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Abstract. In this paper we present an extended formulation of the immersed bound-
ary (IB) method that facilitates simulation of incompressible immiscible two-phase
flows. In the developed formulation the pressure field and the surface tension forces
associated with interface curvature are implicitly introduced in the form of distributed
Lagrange multipliers. The approach provides for impermeability between both phases
and exhibits accurate mass conservation without the need for additional correction
procedures. Further, we present a grid independence study and extensive verification
of the developed method for representative 2D two-phase flows dominated by buoy-
ancy, shear stress, and surface tension forces.
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1 Introduction

Numerical modeling of two-phase flow is a rapidly developing field, facilitating the so-
lution of many problems both in applied science and in engineering. Numerical sim-
ulation of two-phase flows is used for the investigation of complex phenomena in the
fields of environmental and geophysical science [1, 2], biomechanical engineering [3, 4],
chemical processing [5] and the fabrication of optical wave guides. The simulation of
two-phase flows is challenging, since it includes modeling of interactions between the
different phases, tracking the boundary interface and, in some cases, resolving solidifica-
tion and melting phase changes. A number of numerical techniques have been developed
for modeling two-phase flows with deformable interfaces and free boundaries. Typically,
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the techniques are classified in terms of the multi-physics phenomena modeling: the flow
modeling, the interface modeling, and the coupling between the two [6].

There are two basic numerical approaches that deal with free-interface two-phase
flow: interface-tracking and interface-capturing. In the interface-tracking approach the
interface is determined by a series of Lagrangian markers, whose location is dynamically
updated throughout the numerical simulation. Front tracking (FT) [7, 8] and immersed
boundary (IB) [9–12] methods are typical examples of the interface tracking approach. In
the interface-capturing approach the interface is reconstructed from an Eulerian scalar
field characterizing the flow properties. This approach includes the volume of fluid
(VOF) [8, 13], level set (LS) [8, 14] and phase field (PF) methods [8, 15, 16].

The present study focuses on the development of a novel formulation of the interface-
tracking approach based on the direct forcing IB method [17,18]. The IB method was ini-
tially introduced by Peskin [9, 10] for simulation of blood dynamics in the cardiac cham-
bers. The method is suitable for the simulation of flows in the presence of a number of
immersed bodies of arbitrary geometry. Each body is determined by a set of Lagrangian
points which do not necessarily coincide with the underlying Eulerian grid. In the most
general case the body can be deformable and moving. In the direct forcing IB approach
the kinematic non-slip constraints at all the points of the body are enforced by apply-
ing Lagrangian forces entering as sources into the Navier Stokes (NS) equations. The
values of the applied forces are unknown a priori and are a part of the overall solution
of the problem. In single-phase flows, the values of the Lagrangian forces are coupled
with the pressure and velocity fields governed by the NS equations. In immiscible two-
phase flows, the simulation should also account for the surface tension forces coupling
the fluid characteristics of each phase with the unknown dynamically evolving curvature
of the interphase interface.

The accuracy of any two-phase numerical simulation employing the interface track-
ing approach depends on a precise evaluation of the Lagrangian forces on the interface
between the two phases. The forces comprise the kinematic constraints for continuous
values of shear stress and velocity vectors. Historically, numerical simulations relied on
explicit treatment of Lagrangian forces (see e.g. Li et al. [12], Rutka and Li [19]). The sur-
face tension forces are explicitly calculated based on the interface curvature obtained at
the previous time step, while the NS equations are solved by the SIMPLE [20] algorithm.
The above methodology can be easily plugged into any existing time marching solver of
the NS equations based on a segregated pressure-velocity coupling, which explains its
high popularity for simulation of both single- and two-phase flows [17, 18, 21, 22]. How-
ever, the explicit scheme has a number of disadvantages. First, the kinematic constraints
are applied to the intermediate velocity field, which has to be further projected to a di-
vergence free subspace. As a result, a non-negligible mass leakage through the interface
between the two phases typically shows up after completing the correction-projection
step. To improve the accuracy and to ensure the mass conservation of the explicit direct
forcing IB formulation a number of techniques have been proposed. Worthy of note are
the works of Kempe et al. [23, 24], who imposed substantially more accurate boundary
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conditions on the IB surface by introducing intermediate iterations. An additional impor-
tant study was published by Li et al. [25], who proposed an area preservation correction
scheme by correcting the interface location normally to the interface so that the area re-
mains constant. More recently, Bao et al. [26] proposed improving volume conservation
by applying a continuous velocity interpolation operator that is divergence-free, and a
new force smearing operator that joins with the interpolation operator and ensures the
energy conservation.

