining the dissipative discretized coun terpart of the Euler equations
for a detonation problem consisting of a single reaction, a d etail analysis on the spurious
wave pattern is presented employing the fractional step met hod using the Strang split-
ting. Additionally, a novel method called the threshold val ues method (TVM for short)
is proposed as a modi�cation to the fractional step method wit h the help of physical ar-
guments. Several single reaction detonation as well as mult i-species and multi-reaction
detonation test cases with strong stiffness are examined to illustrate the performance of
the TVM approach.

2 The standard numerical method for the reactive Euler
equations

The governing equations are usually used to simulate the inv iscid, one-dimensional prop-
agation of a detonation wave, representing conservation of mass, momentum, energy and
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species. Consider the simplest reactive Euler equations with only two chemical states
which are the burnt gas state and the unburnt gas state:

¶U
¶t

+
¶F
¶x

= S, (2.1)

where the vectors contain the conserved variables U, �ux vector F and the source terms
S which convert the unburnt gas to the burnt gas via a single irr eversible reaction.
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The r , u, E and z are the mixture density, the velocity, the mixture total ene rgy and the
mass fraction of the un-burnt gas respectively. The pressure p is given by:

p= (g � 1)
�

E�
1
2

r u2� Q0r z
�

, (2.3)

where Q0 is the chemical heat released in the reaction process. The temperature T is de-
�ned as T= p/ r . K(T), the reaction rate of the irreversible chemical process, isexpressed
in the so-called ignition temperature kinetic [32], which i s often used in the chemical
reaction with the high-temperature sensitivity and the lar ge activation energies:

K(T) =
�

K0, T � Tig,
0, T < Tig.

(2.4)

Due to numerical stability considerations, a common proced ure to solve the reactive Eu-
ler equations is by the fractional step method using the Stra ng splitting [33] of the con-
vection and reaction terms (the standard method). In this me thod, the numerical solution
at each time level is computed in two steps: The homogeneous conservation law (i.e., the
convection step) and the ODE system (i.e., the reaction step) separately. For example, the
numerical solution at time level tn+ 1 is approximated by:

Un+ 1= R(Dt) A (Dt)Un. (2.5)

The convection operator A is de�ned to approximate the solution of this problem on the
time interval:

¶U
¶t

+
¶F
¶x

= 0, tn � t � tn+ 1. (2.6)

Based on the MUSCL approach with a TVD Minmod limiter [34], the a dvection problem
is solved numerically with the popular AUSM approach [35,36 ] by splitting the pressure
of the Euler governing equations into two parts, which can be extended to second or-
der. Second order Runge-Kutta time integration [37] is used i n time discretization. The
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Figure 1: A typical spurious numerical phenomenon comparedwith the reference ZND solution.

reaction operator R is de�ned to approximate the solution on a time step of the reac tion
problem:

dU
dt

= S, tn � t � tn+ 1. (2.7)

For simplicity, we use the explicit method as the ODE solver i n the reaction step since
both explicit method and linearized implicit method leads t o the spurious behavior [21].

A simple ignition temperature model case solved by the stand ard method is utilized
to show and analyze the characteristics of the spurious nume rical phenomenon. We con-
sider an one-dimensional detonation wave propagating with a constant wave speedSD .
This problem is solved on the computational domain of [0,30]. The initial values consist
of the burnt gas on the left-hand side and the unburnt gas on th e right-hand side:

(r ,u,p,z) =
�

(2,2,20,0) , x � 10,
(1,0,1,1) , x> 10.

(2.8)

The g, Q0, K0, Tig are 1.4, 20, 10000, 2 respectively. A famous spurious numerical phe-
nomenon may happen if this problem is computed by the standar d method in the under-
resolved conditions: N = 300, Dt = 0.0001. On the contrary, a reasonable ZND solution
can also be obtained by the standard method with the extremel y �ne mesh ( N = 50000)
and the very small time step ( Dt = 0.00001). Compared numerical results at the �nal
time (t= 1.5) are provided in Fig. 1. We can note that there are severalobvious differences
between the reference ZND solution and the non-physical sol ution i.e., nonphysical dis-
crete travelling waves [1]). First, the Von Neumann spike ex isting in the reference solu-
tion cannot be found in the non-physical solution because th ere are not enough meshes
in the reactive zone. Second, there is a bifurcating wave pattern appearing in the incor-
rect solution: the strong detonation wave changes into a wea k detonation wave and a
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shock wave. Third, the velocity of the weak detonation wave i s larger than that of the
shock wave and this implies that the constant state between them will grow gradually as
time goes on. Although the spurious solution is the numerica l solution of the discretized
counterpart but not the physical solution of the original go verning Euler equations [1],
we may think the shock structures illustrated in spurious be havior as a physical phe-
nomenon since a single discontinuity like weak detonation o beys the Rankine-Hugoniot
conditions locally [8]. Thus, we will provide a further expl anation of the formation of
spurious solution in the stiff reactive Euler equations in a physical view, based on which
one may consider a new approach to deal with high stiffness pr oblems as presented in
Section 3.

