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Abstract. This article presents a novel monolithic numerical method for computing
flow-induced stresses for problems involving arbitrarily-shaped stationary boundaries.
A unified momentum equation for a continuum consisting of both fluids and solids is
derived in terms of velocity by hybridizing the momentum equations of incompress-
ible fluids and linear elastic solids. Discontinuities at the interface are smeared over
a finite thickness around the interface using the signed distance function, and the re-
sulting momentum equation implicitly takes care of the interfacial conditions without
using a body-fitted grid. A finite volume approach is employed to discretize the ob-
tained governing equations on a Cartesian grid. For validation purposes, this method
has been applied to three examples, lid-driven cavity flow in a square cavity, lid-driven
cavity flow in a circular cavity, and flow over a cylinder, where velocity and stress
fields are simultaneously obtained for both fluids and structures. The simulation re-
sults agree well with the results found in the literature and the results obtained by
COMSOL Multiphysicsr.
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1 Introduction

Flow induced stress is ubiquitous in nature and is at the core of many important engi-
neering problems, such as vascular flows [1,2], flows around wind turbine blades [3], and
ship in water [4]. Due to its complexity, the numerical approach is deemed the most prac-
tical, and therefore there have been a great deal of interest in making efficient and capable
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numerical algorithms [5]. Although it is important to compute both fluid flow and stress
development in a structure in many cases, a proper coupling of the fluid and the struc-
ture is challenging due to their dissimilar governing equations and physical behavior.
Furthermore, complex structure geometry makes the problem even more difficult.

Generally, there are two approaches for the coupling of flow and structure: parti-
tioned approach and monolithic approach. In the partitioned approach, different phases
are solved separately using different solvers and the information is transferred across the
interface enforcing the interface conditions [6, 7]. This approach has been traditionally
preferred because existing codes for both phases can be used, but the numerical instabil-
ities may occur due to the added-mass effect [8]. A strongly-coupled scheme can remedy
these problems with extra iterations, which however is computationally expensive [9].
On the other hand, the monolithic approach solves the flow-structure system with a sin-
gle algorithm. Although the development of a well-conditioned system is difficult due to
the entirely different properties of fluids and solids, this approach is more robust than the
partitioned approach. Accordingly, many monolithic methods have been developed with
various coupling strategies. For example, Hübner et al. developed a monolithic method
based on the space-time finite element method, where a weighted residual formulation
was used for the coupling [10]. Heil proposed a monolithic method for fluid-structure
interaction problems by using Newton’s method [11]. He showed that block-triangular
approximations of the Jacobian matrix, which was obtained by neglecting selected fluid-
structure interaction blocks, provide good preconditioners for the solution of the linear
systems with GMRES. Ryzhakov et al. [12] derived a displacement-based monolithic for-
mulation by using global pressure condensation, where a matrix-free technique was used
for efficiency and a free surface flow with a flexible structure was solved. Franci et al. [13]
introduced a unified formulation based on a mixed velocity-pressure formulation to sim-
ulate Newtonian fluids and quasi-incompressible hypoelastic structures where the finite
element method was used for structures and the particle finite element method was used
for fluids.

