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Abstract. In this article,we study theoretically and numerically the interaction of a
vortex induced by a rotating cylinder with a perpendicular plane. We show the exis-
tence of weak solutions to the swirling vortex models by using the Hopf extension
method, and by an elegant contradiction argument, respectively. We demonstrate
numerically that the model could produce phenomena of swirling vortex including
boundary layer pumping and two-celled vortex that are observed in potential line vor-
tex interacting with a plane and in a tornado.
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1 Introduction

The aim of this article is to study the interaction of a vertical line vortex with a horizontal
plane as a first simplified model for tornadoes. The study is partly theoretical and partly
numerical. In the analytical part, the line vortex is replaced by a vertical rotating cylin-
der of small radius σ, and we show the existence of an axisymmetric weak solution to
the stationary Navier-Stokes equations, when σ> 0. In the numerical part, we examine
carefully the fluid flow near the plane boundary and around the cylinder.

The study of a line vortex interacting with a plane perpendicular to the vortex core,
even in the simple axisymmetric setting, is important, as the structures of the resulting
swirling vortex (sometimes exact solutions to the stationary Navier-Stokes equations)
can give insight into the dramatic phenomenon of a tornado. Goldshtik [9] discovered a
family of conical self-similar swirling vortex solutions to the axisymmetric Navier-Stokes
equations resulting from a vertical potential line vortex of constant circulation interacting
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with an infinite orthogonal plane. However, Goldshtik’s vortex solutions exist only for
small Reynolds numbers (Re<Re∗=5.53), since the solutions are assumed to be bounded
at the vortex axis [8]. Serrin partially resolved Goldshtik’s paradox and showed the exis-
tence of self-similar vortex solutions for all Reynolds numbers, if one allows singularity
formation at the vortex core [24]. Due to the lack of boundary conditions, Serrin’s so-
lutions depend on an additional parameter that needs to be specified as an input to the
physical system. The parameter amounts to specifying a boundary condition for the
pressure on the plane surface. Nevertheless, Serrin shows that these solutions have rich
structures including two-celled vortex. Recently, there has been research on modifying
the scaling of the velocity/radial distance dependence in Serrin’s vortex solutions, based
on radar data observation [4].

The major controversy in Serrin’s idealized model of a line vortex stems from the vor-
tex singularity at the vortex axis which serves as a source of momentum. In the present
work, we regularize the line vortex by a rotating cylinder of small radius. Serrin’s model
of a line vortex can be viewed as an asymptotic limit of the rotating cylinder when its
radius approaches zero. Moreover, as the vortex singularity is regularized, no additional
physical parameters are needed in our model other than the circulation and kinematic
viscosity.

Now we describe the problem of tornado-like vortex driven by a uniform rotating
cylinder of a small radius in detail. The natural coordinates system for this problem
is the cylindrical coordinates (r,θ,z). Let (u,v,w) be the velocity vector in the cylindri-
cal coordinates. Then the axisymmetric flow is governed by the following dimensional
steady-state Navier-Stokes equations
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where ρ is the density, and ν is the kinematic viscosity. The domain is defined as Ω=
{(r,θ,z) | r≥σ,θ∈ (0,2π),0≤ z≤ L}. We decompose the boundary ∂Ω into several parts
such that ∂Ω=Γi∪Γl∪Γu with Γi={r≥σ,z=0}, Γl={r=σ,0≤z≤L} and Γu={r≥σ,z=L}.
The boundary conditions for the flow that we would like to impose are
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Here γ is the circulation prescribed on the surface of the cylinder. Recall that a potential
vortex line is given by u=w=0, v= γ

2πr =−φ′(r) with the potential φ(r)=− γ
2π lnr. The