3 Modi�cation to standard fractional method: Threshold val ues
method (TVM)

In this section, we will introduce a modi�cation to the standa rd fractional method, the
threshold values method (TVM), by illustrating the formatio n of spurious behavior as
well as the idea of TVM. By solving the exact Riemann problem, T VM procedure applied
in a simple reaction problem is presented. Meanwhile, when th e exact Riemann solu-
tion is absent or includes unsteady initial conditions prob lems, the extension method is
proposed based on the idea of TVM.

3.1 Illustration of TVM

The typical spurious solution by standard dissipative meth od that is represented in Sec-
tion 2 indicates a faster weak detonation than the following shock in the spurious behav-
ior. However, if we can detect the �rst grid point that forms th e spurious behavior, i.e.,
the faster weak detonation than shock, then a correction to t his grid point can be made,
the process of which is detailed as follows.

The detonation wave is smeared within several grid points as the lowercase letters (a,
b, c, d), which are enclosed by the dashed circles, presenting the pressure, as well as by
the dashed triangles, presenting the mass fraction, as illustrated in Fig. 2 (the triangle a
and c is overlapped by the triangle A and C). The ignition of a grid point must satisfy
the temperature that is higher than the ignition temperatur e Tig and the non-zero mass
fraction. Thus, the temperature and pressure at point b has already reached the ignition
temperature Tig, which means that ignition will occur immediately in the sta ndard dis-
sipative method whereas point a, whose mass fraction has decreased to nearly zero (not
zero because of numerical viscosity), will no longer increa se its temperature due to the
ignition.

After a short period Dt, the temperature of the point b reaches the intermediate state
pressure P� by explicit ODE solver in reaction step R(Dt), presented by the point B� . The
mass fraction decreases to zero at the same time, which formsthe shock structure as indi-
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Figure 2: Illustration of the formation for the spurious numerical phenomenon and the idea of TVM.b represents
the burnt state and u represents the unburnt state.

cated in Fig. 2. The chemical reaction rate is involved with K0. When K0 is large, point b
will react completely to point B� and mass fraction will decrease to zero with releasing
chemical energy (Q0) instantaneously at the same time. However, if K0 is relatively small,
point b will arrive to the correct position as shown by point b1, which forms the equal
speed of shock and detonation that indicate the correct sing le discontinuity. Point B is the
grid point that �rst reaches the intermediate state, which st imulates the ignition of point c
because of the synthesized effect of the advection and the numerical viscosity as shown
by point C. The variation of mass fraction of point b makes the detonation move forward
after the reaction step of point b by the explicit ODE solver. If the weak detonation speed
is higher than shock speed at this reaction step, point C will be ignited to the intermediate
state similar to point b at the next reaction step, as shown by point C� . Such a scenario
leads to the spurious shock structures comprising a weak det onation wave moving for-
ward and a shock wave that travels more slowly behind, as show n by the capital letter
points ( A,B,C,D) enclosed by solid circles and triangles, as indicated in Fig. 2.

If the weak detonation speed ( Swd) that results from the reacting grid point b to inter-
mediate point B is larger than the corresponding shock wave speed (Ss), we can discern
this wrong ignited point via an attempt (prediction) by solv ing the source term in reaction
step, as shown in Fig. 2 by the following equation:

�
if Ss � Swd, correct ignition,
if Ss< Swd, spurious ignition.

(3.1)

After the prediction step, each transition point that makes the weak detonation speed
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larger than the shock wave speed will be frozen during the rea ctive step. Thus, calculat-
ing the speed of the shock and weak detonation is essential to modifying the standard
dissipative method.

3.2 Review of [8]: obtain two wave speeds in problems with exa ct Riemann
solutions

Since the shock and weak detonation speed are closely related to burnt state and the
unburnt state, it is necessary to obtain the parameters behind and before the detonation
(state-4 and 2 in Fig. 3), which turns to solve a reactive Riemann problem in order to
calculate these two speeds.

