Pseudospectral Methods for Computing the Multiple Solutions of the Schrödinger Equation

Zhao-Xiang Li¹, Ji Lao¹ and Zhong-Qing Wang^{2,*}

¹ Department of Mathematics, Shanghai Normal University, Shanghai, 200234, P.R. China. ² College of Science, University of Science and Technology, Shanghai

² College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P.R. China.

Received 22 January 2017; Accepted (in revised version) 28 May 2017

Abstract. In this paper, we first compute the multiple non-trivial solutions of the Schrödinger equation on a square, by using the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory, combined with Legendre pseudospectral methods. Then, starting from the non-trivial solution branches of the corresponding nonlinear problem, we further obtain the whole positive solution branch with D_4 symmetry of the Schrödinger equation numerically by pseudo-arclength continuation algorithm. Next, we propose the extended systems, which can detect the fold and symmetry-breaking bifurcation points on the branch of the positive solutions with D_4 symmetry. We also compute the multiple positive solutions with various symmetries of the Schrödinger equation by the branch switching method based on the Liapunov-Schmidt reduction. Finally, the bifurcation diagrams are constructed, showing the symmetry/peak breaking phenomena of the Schrödinger equation. Numerical results demonstrate the effectiveness of these approaches.

AMS subject classifications: 35Q55, 35J25, 37M20, 65M70

Key words: Schrödinger equation, multiple solutions, symmetry-breaking bifurcation theory, Liapunov-Schmidt reduction, pseudospectral method.

1 Introduction

As a canonical model in physics, the nonlinear Schrödinger equation (NLS) is of the form

$$\begin{cases} i\frac{\partial}{\partial t}w(x,t) = -\Delta w(x,t) + v(x)w(x,t) + \kappa g(x,|w(x,t)|)w(x,t),\\ \frac{\partial}{\partial t}\int_{\mathbb{R}^n} |w(x,t)|^2 dx = 0, \end{cases}$$
(1.1)

http://www.global-sci.com/

©2018 Global-Science Press

^{*}Corresponding author. *Email addresses:* zxli@shnu.edu.cn (Z.-X. Li), 1000359505@smail.shnu.edu.cn (J. Lao), zqwang@usst.edu.cn (Z.-Q. Wang)

where v(x) is a potential function, κ is a physical constant and g(x,u) is a nonlinear function satisfying certain growth and regularity conditions, e.g., g(x,|w|)w is super-linear in w. The second equation in (1.1) is a conservation condition under which the NLS is derived, its solutions will be physically meaningful and the localized property will be satisfied. See [1]. Eq. (1.1) is called focusing for $\kappa < 0$ and defocusing for $\kappa > 0$, such as the well-known Gross-Pitaevskii equation in the Bose-Einstein condensate [1–5]. To study solution patterns, stability and other properties, solitary wave solutions of the form $w(x,t) = u(x)e^{i\lambda t}$ are investigated where λ is a wave frequency and u(x) is a wave amplitude function. In such a case, the conservation condition in (1.1) will be automatically satisfied. Accordingly, u(x) satisfies the following semi-linear elliptic partial differential equation (PDE):

$$\lambda u(x) = -\Delta u(x) + v(x)u(x) + \kappa g(x, |u(x)|)u(x).$$

$$(1.2)$$

There are two types of multiple solution problems associated with (1.2): (i). one views λ as a given parameter and solves (1.2) for the multiple solutions u; (ii). one views λ as an eigenvalue and u as the corresponding eigen-function, and solves (1.2) for the multiple eigen-solutions (λ ,u).

For simplicity, let v(x) = 0 and λ be a parameter. The aim of this paper is to find the multiple solutions in $H_0^1(\Omega)$ of the following non-autonomous semilinear elliptic PDE:

$$\begin{cases} G(u(x),\lambda,r) := -\Delta u(x) + \lambda u(x) + \kappa |x - x_0|^r |u(x)|^{p-1} u(x) = 0, & x \in \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$
(1.3)

where $\Omega = [0,1] \times [0,1]$ is a square, $x_0 = (0.5,0.5)$, p > 1, λ,κ,r are prescribed parameters. Its variational functional is

$$J(u) = \int_{\Omega} \left[\frac{1}{2} (|\nabla u(x)|^2 + \lambda u^2(x)) + \frac{\kappa}{p+1} |x - x_0|^r |u(x)|^{p+1} \right] dx.$$
(1.4)

The solutions of (1.3) correspond to the critical points u^* of J, i.e., $J'(u^*)=0$ in $H=H_0^1(\Omega)$. Denote by $H=H^-\oplus H^0\oplus H^+$ the spectrum decomposition of $J''(u^*)$, where H^-, H^0, H^+ are respectively the maximum negative, null and maximum positive subspaces of the linear operator $J''(u^*)$ with dim $(H^0)<+\infty$. The quantity dim (H^-) is called the Morse Index (MI) of u^* , and is denoted by MI (u^*) . A critical point u^* with MI $(u^*)=k \ge 1$ is called an order k-saddle. Let $0 < \mu_1 < \mu_2 < \cdots$ be the eigenvalues of $-\Delta$ satisfying the homogeneous Dirichlet boundary condition and $\{v_1, v_2, \cdots\}$ be their corresponding eigenfunctions. The system (1.3) is called *focusing* (M-type) if $\kappa < 0$ and $-\mu_{k+1} < \lambda < -\mu_k$, and *defocusing* (W-type) if $\kappa > 0$ and $\mu_k < -\lambda < \mu_{k+1}$. See [6]. The two cases are very different in both physical nature and mathematical structure. For both types, 0 is the only k-saddle. All non-trivial saddles have index > k (< k) for M-type (W-type). In particular, for the M-type with $\lambda > -\lambda_1$, J is said to have a mountain pass structure and 0 is the only local minimum; for the W-type with $k \ge 1$, J has two local minima. In the literature, the two cases have to be treated by two very different types of variational methods.