Another important issue is how to treat complex geometries of structures. One ap-
proach is the use of a body-fitted grid where grid is aligned with interface. Then, in-
terfacial conditions can be directly enforced and obtaining the interaction between fluid
and structure is straightforward. However, the grid generation and discretization proce-
dure can become complicated. A more efficient approach is the use of a non-body-fitted
grid, such as the immersed boundary method and the fictitious domain method. The
immersed boundary method which was originally devised by Peskin [14, 15] to com-
pute blood flow in heart valves, expresses an immersed structure as a momentum forc-
ing term. This method is suited for fiber-like structures and was effectively applied to
many problems. However, there is a difficulty in applying the method to rigid struc-
tures and various numerical methods have been proposed. For example, in the direct
forcing method, the representation of a structure is simplified by imposing the no-slip
condition at the interface [16, 17]. The cut-cell method is proposed to satisfy the con-
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servation law near the immersed structure, where the cells cut by an interface are re-
shaped to align with the geometry [18, 19]. In the ghost-cell method, the ghost cell is
introduced inside the structure and boundary conditions are implicitly included in the
interpolation scheme [20, 21]. In these methods for rigid structures, the flows with com-
plex interfaces are efficiently handled on a non-body-fitted grid but stress fields inside
the structures are not considered. Also, the immersed boundary method has been im-
proved to consider more general structures and analyze the stress field more accurately.
Zhang et al. [22] developed the immersed finite element method where a finite element
formulation is applied to both fluids and structures in order to solve the structure region
accurately and the interaction between fluids and structures is achieved with the repro-
ducing kernel particle method (RKPM). Gil et al. [23] proposed the immersed structural
potential method where the structure is represented as a strain energy functional. In this
method, the fluid-structure interaction force field obtained from the strain energy func-
tional is put in the Navier-Stokes equation as a source term. Another non-body-fitted
method is the fictitious domain method. In the fictitious domain method, Glowinski
et al. [24] introduced the Lagrange multiplier to achieve a fluid-structure coupling and
Baaijens [25] improved the method by combining with the mortar element method to
simulate slender bodies. For more general structures, Yu [26] enhanced the distributed-
Lagrange-multiplier/fictitious-domain formulation. He used continuum equations in-
stead of Newton’s equations of motion and applied the method to Newtonian fluids and
neo-Hookean elastic structures. Also, the lattice Boltzmann method has been drawing
attention due to its simplicity of using a regular lattice. The method was developed to
effectively handle the complex fluid problems such as multiphase flows [27]. In addition,
the lattice Boltzmann method was applied to simulate the flows around obstacles. For
example, Ladd et al. simulated the particulate flows where the bounce back rule is used
to enforce the no-slip condition at the interface [28, 29].

This paper proposes a novel monolithic algorithm for computing stress fields in a
structure as well as velocity fields in a fluid flow, where fluid-structure boundaries are
stationary. Our approach is to consider a fluid-structure system as a single continuum,
where the momentum equations for fluids and structures are hybridized inside the smear-
ed boundary region by actually mixing the momentum equations using the level set func-
tion. Because of the way the momentum equation is formulated, a tight coupling of the
momentum equations can be achieved, and arbitrarily-shaped boundaries can be easily
taken care of. The resulting unified momentum equation can be solved by a proper nu-
merical method for computational fluid dynamics. In this study, the SIMPLE algorithm
(Semi-Implicit Method for Pressure Linked Equations) has been employed to solve three
benchmark problems (lid-driven cavity flow in a square cavity, lid-driven cavity flow
in a circular cavity, and flow over a cylinder) based on incompressible flows and linear
elastics for test purposes. The simulation results agreed well with the results found in
the literature and the results obtained by COMSOL Multiphysicsr. It is believed that the
ideas presented in this study can be extended to other types of fluids and solids.
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2 Mathematical model

In this section, the governing equations for fluids and solids will be examined, and the
unified momentum equation will be derived.

2.1 Fluid equation

The governing equations for incompressible Newtonian fluids consist of the Navier-
Stokes equation and the continuity equation as follows:

D(ρu)

Dt
=∇·σ f +f, (2.1)

∇·u=0. (2.2)

Here, ρ is density, u is the velocity vector, f is the body force, and the stress tensor σ f is
written as

σ f =−pI+2ηR, (2.3)

where p is the pressure, η is the viscosity, and R is the rate of strain tensor,

R=
1

2

(

∇u+∇uT
)

. (2.4)

From Eqs. (2.1), (2.3), and (2.4), the following momentum equation for fluids is obtained.