Here, we shortly review the solution method of exact Riemann problem introduced
in previous study [8]. As shown in Fig. 3, two theoretical Rie mann solutions for Eq. (2.1),
consisting of a left wave (either shock or rarefaction), a mi ddle wave which is divided
by the contact discontinuity and a right wave of detonation, which are abbreviated to
the SCD case and the RCD case separately, will occur, depending on the different initial
data, for example that Eq. (2.8) will lead to a RCD case. As we know, relationships exist
between the variables on the two sides of a shock wave or a detonation wave. First, we
consider the plane of detonation connecting the area 2 and area 4. Detonation Hugoniot

Figure 3: The illustration of theoretical and spurious solution of detonation problem (R short for rarefaction
wave; S short for shock wave; C short for contact discontinuity; D short for detonation wave; WD short for
weak detonation wave; *-state is the transition point that ignited after prediction step in reaction solver).
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equations are given as follows:
8
>>><

>>>:

r 2(SD � u2) = r 4(SD � u4) ,

p4 � p2 = r 2(SD � u2)(u4� u2) ,
p4

r 4(g � 1)
�

p2

r 2(g � 1)
=

1
2

(p2+ p4)
�

1
r 2

�
1
r 4

�
+ Q0.

(3.2)

Set thep4 as a known variable, we can get the expression of u4 by solving Eq. (3.2):

u4� u2 =

s
2(p4� p2)( p4 � p2� (g � 1) r 2Q0)

r 2[(g+ 1) p4+ (g � 1) p2]
= � f ( p4,p2,r 2,Q0) . (3.3)

If p3 > p1, there will be a shock wave on the left side. Eq. (3.4) shows the relationships of
variables on the two sides of the shock wave:

8
>>><

>>>:

r 1(SS� u1) = r 3(SS� u3) ,

p3� p1 = r 1(SS� u1)(u3� u1) ,
p3

r 3(g � 1)
�
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1
r 1

�
1
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�
.

(3.4)

A similar treatment to Eq. (3.4) and a expression of u3 are obtained:

u3� u1= �
p3� p1q

r 1[(g+ 1)p3+ (g � 1)p1]
2

= � gS(p3,p1,r 1) . (3.5)

If p3< p1, a rarefaction wave will form on the left side. We can also get a similar expression
of u3 with two additional equations. The �rst one is the equation of Riemann invariants:

u1+
2c1

g � 1
= u3+

2c3

g � 1
, (3.6)

where c is the sound speed and can be computed by:

c=
r

gp
r

. (3.7)

The other one is the isentropic relation in rarefaction wave :

p1

r g
1

=
p3

r g
3

. (3.8)

The expression of u3 for a rarefaction wave is given as follows:

u3� u1= �
2c1

g � 1

" �
p3

p1

� g � 1
2g

� 1

#

= � gR(p3,p1,r 1) . (3.9)
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If set p3 = p1, one can discern the RCD from SCD case by comparing the magnitude of
release heatQ0 with the critical release heat Qcr:

u2� u1= f ( p3,p2,r 2,Qcr) = f ( p1,p2,r 2,Qcr)

) Qcr =
p1� p2

g � 1
�

(u2� u1)2[(g+ 1)p1+( g � 1)p2]
2(p1� p2)(g � 1)

. (3.10)

If initial value Q0 is greater than Qcr, then p3 > p1, which means the SCD case and vice
versa. Considering that the middle state is split into area 3 and area 4 by a contact dis-
continuity, we have u3 = u4 and p3 = p4. The following equation results from subtracting
Eq. (3.3) from Eqs. (3.5) or (3.9) if the calculating case is determined as SCD or RCD case:

�
u2� u1= � gS(p3,p1,r 1)+ f ( p3,p2,r 2,Q0) , SCD case,
u2� u1= � gR(p3,p1,r 1)+ f (p3,p2,r 2,Q0) , RCD case.

(3.11)

We can compute p3 by using Newton iteration method to solve Eq. (3.11). Then ot her
parameters (u3,r 3) behind the detonation can be obtained easily. The corresponding Ss

and Swd for each transition point can be expressed as the following E q. (3.12) by using
momentum equation in Eqs. (3.2) and (3.4). The heuristic diagram is shown in Fig. 3

8
>><

>>:

Ss= u� +
p4� p�

r � (u4� u� )
,

Swd= u2+
p� � p2

r 2(u� � u2)
.

(3.12)

One thing needs to be noticed is that when u� is very close to u4, the shock speed is set
to larger than the weak detonation speed to avoid the singula rity result in calculating the
shock speed.

3.3 TVM introduction

3.3.1 TVM for reaction with exact Riemann solution

If the parameters p4 and u4 of exact Riemann solution can be calculated, then several
modi�cations of the standard method to achieve the correct sh ock speed can be made:

(1) Parameters behind the detonation are con�rmed by solving an exact Riemann prob-
lem in the initialization step, which determines p4 and u4 in Eq. (3.12). r 2, p2, and u2

equal to unburnt parameters.