In the present study we focus on a fully coupled approach in which the momentum
and the continuity equations and the Lagrangian forces, expressed as the distributed La-
grange multipliers, are fully coupled. The developed fully coupled approach offers an at-
tractive alternative to the explicit coupling approach. The idea was originally proposed
by Golowinski et al. [27], who introduced the distributed Lagrange multiplier method
(DLM) for simulations of 2D flow around a moving disc [27]. An extension to this study
was conducted in simulations of particulate flows [28–30] and a fluid/flexible-body in-
teraction [31]. An additional contribution to the development of the fully coupled DLM
approach was due to the work of Taira and Colonius [32], who implemented it within
the framework of a projection method. The latest theoretical development of the coupled
DLM approach is owing to Feldman and Gulberg [33], who extended the fully coupled
approach to the linear stability analysis of pressure and thermally-driven 2D flows. The
idea underlying all the implementations of the fully coupled DLM approach is that the
initial system of equations is extended by including additional relationships implicitly
linking the Euler flow fields and the distributed Lagrange multipliers, enforcing kine-
matic constraints imposed by the surfaces of immersed bodies. The main purpose of the
present study is to develop and to verify extensively a novel IB formulation employing
the fully coupled DLM approach for simulating two-phase immiscible flows. The devel-
oped methodology belongs to the family of FT methods and provides precise conserva-
tion of mass of both phases without the need for any additional correction procedure. In
the present formulation the surface tension forces, which are proportional to the curva-
ture of the interphase interface, are introduced as distributed Lagrange multipliers, and
play the role of kinematic constraints providing impermeability of both phases. The fully
pressure-velocity direct solver (FPCD), originally developed by Feldman and Gelfgat [34]
for the simulation of shear- and thermally- driven confined flows, is used as a driver for
presenting the capabilities of the developed methodology. The principle novelty of the
developed approach stemming from the implemented fully coupled DLM formulation
is twofold. First, the kinematic constraints providing impermeability of both phases are
met up to the machine zero precision. Second, the developed approach provides ac-
curate volume conservation of both phases without the need for additional correction
procedures.

The rest of the paper is organized as follows. The second section presents theoreti-
cal background, including the governing equations of the impermeable two-phase flow,
and implementation details of the IB and FT techniques. The third section comprises
a verification study focused on simulation of four representative two-phase benchmark
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flows, followed by discussion of the obtained results. The major conclusions, as well as
suggestions for future work, are then presented in the last section.

2 Theoretical background

Consider a viscous incompressible fluid A that is immersed in a rectangular domain filled
by fluid B, as shown in Fig.1. Each one of the fluids has a different density and viscosity
represented by ρi and µi, respectively. The interface between the two immiscible fluids is
defined by a closed boundary – Γ. The dynamics of both fluids can be described by the
continuity and the NS equations:

∇·u=0, (2.1)

ρ(I)

(

∂u

∂t
+(u·∇)u

)

=−Re−1∇p+Re−1

[

∇·
(

µ(I)(∇u+(∇u)T)
)

]

+We−1 f+Fr−2ρ(I)~ey, (2.2)

where the non-dimensional velocity, pressure, surface tension force density and time are
denoted by u(u,v), p, f , and t, respectively. ~ey is a unit vector in the direction which is
opposite to that of the gravity force. The non-dimensional equations were obtained by
using the characteristic scales D=2

√
S/π for the length (where S is the area of fluid A), U

for the velocity (where U is the characteristic velocity of the specific flow configuration),
t=D/U for the time, and p=µminU/D for the pressure field. The mass density and the
dynamic viscosity fields are scaled by the corresponding minimum values of either of the
two fluids, ρmin and µmin.
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Figure 1: A schematic of a two-phase flow configuration.

In accordance with the formalism of the IB method utilized in the present study, the
surface tension density F(s,t) associated with every Lagrangian point on the interface
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between the two phases is regularized to the underlying Eulerian grid by

f (x,t)=
∫

Γ

F(s,t)δ2ds, F(s,t)=
∂2X(s,t)

∂s2
, (2.3)

where X(s,t) determines the interface between the two phases parameterized by 0≤s≤L

(L is the total length of the interface),
∂2X(s,t)

∂s2 is the local curvature of the interface and δ
is the discrete Dirac delta function [35] defined as

δ(r)=















1
3

(

1+
√
−3r2+1

)

if |r|≤0.5,

1
6

(

5−3|r|−
√

−3(1−|r|)2+1
)

if 0.5≤|r|≤1.5,

0 otherwise.

