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Abstract. In this paper, we first compute the multiple non-trivial solutions of the
Schrödinger equation on a square, by using the Liapunov-Schmidt reduction and
symmetry-breaking bifurcation theory, combined with Legendre pseudospectral meth-
ods. Then, starting from the non-trivial solution branches of the corresponding nonlin-
ear problem, we further obtain the whole positive solution branch with D4 symmetry
of the Schrödinger equation numerically by pseudo-arclength continuation algorithm.
Next, we propose the extended systems, which can detect the fold and symmetry-
breaking bifurcation points on the branch of the positive solutions with D4 symme-
try. We also compute the multiple positive solutions with various symmetries of the
Schrödinger equation by the branch switching method based on the Liapunov-Schmidt
reduction. Finally, the bifurcation diagrams are constructed, showing the symme-
try/peak breaking phenomena of the Schrödinger equation. Numerical results demon-
strate the effectiveness of these approaches.
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1 Introduction

As a canonical model in physics, the nonlinear Schrödinger equation (NLS) is of the form










i
∂

∂t
w(x,t)=−∆w(x,t)+v(x)w(x,t)+κg(x,|w(x,t)|)w(x,t),

∂

∂t

∫

Rn
|w(x,t)|2dx=0,

(1.1)
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where v(x) is a potential function, κ is a physical constant and g(x,u) is a nonlinear func-
tion satisfying certain growth and regularity conditions, e.g., g(x,|w|)w is super-linear
in w. The second equation in (1.1) is a conservation condition under which the NLS is
derived, its solutions will be physically meaningful and the localized property will be
satisfied. See [1]. Eq. (1.1) is called focusing for κ < 0 and defocusing for κ > 0, such
as the well-known Gross-Pitaevskii equation in the Bose-Einstein condensate [1–5]. To
study solution patterns, stability and other properties, solitary wave solutions of the form
w(x,t) = u(x)eiλt are investigated where λ is a wave frequency and u(x) is a wave am-
plitude function. In such a case, the conservation condition in (1.1) will be automatically
satisfied. Accordingly, u(x) satisfies the following semi-linear elliptic partial differential
equation (PDE):

λu(x)=−∆u(x)+v(x)u(x)+κg(x,|u(x)|)u(x). (1.2)

There are two types of multiple solution problems associated with (1.2): (i). one views
λ as a given parameter and solves (1.2) for the multiple solutions u; (ii). one views λ as an
eigenvalue and u as the corresponding eigen-function, and solves (1.2) for the multiple
eigen-solutions (λ,u).

For simplicity, let v(x)=0 and λ be a parameter. The aim of this paper is to find the
multiple solutions in H1

0(Ω) of the following non-autonomous semilinear elliptic PDE:

{

G(u(x),λ,r) :=−∆u(x)+λu(x)+κ|x−x0|r|u(x)|p−1u(x)=0, x∈Ω,

u|∂Ω=0,
(1.3)

where Ω= [0,1]×[0,1] is a square, x0 =(0.5,0.5), p> 1, λ,κ,r are prescribed parameters.
Its variational functional is

J(u)=
∫

Ω

[1

2
(|∇u(x)|2+λu2(x))+

κ

p+1
|x−x0|r|u(x)|p+1

]

dx. (1.4)

The solutions of (1.3) correspond to the critical points u∗ of J, i.e., J′(u∗)=0 in H=H1
0(Ω).

Denote by H = H−⊕H0⊕H+ the spectrum decomposition of J′′(u∗), where H−,H0,H+

are respectively the maximum negative, null and maximum positive subspaces of the lin-
ear operator J′′(u∗) with dim (H0)<+∞. The quantity dim(H−) is called the Morse Index
(MI) of u∗, and is denoted by MI(u∗). A critical point u∗ with MI(u∗)=k ≥ 1 is called an
order k-saddle. Let 0<µ1<µ2< ··· be the eigenvalues of −∆ satisfying the homogeneous
Dirichlet boundary condition and {v1,v2,···} be their corresponding eigenfunctions. The
system (1.3) is called focusing (M-type) if κ< 0 and −µk+1 <λ<−µk, and defocusing (W-
type) if κ>0 and µk<−λ<µk+1. See [6]. The two cases are very different in both physical
nature and mathematical structure. For both types, 0 is the only k-saddle. All non-trivial
saddles have index > k (< k) for M-type (W-type). In particular, for the M-type with
λ>−λ1, J is said to have a mountain pass structure and 0 is the only local minimum; for
the W-type with k≥1, J has two local minima. In the literature, the two cases have to be
treated by two very different types of variational methods.