(2) Temporary mass fraction consumption of transition poin ts that satisfy T� > Tig are
obtained by solving the source terms by the explicit ODE meth od, which is the �rst step
of the method termed as Predictor U �

i to obtain the intermediate state parameters p� , r � ,
and u� , as shown in Fig. 3:

U �
i = R(Dt)Un

i . (3.13)
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In the predictor, p� is updated by Eq. (2.3). r � and u� do not update in the prediction step
and are equal to the local density and velocity because of the mass conservation in the
reaction operator. Thus, the speed of shockSs and weak detonation Swd can be calculated
by Eq. (3.12).

(3) After the predictor, those transition points ( T� > Tig) that satisfy Ss � Swd in Eq. (3.1)
will be allowed to ignite in the reaction operator, which is c alled the second step of the
method termed as Corrector :

U ��
i =

�
U �

i , if Ss � Swd,
Un

i , if Ss< Swd.
(3.14)

(4) Finally, the conservation variables are normally updat ed by the advection operator in
normal way after the reaction operator is corrected by the wa ve speed relation:

Un+ 1
i = A(Dt)U ��

i . (3.15)

This proposed method is called the threshold values method b ecause whether these tran-
sition points ( T� > Tig) will be ignited or not all depend on a set of threshold parame ters
(p� , u� , r � ). TVM can prevent the spurious numerical phenomena from app earing even in
the under-resolved conditions. This advantage will be prov en by many simple reaction
test cases.

3.3.2 TVM for reaction without exact Riemann solution

As shown in Eq. (3.12), the shock speed and the weak detonation speed can be calculated
without the exact solution of the Riemann problem if the unkn own parameters p4 and u4

(as well as 2-state parametersp2, u2 and r 2 in such cases as unsteady initial conditions
are concerned) can be obtained, thereby indicating that the method can be extended to
more complicated problems such as multi-species, multi-re action cases, and the unsteady
initial condition problems. Therefore, the key to the exten sion of TVM is to determine the
concerned parameters p4 and u4 after the detonation and the 2-state parameters p2, r 2,
and u2 before detonation. In the following paragraph, a kind of mas s fraction detector is
introduced and applied to determine the concerned paramete rs.

TVM for unsteady initial conditions problems and multi-spe cies problems

If the unsteady state is considered, the parameters concerned such as p4 and u4 are
approximated as the pressure and velocity in the transition points whose mass fraction is
not zero (in all cases,jzj< 10� 2). The mass fraction detector works well in all cases because
the corresponding p4 and u4 are updated from the similar status of point A in Fig. 2 since
it is the exact point in front of the ignition grid point simil ar to point B. Accordingly,
if one parameter before detonation front is unsteady such as density in the example of
Section 5.1, thenr 2 is found in the transition point similar to point D (jz� 1j < 10� 2) in
Fig. 2 because it is the point that connects the ignition poin t in the prediction step to form
the weak detonation structure.
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Figure 4: Summarized 
ow chart of TVM for di�erent reaction problems. i represents the index of the grid
points and N is the number of the grid points.

(5) Mass fraction detector in TVM for complicated problems: p ost-detonation parameters
p4 and u4 are updated from the transition point that satis�es jzj < 10� 2. The initialization
of p4 and u4 is chosen as the post-detonation parameters of the initial conditions. The
initialization step and update step for p4 and u4 are plotted in the �ow charts of Fig. 4.

In the multi-species problems with only one reaction, the ca lculation steps are similar
to the TVM for unsteady initial condition cases. One minor re vision is necessary, which is
that p4 and u4 are updated from the transition point that satis�es jzfuel j < 10� 2. Such as in
the H2 and O2 one-step chemical reaction introduced in Section 5.2, the 4-state parameters
are found in the transition point whose mass fraction of H2 satis�es jzH2 j < 10� 2.

TVM for multi-reaction problems

Although TVM can correctly restrain the wrong detonation wa ve, over-restraint can
occur in the transition points in multi-reactions, which ma kes the mass fraction of fuel
not consume correctly. Thus, in the reaction operator, the p redictor of different reactions
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are calculated separately to get a detonation front whose position satis�es Ss > Swd in
Eq. (3.1). Then, as shown in Fig. 4(c), the true detonation front position is obtained by
choosing the smallest position of detonation front calcula ted from different reactions.
Once the detonation front is determined, the source term is s olved again via a standard
implicit solver in the region after the detonation front pos ition. The choice of 4-state
parameters p4 and u4 is same as the one in multi-species cases as introduced above.