(2.4)

The dimensionless groups determining the two-phase flow under consideration are the
Reynolds (Re), Weber (We) and Froude (Fr) numbers defined as

Re=
ρminUD

µmin
, We=

ρminU2D

σ
, Fr=

U
√

gD
, (2.5)

where g is the gravitational acceleration. The material properties ρ(I) and µ(I) in Eq. (2.2)
are a function of I(x,t), which is a scalar field, also known as an indicator function [25].
This was introduced to smear the discontinuity of material properties near the interface.
Let us define a gradient of the scalar field as

∇I(x,t)=
∫

Γ

n(X(s,t))δ2(x−X(s,t))ds, (2.6)

where n(X(s,t)) is a unit vector normal to the interface between the phases. All the values
of I(x,t) lying in the range of [0,1] are obtained by the solution of Poisson’s equation:

∆I(x,t)=∇·
∫

Γ

n(X(s,t))δ2(x−X(s,t))ds. (2.7)

Following the guidelines formulated by Tryggvason et al. [7] Eq. (2.7) was solved by
the SOR method. The iterations were only performed on points close to the interface
(typically two grid cells in each direction), which encloses the field of influence of the
discrete Dirac delta function defined by Eq. (2.4), leaving points away from the interface
unchanged. The procedure made it possible to precisely keep the correct values of the
density and the viscosity fields away from the interface separating between the phases.
In addition, to prevent small over- and undershoots which can emerge near the interface
when simulating the two-phase flows characterized by high density and viscosity ratios,
a simple filtering was applied while iterating the I(x,t) values. The obtained values of
the indicator function I were then utilized for determining the spatial variation of the
density and of the dynamic viscosity fields in the vicinity of the interface between the
two phases:

ρ(I(x,t))=ρ1+(ρ2−ρ1)I(x,t), µ(I(x,t))=µ1+(µ2−µ1)I(x,t). (2.8)
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3 The numerical methodology

The numerical methodology developed in the framework of the present research extends
the IB formulation recently presented by Feldman and Gulberg in [33]. In this study
the distributed Lagrange multiplier is formulated in terms of the local surface tension
density (see Eq. (2.3)) and applied to enforce the kinematic constraint of immiscibility
of both fluids on the interface between the two phases. The developed methodology
is embedded into the generic incompressible NS solver, based on full pressure velocity
coupling [34].

We consider 2D incompressible flow governed by the mass conservation and the NS
equations, Eqs. (2.1), (2.2). Applying a second order backward finite difference scheme
for time discretization, the continuity and the momentum equations can by written as

∇·un+1=0, (3.1)
[

Re−1
(

∇·
(

µ(I)(∇u+(∇u)T)
)

−∇p
)

− 3ρ(I)

2∆t
u

]

+We−1
∫

Γ

∂2X

∂s2

=ρ(I)

[

(

u·∇
)

u− 2

∆t
u

]n

+
1

2∆t
un−1−Fr−2ρ(I)~ey. (3.2)

The standard staggered grid, second-order, conservative finite volume method [20]
was used for the spatial discretization of all terms in Eqs. (3.1), (3.2). All the linear terms
are treated implicitly, while all the non-linear terms are treated explicitly and appear on
the right-hand side (RHS) of Eq. (3.2). It can be seen that as a result of surface tension
forces related to the interface between the two phases, two additional unknown fields,
(

∂2X
∂s2 , ∂2Y

∂s2

)

are introduced into the equations. In order to achieve a closed form of the ex-
tended system, two more equations are added. The additional equations relate between
the interface curvature represented by the Lagrangian coordinate X and the Eulerian ve-
locity field:

(

∂2Xl

∂s2

)

=
(Xn+1

l+1 −2Xn+1
l +Xn+1

l−1 )
(

∆s
)2

. (3.3)

The coordinate Xn+1
l can further be expressed in terms of the Eulerian velocity field by

the Euler integration:

Xn+1
l =Xn

l +∆t
∫

Ω

un+1δ2(Xn
l −x)dxdy. (3.4)

Performing the same procedure for Xn+1
l−1 and Xn+1

l+1 and further substitution into Eq. (3.3)
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yields:

∆t
∫

Ω
un+1

[

δ2(Xn
l+1−x)−2δ2(Xn

l −x)+δ2(Xn
l−1−x)

]

dxdy
(

∆s
)2

−
(

∂2Xl

∂s2

)

=−
Xn

l+1−2Xn
l +Xn

l−1
(

∆s
)2

. (3.5)

Eq. (3.5) is simply the kinematic constraint that provides the immiscibility of both phases.
Together with Eqs. (3.1), (3.2) it forms a whole set of equations governing the dynamics
of two-phase flow, which can be rewritten in a block matrix form as

















Hu Huv −∆
x
p

Re

δ2
(

X(s,tn)−x
)

We 0

Hvu Hv −∆
y
p

Re 0
δ2
(

X(s,tn)−x
)