∂(ρu)

∂t
+∇·(ρuu)=∇·

(

η
(

∇u+∇uT
)

−pI
)

+f. (2.5)

2.2 Solid equation

For solid phase, the elastodynamic equation is used,

D(ρu)

Dt
=∇·σs+f. (2.6)

The solid stress tensor, σs is written as

σs =2µε+
(

λTr(ε)
)

I, (2.7)

where Tr is trace, ε is the strain tensor and µ and λ are Lame’s constant as follows:

ε=
1

2

(

∇d+∇dT
)

, (2.8)

µ=
E

2(1+ν)
and λ=

Eν

(1+ν)(1−2ν)
. (2.9)
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Here, d is displacement vector, E is Young’s modulus, and ν is Poisson’s ratio.
From Eqs. (2.6), (2.7), and (2.8), the following momentum equation for solids is ob-

tained.
∂(ρu)

∂t
+∇·(ρuu)=∇·

(

µ
(

∇d+∇dT
)

+λ(∇·d)I
)

+f. (2.10)

In this study, stationary boundary problems are considered where the displacement
in Eq. (2.10) can be easily expressed in terms of velocity. For each computational cell,
the displacement is obtained by integrating the velocity over time where the first-order
implicit formulation is used as follows:

d=
∫ t

to

udt+do ≈u∆t+do. (2.11)

The superscript o in Eq. (2.11) denotes the previous time step. Substituting Eq. (2.11) into
Eq. (2.10), a velocity based formulation of the solid momentum equation can be obtained
as

∂(ρu)

∂t
+∇·(ρuu)=∇·

(

µ∆t
(

∇u+∇uT
)

+λ∆t(∇·u)I+b
)

+f, (2.12)

where b is written in terms of the displacement from previous time step.

b=µ
(

∇do+∇doT
)

+λ(∇·do)I. (2.13)

2.3 Unified momentum equation

Observing Eqs. (2.5) and (2.12) closely, we can notice that they are very similar. If µ̄ and
λ̄ are defined as

µ̄=

{

η for fluids,
µ∆t for solids,

and λ̄=

{

0 for fluids,
λ∆t for solids,

(2.14)

the following unified momentum equation can be obtained from Eqs. (2.5) and (2.12):

∂(ρu)

∂t
+∇·(ρuu)=∇·

(

µ̄
(

∇u+∇uT
)

+λ̄(∇·u)I+b̄
)

+f, (2.15)

where b̄ is the source term which consists of the pressure or the displacement from pre-
vious time step according to the phase

b̄=

{

−pI for fluids,
µ̄
∆t

(

∇do+∇doT
)

+ λ̄
∆t (∇·do)I for solids.

(2.16)

However, this unified momentum equation is highly discontinuous since the properties
such as density, µ̄ and λ̄ change sharply at the fluid-structure interface.
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In this study, in order to smooth out these discontinuities, the level set function φ is
employed [30] where the level set function is defined as the signed normal distance from
the interface.

φ=







+distance, for fluids,
0, for interface,
−distance, for solids.

(2.17)

Using the level set function, the smoothed Heaviside function is defined as follows

hα(φ)=











1 if φ>α,
1
2

(

1+ φ
α +

1
π sin

(

πφ
α

))

if |φ|≤α,

0 if φ<−α.

(2.18)

Using this function, the interface has a finite thickness of 2α. Note that in the smeared
interface region, velocity is more strongly affected by solid properties and velocity values
are close to zero even in the fluid side of the smeared boundary. Therefore, if the smearing
is done with respect to the zero level set, it is as though an additional solid layer of width
α exists in the fluid side of the boundary. To figure out this issue, the entire smearing
region is placed inside the solid region by using a shifted Heaviside function of Hα(φ)≡
hα(φ+α) instead of the original one given in Eq. (2.18).

Across this region, the material properties and the b̄ term are smeared as follows:

ρ=ρsolid+(ρfluid−ρsolid)Hα(φ),

µ̄=µ∆t+(η−µ∆t)Hα(φ),

λ̄=λ∆t(1−Hα(φ)),

b̄=

{

µ̄

∆t

(

∇do+∇doT
)

+
λ̄

∆t
(∇·do)I

}

(1−Hα(φ))+(−pI)Hα(φ). (2.19)

In this study, α=1.5∆x is used.
The following equation is the final form of the unified momentum equation where ρ,

µ̄ and λ̄ are defined in Eq. (2.19).