(6) The corrector in reaction operator in multi-reaction pr oblems is to get the true deto-
nation front position I I front (I I is the index number of the grid points and the detonation
is assumed to propagate in the direction to the large index nu mber):

I I front = min
j

I I j , j = 1,��� NR, (3.16)

where grid point I I j is the maximum grid point that satis�es T > T j
ig and Ss > Swd (T j

ig
is the ignition temperature of the jth reaction). Then reaction operator is solved by the
standard method in the grid points that are smaller than I I front :

U ��
i = R(Dt)Un

i , i = 1,��� I I front . (3.17)

In summary, several extensions are made based on the idea of TVM and the calculation
rules are summarized in Fig. 4. High order spatial discretiz ation schemes will resolve
the spurious behavior to some extent [22, 23], although spur ious behavior will persist in
certain realistic extreme �ow conditions [38]. However, fa ster propagation of spurious
detonation will be restrained by TVM as long as the spurious b ifurcating shock struc-
tures occur because TVM only modi�es the source operator, not the advection operator
as related above. Such a scenario indicates that TVM can be used both in splitting scheme
and in other high-order schemes; furthermore, TVM will have the potential to simulate
the extreme �ow conditions such as those described in [38].

4 Simple reaction examples with extreme conditions

This section presents the performance of the proposed method for four simple reaction
test cases. In order to illuminate the characteristic of the threshold values method, TVM
is compared by ESM method [24] and MinMax method [21]. In the �rst example, the
RCD and SCD cases are numerically simulated by four differen t methods whose results
are compared to the reference solution. In the following thr ee examples, the effects of
three important parameters as related in Section 3.3 i.e., the chemical reaction rateK0, the
ignition of temperature Tig and the release heatQ0 are assessed on the appearance of the
spurious solution by the different methods.

4.1 Example 1: The standard case

Different initial data will lead to different Riemann solut ions. In this example, two initial
data are chosen to obtain the RCD case and the SCD case respectively. All initial val-
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(a) RCD case of different methods (b) SCD case of different methods

(c) RCD case of different discretizations (d) SCD case of different discretizations

Figure 5: Numerical results for standard case by di�erent spacial/temporal discretizations and di�erent methods.

ues and important parameters for the RCD case are the same as Eq. (2.8), except that the
parameter u on the left side of the calculation area in Eq. (2.8) is 4 in the SCD case. Ref-
erence solution is solved by the standard method with 50000 g rid points and extremely
small time step of 0.000001. Much less grid number which is 300 and larger time step
which is 0.0001 are considered in all four methods.

As represented in Figs. 5(a) and (b), all modi�ed methods can r estrain the spurious
behavior and reach the correct solution contrary to the spur ious numerical solution by
the standard dissipative method in the conditions of the sam e number of gird points
and the same time step. Considering the similar shock patter ns in the RCD and SCD
cases, all numerical test cases in the following three examples will be the SCD case (RCD:
p4 = 16.796 andu4= 2.4609; SCD:p4 = 24.2456 andu4 = 3.4784 in TVM calculation).
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The spacial discretization and temporal integration can ef fect the spurious behav-
ior [3, 4], which are represented in Figs. 5(c) and (d). The grid number of all cases are
decreased to 100 for comparison of spurious behavior of diff erent schemes. However,
temporal discretization effect is small and higher spatial discretization obtains a less spu-
rious behavior as shown in Figs. 5(c) and (d), which indicate s the higher discretization
method cannot solve the spurious problem but only soothe the phenomena [8]. Thus all
numerical test cases in the following examples will be solve d in �rst order temporal and
second order spacial discretization.

4.2 Example 2: Chemical reaction rate (K0)

The manner in which the chemical reaction rate K0 is chosen can affect the level of the
spurious behavior in the advection-reaction problems ( Q0 = 20 and Tig = 2). As can be
seen in Fig. 6(a), except inK0 = 100 (representing the lower stiffness) showing a correct
solution, all other K0 conditions lead to the spurious phenomenon solved by the sta n-
dard dissipative method. Besides, with the larger K0 (representing the higher stiffness),
the spurious behavior comes to appear more obvious. However , the degree of spurious
behavior seems to be the same whenK0= 10000 andK0= 15000.

As illustrated in Fig. 6(b), all ameliorated methods mentio ned above give the precise
solution referring to the reference solution when the chose n K0 is equal to 15000, which is
contrary to the solution by the standard dissipative method , showing a bifurcating wave
pattern ( p4 = 24.2456 andu4 = 3.4784 in TVM calculation).

The difference of the shock wave speed and the weak detonation wave speed DS with
the growth of the chemical reaction rate K0 is represented in Fig. 7. If K0 is smaller than
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Figure 6: Numerical results for ratio of chemical process.
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Figure 7: Intermediate state parameters with varyingK0.

