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Abstract. This paper presents a GPU-accelerated implementation of the Locally Op-
timal Block Preconditioned Conjugate Gradient (LOBPCG) method with an inexact
nullspace filtering approach to find eigenvalues in electromagnetics analysis with higher-
order FEM. The performance of the proposed approach is verified using the Kepler
(Tesla K40c) graphics accelerator, and is compared to the performance of the imple-
mentation based on functions from the Intel MKL on the Intel Xeon (E5-2680 v3, 12
threads) central processing unit (CPU) executed in parallel mode. Compared to the
CPU reference implementation based on the Intel MKL functions, the proposed GPU-
based LOBPCG method with inexact nullspace filtering allowed us to achieve up to
2.9-fold acceleration.
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1 Introduction

Eigenvalue problems derived from Maxwell’s equations are an important class of prob-
lems in electromagnetic research, as the associated eigenvalues and eigenvectors pro-
vide key characteristics of the examined systems—including resonant frequencies for
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resonator cavities that are essential for material characterization, particle accelerators or
coupled resonator filter design, propagation coefficients for guided waves, poles or trans-
mission zeros for filters, and so on. Let us consider a closed region (), forming a cavity in
three dimensions. If the cavity is loaded with a medium whose properties are represented
by permeability 1 and permittivity €, then Maxwell’s equations can be transformed to the
following Helmholtz wave partial differential equation (PDE):

Vx(u 'VxE)=w?E, V-(eE)=0 in Q, (1.1)

where w is the angular frequency and E is the electric field. If we impose boundary con-
ditions on d(2 (e.g., Exn =0, where n is the vector normal to dQ2), then solving Eq. (1.1)
yields the discrete spectrum of the double curl operator on the left-hand side of Eq. (1.1).
In practice, only a few nonzero low-order eigenvalues (which means small positive eigen-
values) and their associated eigenvectors are of interest. To find these, the finite element
method (FEM) with higher-order basis functions [1] may be applied, resulting in a gen-
eralized matrix eigenvalue problem of the form:

W\ 2
Kx = (?) Mz, (1.2)
where % is a wavenumber, w is the angular frequency, c is the speed of light, K is a large
sparse symmetric and positive semidefinite matrix, IM is a large sparse symmetric and
positive definite matrix [2], and their sparsity decreases as the order of the FEM basis
functions increases.

Symmetric generalized eigenvalue problems are also encountered in many other
areas of physical modeling, including structural simulations, hydrodynamics, and
solid-state physics [3,4]. For such large-scale eigenproblems, Krylov subspace-based
methods—such as the Lanczos, Arnoldi algorithms (e.g., Implicitly Restarted Arnoldi
Method (IRAM) [5]), the Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) method [6], and the Jacobi-Davidson-type techniques such as JDQZ [7])—
have been developed. It is worth noting that Krylov subspace-based methods are de-
signed for finding a few extreme eigenvalues.

As the size of the matrix and the number of nonzero matrix elements grow, the time
required to solve such sparse generalized eigenproblems increases. To mitigate this prob-
lem, parallel computing techniques have been proposed [8-10]. In most cases massively
parallel implementations are intended for clusters, but such computer systems are costly
and not readily available for researchers and engineers. One of the most promising
trends in parallel computing, allowing the acceleration of numerical code via massive
parallelism on relatively low-cost hardware, is the utilization of graphic processing units
(GPUs). GPUs support thousands of cores and different levels of fast memory which, if
used appropriately, have been shown to be effective in accelerating sparse matrix pro-
cessing, including iterative methods for sparse linear algebra exploiting the concept of a
Krylov subspace. For these methods, the speedups achieved depend on the matrix spar-
sity pattern, the matrix compression scheme, and the way in which a crucial operation