∂(ρu)
∂t +∇·(ρuu)=∇·

(

µ̄
(

∇u+∇uT
)

+λ̄(∇·u)I+b̄
)

+f,

b̄=
{

µ̄
∆t

(

∇do+∇doT
)

+ λ̄
∆t (∇·do)I

}

(1−Hα(φ))+(−pI)Hα(φ).
(2.20)

The unified momentum equation can be applied to the entire domain including the fluid-
structure interface and the interfacial conditions such as the velocity continuity and the
stress continuity are automatically satisfied. Using this approach, geometrical nonlinear-
ities can be automatically taken into account, too.

One thing to note is that the velocity field in the fluid phase has the constraint of the
continuity equation. However, the velocity field from Eq. (2.20) involves both fluid and
solid velocities. The detailed algorithm will be explained in the following section.
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2.4 Numerical algorithm

In the present study, the unified momentum equation is discretized using a finite volume
approach on a uniform staggered grid. As an example, the x-component of the unified
momentum equation will be considered in two dimensions. Integrating Eq. (2.20) over a
control volume, the following equation is obtained (see Fig. 1).

∂(ρu)

∂t i+1/2,j
∆Vi+1/2,j

=

{

(−ρuu)i+1,j+
(

2µ̄i+1,j+λ̄i+1,j

)

(

∂u

∂x

)

i+1,j

+λ̄i+1,j

(

∂v

∂y

)

i+1,j

+ b̄i+1,j

}

∆Ai+1,j

−

{

(−ρuu)i,j+
(

2µ̄i,j+λ̄i,j

)

(

∂u

∂x

)

i,j

+λ̄i,j

(

∂v

∂y

)

i,j

+ b̄i,j

}

∆Ai,j

+

{

(−ρvu)i+1/2,j+1/2+µ̄i+1/2,j+1/2

(

∂u

∂y
+

∂v

∂x

)

i+1/2,j+1/2

+ b̄i+1/2,j+1/2

}

∆Ai+1/2,j+1/2

−

{

(−ρvu)i+1/2,j−1/2+µ̄i+1/2,j−1/2

(

∂u

∂y
+

∂v

∂x

)

i+1/2,j−1/2

+ b̄i+1/2,j−1/2

}

∆Ai+1/2,j−1/2+ fx

(2.21)

where ∆V is the volume of a cell, and ∆A is the cell face area.

Figure 1: The schematic of the uniform staggered grid where a control volume for u-velocity is denoted as a
shaded region.

Eq. (2.21) can be easily discretized. In this paper, the second-order central difference
scheme for space and the first-order backward Euler scheme for time are used, and the
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following discretized equation is obtained:

(ρu)i+1/2,j−(ρu)o
i+1/2,j

∆t
∆Vi+1/2,j

=

{

(−ρuu)i+1,j+
(

2µ̄i+1,j+λ̄i+1,j

)

(

ui+3/2,j−ui+1/2,j

∆x

)

+λ̄i+1,j

(

vi+1,j+1/2−vi+1,j−1/2

∆y

)

+ b̄i+1,j

}

∆Ai+1,j−

{

(−ρuu)i,j+
(

2µ̄i,j+λ̄i,j

)

(

ui+1/2,j−ui−1/2,j

∆x

)

+λ̄i,j

(

vi,j+1/2−vi,j−1/2

∆y

)

+ b̄i,j

}

∆Ai,j+

{

(−ρvu)i+1/2,j+1/2+µ̄i+1/2,j+1/2

(

ui+1/2,j+1−ui+1/2,j

∆y
+

vi+1,j+1/2−vi,j+1/2

∆x

)

+ b̄i+1/2,j+1/2

}

∆Ai+1/2,j+1/2−

{

(−ρvu)i+1/2,j−1/2+µ̄i+1/2,j−1/2

(

ui+1/2,j−ui+1/2,j−1

∆y

+
vi+1,j−1/2−vi,j−1/2

∆x

)

+ b̄i+1/2,j−1/2

}

∆Ai+1/2,j−1/2+ fx. (2.22)

Then, Eq. (2.22) can be written in the following form.

ai+1/2,jui+1/2,j=∑nb
anbunb+

(

pi,jHα

(

φi,j

)