200, the spurious phenomenon will not appear for the quicker speed of the shock wave.
When K0 increases, the mass fraction of a transition point will decr ease precipitately,
which generates a faster weak detonation wave movement. How ever, as K0 reaches to
an extremely high value (approximately equal to 5000), the d ifference between the shock
wave speed and the weak detonation wave speed DS converges to a constant, which
means the numerical solution will become the same spurious d egree as shown in Fig. 6(a)
in the high K0 conditions. The reason for this phenomenon is that when K0 is larger than
an extreme value, the ignited transition point will get to th e equilibrium state in one time
step and release chemical heat immediately, which leads to the constant weak detonation
wave speed as illustrated in Section 3.1.

4.3 Example 3: Ignition temperature ( Tig)

The main emphasis in this example is to study the in�uence of d ifferent ignition temper-
atures in the behavior of spurious numerical solution of the SCD case (K0 = 10000 and
Q0 = 20). As shown in Fig. 8(a), the numerical solution solved by s tandard dissipative
method tends to be more spurious (the gap between the shock wave and the weak deto-
nation wave gradually enlarges) with the smaller Tig between �ve ignition temperatures.

In view of the different modi�ed methods, the ignition temper ature equal to 1.1 at
which spurious behavior is most likely to happen is treated b y four different methods as
demonstrated in Fig. 8(b). Standard dissipative method sol ving this extreme case gives
a typical spurious solution as expected. On the contrary, th e TVM method offer an accu-
rate result as the reference solution presented. Although t he ESM method gives a wrong
shock pattern in settling this case, the degree of the spurious phenomenon of ESM seems
less than the one of the standard dissipative method. MinMax me thod seems robust in
the extreme ignition temperature problems ( p4= 24.2456 andu4= 3.4784 in TVM calcula-
tion).
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Figure 8: Numerical results for ignition temperature.
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Figure 9: Intermediate state parameters with varyingTig.

For clarity of the presentation of the in�uence of the igniti on temperature Tig on the
spurious behavior, the intermediate temperature T� and the discrepancy between shock
speedSs and weak detonation speed Swd, i.e.,DS= Swd� Ss are plotted against the 200 ig-
nition temperature conditions (from Tig = 1.1 toTig = 3 and DTig = 0.01) as shown in Fig. 9.
As ignition temperature increases, the shock velocity rise s gradually making DS dimin-
ish to nearly zero; meanwhile, the intermediate temperatur e increases linearly. Besides,
the standard dissipative method will give a correct solutio n in the conditions of Tig > 2.9
for the shock wave will move faster than the weak detonation w ave. However, when
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the ignition temperature is extremely low, more intermedia te state points whose temper-
atures are higher than the ignition temperature will be igni ted wrongly to the spurious
state.

4.4 Example 4: Release heat (Q0)

Fig. 10(a) gives the contrast between the solutions solved by the standard dissipative
method with four different release heat Q0 (K0 = 10000 andTig = 2). Only when Q0 = 15,
the standard dissipative method shows a correct solution. A ll other three release heat
conditions give the spurious solutions by the standard diss ipative method. Besides, the
higher release heat generates a more spurious solution.

Contrast of different methods to solve Q0 = 30 case demonstrated in Fig. 10(b) shows
up some key differences. The most striking phenomenon is the comparison between the
standard dissipative method, ESM and MinMax method, all of whi ch generate the sim-
ilar spurious pattern. Although ESM gives an erroneous solu tion likewise, the degree
of spurious behavior by ESM is much smaller than MinMax and the s tandard dissipa-
tive method. However, the proposed TVM method gets us the cor rect solution in the
under-resolved conditions as the reference solution ( p4= 26.2914 andu4= 3.2546 in TVM
calculation).

With respect to the speci�c in�uence caused by Q0, the variation of shock wave veloc-
ity, weak detonation velocity and intermediate temperatur e with the change of parameter
Q0 (from Q0= 10 to Q0= 30 and DQ0= 0.1) is demonstrated in Fig. 11. We can �nd that if
Q0 < 16, the spurious behavior will not happen because of the high er shock wave speed
than the weak detonation wave speed. However, when Q0 > 16, the velocity of the weak
detonation and the intermediate temperature increases lin early as the shock velocity re-
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Figure 10: Numerical results for release heat.
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Figure 11: Intermediate state parameters with varyingQ0.

mains the constant, which contributes to a larger differenc e between the weak detonation
wave speed and the shock wave speed and thus means a more obvious spurious solution.

4.5 Summary

The simple reaction cases indicate that three important par ameters i.e.,K0, Tig and Q0)
that also appear in the illustration of TVM are vital for the o ccurrence of spurious so-
lution. Traditionally, spurious behavior is believed to ha ppen more easily under strong
stiffness, in which chemical reaction rate K0 is large. However, the case of different chem-
ical reactions indicates that when large chemical reaction rate is considered, no more spu-
rious behavior will occur and ESM method can easily represen t the single discontinuity.
The effect of K0 is even smaller than those of Tig and Q0, thereby indicating that the spu-
rious behavior is not just related to chemical reaction rate , but is also strongly related to
the ignition temperature and heat release from the reaction .

5 Extension to more complicated problems

5.1 Problems with complex initial conditions

The �rst example uses Heaviside model and has been studied in [ 22] but with the stronger
stiffness. This one-dimensional detonation problem invol ves a collision with an oscilla-
tory wave in density. The computational domain is [0,2p ] and the initial conditions are
given as follows:

(r ,u,p,z)=

8
><

>:

(2,4,40,0), x �
p
2

,

(1.0+ 0.5sin2x,0,1,1), x>
p
2

.
(5.1)
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Figure 12: Computed results for unsteady initial conditions case att = p /10 . All methods with N = 300 except
for reference solution withN = 10000by standard dissipative method.

The strong stiffness parameters are given by:

(g,Tig,K0,Q0)= ( 1.2,2,4000,50). (5.2)

The chemical reaction rate is set higher than the one in [22,24], which makes the problem
more stiff and the spurious behavior will happen more easily . The reference solution is
solved by the standard splitting method with re�ned mesh ( N = 10000) andCFL= 0.5.
The numerically solved pressure, temperature, density and mass fraction are plotted in
Fig. 12, where results solved by ESM, the standard dissipative method as well as TVM
with the same coarse mesh (N = 300) andCFL= 0.1 are also displayed. Although the un-
steadiness and the absence of exact Riemann solution, TVM obtains the correct solution
as reference results, which shows the robustness of TVM in strong stiffness problem.

The second example is the initial conditions that involves w ith the detonation collid-
ing with a rarefaction wave, which is also been studied in [22 , 24]. The computational
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Figure 13: Computed results for unsteady initial conditions case att = 3. All methods with N = 300 except for
reference solution withN = 250000by standard dissipative method.

domain is [0,100] and the initial conditions are:

(r ,u,p,z)=

8
<

:

(2,4,40,0), x � 10,
(3.6428,6.2489,54.8244,0), 10< x � 20,
(1,0,1,1), x> 20.

(5.3)

The parameters are chosen as:

(g,Tig,K0,Q0)= ( 1.2,1.02,10000,80). (5.4)

The ignition temperature is lower, chemical reaction rate a nd release heat are higher than
those in [22, 24]. The reference solution is solved by the standard splitting method with
re�ned mesh ( N = 250000) andCFL= 0.7. As comparison, the results solved by ESM,
standard method and TVM with the same coarse mesh ( N = 300) andCFL= 0.04 are also
displayed in Fig. 13. It can be found that TVM obtains the corr ect detonation discontinu-
ity. However, results solved by ESM and standard dissipativ e method give the classical
bifurcating wave structures.
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5.2 Multi-species problem

In the following paper, the multi-species and multi-reacti on cases are considered. Thus
the calculation method is necessary to be introduced. The governing equations of multi-
species and multi-reaction problems are similar as the ones in [24]. Elementary irre-
versible reactions involving NS species can be represented in the following form:

NS

å
i= 1

v0
i,jc i ()

NS

å
i= 1

v00
i,jc i , j = 1,��� NR, (5.5)

where NR is the number of reactions. The stoichiometric coef�cients v are integer num-
bers and c i is the chemical symbol for the ith species. The superscript0 indicates forward
stoichiometric coef�cients, while 00indicates reverse stoichiometric coef�cients. The pro-
duction rate wi of the ith species can be calculated as a summation of the rate of progress
variables for all reactions involving the ith species:

wi = Wi

NR

å
j= 1

(v00
i,j � v0

i,j )Kj

NS

Õ
i= 1

�
r zi

Wi

� v0
i ,j

, j = 1,��� NR, (5.6)

where W is the molecular weight. Kj is the reaction rate of the irreversible chemical reac-
tion of the jth reaction which is expressed in Heaviside form. The standa rd method still
uses the Strang splitting and AUSM with TVD minmod limiter as the convection opera-
tor in the multi-species Euler problems. A full implicit sch eme is applied to update the
source term, which is different from the reaction operator i n the simplest Euler equations:

Un+ 1= Un+
DtS

1� DtS0, (5.7)

where S0 is the Jacobian of the reaction source term and can be expressed as:

S0=
¶S
¶U

=

0

B
B
B
B
B
@

¶w1

¶(r z1)
���

¶w1

¶(r zNS)
...