−pi+1,jHα

(

φi+1,j

))

∆Ai+1/2,j+Si+1/2,j. (2.23)

Here, the subscript nb denotes the neighboring nodes and S is the source term. Similarly,
the discretized momentum equation in the y-direction can be obtained as follows:

ai,j+1/2vi,j+1/2=∑nb
anbvnb+

(

pi,jHα

(

φi,j

)

−pi,j+1Hα

(

φi,j+1

))

∆Ai,j+1/2+Si,j+1/2. (2.24)

Finally, the continuity equation (Eq. (2.2)) is discretized as follows:

(u∆A)i+1/2,j−(u∆A)i−1/2,j+(v∆A)i,j+1/2−(v∆A)i,j−1/2 =0. (2.25)

In this study, the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) al-
gorithm [31] is employed as the coupling method. Note that the continuity equation
(Eq. (2.25)) is only valid for the fluid phase and the pressure in Eqs. (2.23) and (2.24) is
not defined in the solid phase. In this study, therefore, the pressure correction equation is
obtained from the coupling of Eqs. (2.23)-(2.25) only for the fluid region and the smeared
interface region, and is evaluated using the fluid properties (i.e., ρ= ρfluid, µ̄= η, λ̄= 0,
and Hα(φ)=1).

Following the SIMPLE procedure, the pressure correction equation is obtained as

ai,j p
′
i,j = ai+1,j p

′
i+1,j+ai−1,j p

′
i−1,j+ai,j+1 p′i,j+1+ai,j−1 p′i,j−1+bi,j, (2.26)

where

ai+1,j =

(

∆Ai+1/2,j

)2

(

ai+1/2,j

)

f

, ai−1,j =

(

∆Ai−1/2,j

)2

(

ai−1/2,j

)

f

, ai,j+1 =

(

∆Ai,j+1/2

)2

(

ai,j+1/2

)

f

, ai,j−1=

(

∆Ai,j−1/2

)1/2

(

ai,j−1/2

)

f

,

ai,j = ai+1,j+ai−1,j+ai,j+1+ai,j−1,

bi,j=u∗
i−1/2,j∆Ai−1/2,j−u∗

i+1/2,j∆Ai+1/2,j+v∗i,j−1/2∆Ai,j−1/2−v∗i,j+1/2∆Ai,j+1/2 (2.27)



H. Yeo and H. Ki / Commun. Comput. Phys., 22 (2017), pp. 39-63 47

and the subscript f indicates that the term is evaluated using the fluid properties.
Once pressure corrections are obtained from Eq. (2.26), the corrected pressure field is

calculated:
p= p∗+p′. (2.28)

Finally, the velocity field is updated using the original coefficients, ai+1/2,j and ai,j+1/2 as
follows:

ui+1/2,j=u∗
i+1/2,j+

∆Ai+1/2,j

ai+1/2,j

{

p′ i,jHα

(

φi,j

)

−p′ i+1,jHα

(

φi+1,j

)

}

, (2.29)

vi,j+1/2=v∗i,j+1/2+
∆Ai,j+1/2

ai,j+1/2

{

p′ i,jHα

(

φi,j

)

−p′ i,j+1Hα

(

φi,j+1

)

}

. (2.30)

The overall algorithm is shown in Fig. 2.

3 Numerical examples

In this section, three test examples are simulated on a uniform Cartesian grid with the
presented method. In the first and second examples, lid-driven cavity flow problems
inside two types of solid containers are considered: the first container has a square cavity,
and the second container has a semi-circular cavity. The third example is the flow over
a circular cylinder, where a stress field inside the cylinder is also considered. Using the
unified momentum equation approach, velocity and stress fields are computed for both
fluids and solids simultaneously. The simulation results are compared with the results
from COMSOL Multiphysicsr, where a partitioned approach on a body-fitted grid is
used to handle the interaction between fluids and structures. The COMSOL simulations
are performed on an Intelr CoreTM i7-4770 CPU (3.40 GHz) PC. Also, the velocity fields
are compared with the data from the literature.

3.1 Lid-driven cavity flow inside a solid container (square cavity)

A 0.12 m × 0.12 m cavity is located inside a solid container that has dimensions of 0.2 m
× 0.16 m. Because the container is rigid, the cavity has the fixed shape and the container-
structure boundary is stationary. The fluid flow is driven by a lid moving at a constant
velocity of 8.333×10−3 m/s. The solid container is roller supported at the outer boundary.
Fig. 3 shows a schematic of the problem. The fluid is assumed as water, which has a
density of 1000 kg/m3 and a viscosity of 1×10−3 kg/m·s. The Reynolds number of the
problem is 1000. The solid container is made of aluminum, which has a density of 2700
kg/m3, Young’s modulus of 6.9×1010 N/m2, and Poisson’s ratio of 0.33. This problem is
tested on a 500×400 grid, with a time step of 0.005 s.

Figs. 4-6 present the temporal evolution of stress distributions for both fluid and struc-
ture until the steady-state is reached. The normal stresses in x- and y-directions are pre-
sented in Fig. 4 and Fig. 5, respectively. As shown in the figures, stresses are developed
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Figure 2: The SIMPLE algorithm applied to the unified momentum equation approach.
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Figure 3: The schematic of the lid-driven rectangular cavity flow problem.

Figure 4: Evolution of normal stress (σxx): (a) t=5s; (b) t=50s; (c) t=100s and (d) t=405s (steady-state).
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Figure 5: Evolution of normal stress (σyy): (a) t=5s; (b) t=50s; (c) t=100s and (d) t=405s (steady-state).

starting from the top right corner of the interface due to the flow direction. As time
elapses, a circularly shaped stress distribution appears inside a fluid region, which indi-
cates that a circular flow field is being developed there. From these figures, as expected,
stress continuity is clearly observed at the interface. At the vertical interfaces, the normal
stress in the x-direction (σxx) is continuous along the x-direction; at the horizontal inter-
face, the normal stress in the y-direction (σyy) is also continuous along the y-direction.
Fig. 6 presents shear stress distributions. Similarly to the normal stress distributions,
shear stress is the largest at the top right corner of the interface, where the flow changes
direction abruptly at the wall and a large shear stress is generated. Also, because the flow
is generated by the moving lid at the top, shear stress is more noticeable right below the
moving lid. From Figs. 4-6, we can observe that the stress field inside the solid container
is getting fully established as time elapses, which confirms that flow-induced stresses are
transferred to the structure well by the presented algorithm.

The streamline distributions for both phases are presented in Fig. 7. Note that al-
though the velocities in the solid region are extremely small compared to the fluid ve-
locities, it is still possible to define streamlines. In the fluid region, the development of



H. Yeo and H. Ki / Commun. Comput. Phys., 22 (2017), pp. 39-63 51

Figure 6: Evolution of shear stress (σxy): (a) t=5s; (b) t=50s; (c) t=100s and (d) t=405s (steady-state).

vortices is clearly observed. At first, the primary vortex is formed, and two secondary
vortices are developed in the bottom-left and bottom-right corners of the interface. At
the steady state (Fig. 7(d)), streamlines in the solid region have all disappeared, which
means that the container is fully deformed due to the well-established flow field.

Fig. 8 shows a grid refinement study where the spatial error norms in the velocity
field are plotted versus the number of x-direction grid points. Fig. 8(a) and (b) respec-
tively show the x-directional and y-directional velocity results. For the analysis, 125×100,
250×200, and 500×400 uniform Cartesian grids were used, and the error norms in the
velocity field were computed over the whole domain at steady state. As shown, the al-
gorithm shows largely a second-order convergence.

In order to validate the accuracy of the algorithm, we simulated the same problem
with COMSOL Multiphysicsr. A total of 31440 triangular elements were used and it took
about 19 minutes to reach the steady state with a maximum time step of 0.5 s. The steady-
state stress field plots on the left side of Fig. 9 are obtained from COMSOL Multiphysicsr

simulations, which are qualitatively very similar to the corresponding figures in Figs. 4-6.
For more quantitative comparison, the stress distributions along the two horizontal lines
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Figure 7: Evolution of streamlines: (a) t=5s; (b) t=50s; (c) t=100s and (d) t=405s (steady-state).