. . .
...

¶wNS

¶(r z1)
���

¶wNS

¶(r zNS)

1

C
C
C
C
C
A

. (5.8)

LU decomposition is used to solve Eq. (5.7).
A simple reacting model (three species and one reaction equation) is considered in

multi-species example. Similar case had been investigatedin [20]. The reaction equation
is:

2H2+ O2 ! 2H2O. (5.9)

The necessary parameters are presented as follows:

(g,Tig,K0,QH2,QO2,QH2O,WH2,WO2,WH2O)= ( 1.4,2,106,600,0,0,2,32,18). (5.10)
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Figure 14: Computed results for multi-species case att = 0.8. All methods with N = 300 except for reference
solution with N = 2000by standard dissipative method.

The release heat of H2 is set higher to than the one in [20, 24] which makes an extreme
condition that more spurious behavior will occur as in simpl e reaction cases. The initial
data consist of the burnt gas on the left side and the unburnt g as on the right side. This
problem is solved on the interval [0,20]. The initial data are piecewise constants given by:

(r ,u,p,zH2,zO2,zH2O)=
�

(2,8,20,0,0,1), x � 2.5,
(1,0,1,1/9,8/9,0), x> 2.5.

(5.11)

The reference solution is obtained by the standard splittin g method with re�ned mesh
(N = 2000) andCFL= 0.1. The reference solution consists of a detonation wave, followed
by a contact discontinuity and a shock as shown in Fig. 14. The numerical results by ESM,
the standard dissipative method as well as TVM with the same c oarse mesh (N= 300) and
CFL= 0.1 are also displayed. Different parameters of the results with different schemes
are plotted in Fig. 14. In this extreme condition, ESM and sta ndard splitting method both
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illustrate the spurious behavior as expected. However, TVM gives the same detonation
wave speed as the reference solution.

5.3 Multi-reaction problem

In multi-reaction problem, a reacting model which consists of �ve species and two reac-
tions is considered as:

H2+ O2 ! 2OH, 2OH + H2 ! 2H2O. (5.12)

The species N2 is treated as a catalyst. Similar example was investigated in [24]. All
parameters used in computation are set to the condition of bo th stiff reactions, given as
follows: 8

<

:

(g,T1
ig,K1

0,T2
ig,K2

0)= ( 1.4,1.5,105,1.5,105),
(QH2,QO2,QOH ,QH2O,QN2)= ( 0,0,� 100,� 100,0),
(WH2,WO2,WOH ,WH2O,WN2)= ( 2,32,17,18,28).

(5.13)

The initial conditions are given as follows:

(r ,u,p,zH2,zO2,zOH ,zH2O,zN2)=
�

(2,10,40,0,0,0.17,0.63,0.2), x � 0.5,
(1,0,1,0.08,0.72,0,0,0.2), x> 0.5.

(5.14)

Fig. 15 indicates the numerical solutions by the proposed me thod with the coarse mesh
(N = 300) on the interval [0,2] and CFL= 0.1. Re�ned mesh (N = 4000) and CFL= 0.1
are applied by the standard method to obtain the reference so lutions. In this bi-stiff re-
action system, ESM gives the typical spurious solutions as the ones by standard splitting
method. However, the same wave patterns with the correct spe eds are captured by TVM
referring to the reference solutions. Only a short simulati on time is offered since the refer-
ence solution breaks down to spurious bifurcating solution s at late time due to the strong
stiffness. However, the proposed method gives the correct single detonation front at late
time, which is not shown in this �gure.

6 Concluding remarks

Spurious solution by the standard dissipative method will o ccur in the conditions of
the coarse grid and large time scale when simulating stiff re active problems. Detailed
analysis on the formation of spurious wave pattern is presen ted that uses the standard
fractional step method using Strang splitting. With the hel p of physical arguments, this
paper concentrates on devising a modi�cation to standard fra ctional method, thresh-
old values method (TVM), which can eliminate spurious behavi or both in one-reaction
and multi-reaction problems with strong stiffness. Single reaction detonation as well as
multi-species and multi-reaction detonation test cases are examined to demonstrate the
superiority of the TVM approach in general. Extension of TVM to multi-dimensional
problems can be developed by choosing the proper post detonation parameters and will
be the focus of future work.
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Figure 15: Computed results for multi-reaction case att = 0.06. All methods with N = 300 except for reference
solution with N = 4000by standard dissipative method.
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