Figure 8: Grid convergence study result: (a) x-directional velocity, (b) y-directional velocity.

(the locations shown as dashed and solid lines in the left figures) are computed using the
two methods and compared in the right figures, where the interface locations are shown
as vertical lines. The current simulation results are in good agreement with the COMSOL
Multiphysicsr results although the interface is smeared using the level set function in the
presented method. Fig. 10 shows the velocity field inside the cavity compared with the
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Figure 9: [Left figures] Steady-state (t= 405s) stress fields obtained by COMSOL Multiphysicsr with 31440
triangular elements and a maximum time step of 0.5 s. [Right figures] Comparison between the present study
and COMSOL along the solid (y=0m) and dashed (y=0.064m) horizontal lines shown in the left figures. [From
top to bottom] (a) Normal stress in the x-direction, (b) normal stress in the y-direction and (c) shear stress.

data available in reference [32]. Fig. 10(a) and (b) respectively show the x velocity profile
along the middle vertical line of the cavity and the y velocity profile along the middle
horizontal line of the cavity. As shown, a good agreement is observed.
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Figure 10: Comparison of fluid velocity profiles with the data in Ref. [32]. (a) x-directional fluid velocity along
the middle vertical line of the cavity, (b) y-directional fluid velocity along the middle horizontal line of the cavity.

Figure 11: The schematic of the lid-driven semi-circular cavity flow problem.

3.2 Lid-driven cavity flow inside a solid container (semi-circular cavity)

A solid container with dimensions of 0.2 m × 0.1 m has a semi-circular cavity with a
radius of 0.08 m. In this problem, different from the previous example, the fluid-structure
interface is not aligned with the grid lines. Just like the previous problem, the cavity is
filled with water and the solid container is made of aluminum. The flow is driven by a
lid at the top that moves at a velocity of 6.25×10−3m/s, and the solid container is roller
supported at the outer boundary. The Reynolds number of the problem is 1000. Fig. 11
shows a schematic of the problem. This simulation is performed using a 512×256 grid,
with a time step of 0.005 s.

The stress fields for the whole domain are shown at four different times in Figs. 12-14,
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Figure 12: Evolution of normal stress (σxx): (a) t=5s; (b) t=60s; (c) t=108s and (d) t=410s (steady-state).

Figure 13: Evolution of normal stress (σyy): (a) t=5s; (b) t=60s; (c) t=108s and (d) t=410s (steady-state).

with the last ones being the steady-state results. The results exhibit the similar behavior
as the previous example. As shown in the figures, the results look reasonably good with
this curved interface, and the obtained stress fields are as predicted. The flow induced
stresses are developed in the structure as time progresses (which shows that the stress
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Figure 14: Evolution of shear stress (σxy): (a) t=5s; (b) t=60s; (c) t=108s and (d) t=410s (steady-state).

Figure 15: Evolution of streamlines: (a) t=5s; (b) t=60s; (c) t=108s and (d) t=410s (steady-state).

is well transferred to the structure in the numerical algorithm), and the stress is highly
concentrated in the top-right corner of the interface. Because the fluid-structure interface
is not aligned with the grid lines, stress continuity is less obvious in the figures. In this
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Figure 16: [Left figures] Steady-state (t=410s) stress fields obtained by COMSOL Multiphysicsr with 40245
triangular elements and a maximum time step of 0.5 s. [Right figures] Comparison between the present study
and the COMSOL simulation along the solid (y=0m) and dashed (y=0.04m) horizontal lines shown in the left
figures. [From top to bottom] (a) Normal stress in the x-direction, (b) normal stress in the y-direction and (c)
shear stress.

case, the normal stress in the x-direction (σxx) is continuous along the x-direction at the
top-right and top-left interface and the normal stress in the y-direction (σyy) is continuous
along the y-direction at the bottom interface. Also, the stress fields indicate that there is
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Figure 17: Comparison of fluid velocity profiles with the data in Ref [33]. (a) x-directional fluid velocity along
the middle vertical line of the cavity, (b) y-directional fluid velocity along the horizontal line which is one fourth
of the cavity depth below from the surface.

circularly shaped flow structure inside the flow region, which is more clearly seen in the
streamline plots in Fig. 15. As shown in Fig. 15, while the deformation is progressing
in the solid domain, well-shaped streamlines exist even for solids, which all disappear
completely when the fluid-induced deformation is finalized.

For validation purposes, the same problem was simulated using COMSOL
Multiphysicsr. A total of 40245 triangular elements were used and it took 23 minutes
to reach the steady state with a maximum time step of 0.5 s, and the obtained steady-
state stress fields are presented in the left side of Fig. 16. The stress fields from both
simulations are reasonably similar, as the stress distributions along the reference lines are
compared in the right side of Fig. 16. Although some spikes are observed in the smeared
interface region, the current simulation results are in good agreement with the COM-
SOL Multiphysicsr results even for the curved boundary problems. Note that COMSOL
Multiphysicsr are based on a partitioned approach and the interfaces are aligned with
the grid lines. Fig. 17 shows the velocity field inside the cavity compared with the data
available in reference [33]. Fig. 17 (a) and (b) respectively show the x-directional fluid
velocity along the middle vertical line of the cavity and the y-directional fluid velocity
along the horizontal line which is one fourth of the cavity depth below from the surface.
As shown, a good agreement is observed.

3.3 Flow over a circular cylinder

As the last example, the flow past a circular cylinder is considered, where the stress field
inside the cylinder that is also made of aluminum, is solved simultaneously with the
flow field in terms of velocity. A circular cylinder with a diameter (D) of 0.3 m is placed at
x=−8D, y=0 when the computational domain has a size of 32 D × 16 D (−16D≤x≤16D,
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Figure 18: Computational domain and boundary conditions for the flow-over-a-cylinder problem.

−8D≤y≤8D). A fluid with a density of 1kg/m3 and a viscosity is 3×10−3kg/m·s flows
from left at U∞=1m/s, and the solid cylinder is fixed at two points, x=−8D, y=±0.34D.
The schematic of the problem is shown in Fig. 18, together with the boundary conditions.
The Reynolds number of the flow is 100. This simulation is performed on a 512×256 grid,
with a time step of 0.005 s.

Fig. 19 shows the normal stresses and vorticity distributions at t=113s. In order to re-
sist the drag force due to the flow, stress is concentrated at the two fixed points inside the
cylinder, and as the vorticity distribution shows, the von Karman vortex street is formed
behind the cylinder. Fig. 20 presents the magnified views of normal stress fields around
the cylinder, and the normal stress distributions along the horizontal central line are com-
pared with COMSOL simulation results in Fig. 21, where two vertical lines indicate the
boundaries of the cylinder. For COMSOL simulations, 64708 triangular elements were
used and it took 63 minutes to simulate 113 s with a maximum time step of 0.1 s. As
shown in the figure, the two results agree reasonably well with each other. Although the
difference seems to be a bit larger than the previous two examples due to the relatively
larger smeared interface region compared to the structure size, the two results are still
reasonably close.

4 Conclusion

A novel monolithic method for calculating flow induced stresses in structures having
arbitrarily-shaped stationary boundaries has been presented. In this study, a unified mo-
mentum equation that is valid for both fluids and solids is derived in terms of velocity,
and the momentum equations for fluids and solids are hybridized around the interface
using the level set function. The SIMPLE algorithm is employed to solve the governing
equations numerically. This method has been successfully tested with three examples,
and we believe that this method is simple to implement and can be easily applied to
many other similar problems.
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Figure 19: Simulation results of the flow over a circular cylinder at t=113s: (a) normal stress in the x-direction,
(b) normal stress in the y-direction and (c) vorticity field.

Figure 20: Stress fields magnified around the cylinder: (a) normal stress in the x-direction and (b) normal stress
in the y-direction.
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Figure 21: Comparison between the present study and the COMSOL simulation along the central horizontal
line: (a) Normal stress in the x-direction, (b) normal stress in the y-direction.
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