We

∇x
u ∇y

v 0 0 0
ICx 0 0 −1 0
0 ICy 0 0 −1





































un+1

vn+1

p
(

∂2X
∂s2

)

(

∂2Y
∂s2

)





















=















RHSn−1,n
u

RHSn−1,n
v

0

RHSn−1,n
X

RHSn−1,n
Y















, (3.6)

where ∇x and ∇y are the first derivatives with respect to the x and y coordinates, re-

spectively. H= ∇·(µ(I)(∇+∇T))
Re − 3ρ(I)

2∆t I are modified Helmholtz operators acting on u and
v velocity components, I is the identity matrix. IC is the ”Interface Curvature“ operator
defined as

IC=
∆t

∫

Ω

[

δ2(Xn
l+1−x)−2δ2(Xn

l −x)+δ2(Xn
l−1−x)

]

dx
(

∆s
)2

. (3.7)

The computational time step of the developed methodology consists of two stages.
In the first stage Poissons equation, Eq. (2.7), is solved, yielding the indicator function
I(x,t), which is then utilized in Eq. (2.8) to obtain the spatial distribution of density and
dynamic viscosity fields close to the interface between the two phases. In the next stage,
the system of equations in Eq. (3.6) with appropriate boundary conditions† for the ve-
locity field is solved. The solution of the system of equations is carried out by a direct
multifrontal massively parallel solver (MUMPS) [36, 37]. Finally, the obtained values
of the velocity field are substituted into Eq. (3.4) to update the position of the interface
between the two phases. After updating the interface, the Lagrangian markers are redis-
tributed and their total number can change in order to ensure that the distance between
adjacent Lagrangian points is approximately equal to the Eulerian grid size. This makes
it possible to achieve a reasonable condition number of the coupled operator involved in
Eq. (3.6) and to diminish round-off errors at the LU factorization stage. Note also that
for the case of zero surface tension the operator in Eq. (3.6) degenerates to the Stokes

†The boundary conditions are of the Dirichlet, Newman, and periodic types, each applied depending on the
specific problem, as will be discussed in the next section.
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operator previously utilized in [34], while all other stages of the algorithm remain the
same.

4 Results and discussion

In order to verify the developed method, four benchmark problems for incompressible
two-phase flows were solved. Each flow under consideration was driven by a different
mechanism, namely; buoyancy, shear, and surface tension forces. The first benchmark
problem considers the flow of a circular bubble rising within a fluid of higher density
due to buoyancy forces [14,38,39]. In general, both fluids can also have different viscosi-
ties. Under the action of buoyancy forces, the bubble accelerates while rising up until
it reaches its terminal velocity. The second benchmark is the shape evolution of a drop
under pure shear stress [25, 40, 41]. A circular drop of a certain liquid is submerged into
a pure shear flow of another liquid. Both liquids have different viscosities. As a result
of shear forces the submerged circular drop undergoes shape deformation. The third
benchmark is known as the disc relaxation problem [25, 42]. A drop of a certain fluid
with an initial rosette shape is submerged in another fluid of different viscosity. As a re-
sult of surface tension forces between the two phases, the rosette-shape drop undergoes
complex deformations until it eventually converges to a circular shape. Similarly to the
first benchmark problem, the fourth configuration also comprises a circular bubble rising
within a fluid of higher density, with the only difference being that in this case the flow
is characterized by higher values of density and viscosity ratio, which eventually leads
to break up of the rising bubble. The results of our simulations were compared both
qualitatively and quantitatively to the data available from literature [43–45] for different
Reynolds, Weber, and Froude numbers. A detailed comparison between the results is
presented in the following.

4.1 Test case 1 – Rising bubble without break up

This benchmark focuses on the dynamics of a deformable liquid bubble submerged in a
cavity filled with another fluid of higher density. This flow has been thoroughly stud-
ied both experimentally [46] and numerically [14,38,39,47,48]. The most comprehensive
quantitative results are due to the review of Hysing et al. [38], which presents a com-
parison between the time evolutions of the circularity, the position of the center of mass
and the vertical component of the velocity of the rising bubbles center of mass as defined
in Eqs. (4.2)-(4.4). This data was independently obtained by three research groups, each
utilizing its own numerical methodology (consult Ref. [38] for more details).

The buoyant dynamics of an initially circular rising bubble of diameter D is consid-
ered. The bubble is initially placed at point [D,D] within a [2D×4D] rectangular domain,
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Figure 2: Initial configuration and boundary conditions of rising bubble test flow.

as shown in Fig. 2. The boundary conditions are set as:

u(x=0,y)=u(x=2D,y)=0,

u(x,y=0)=u(x,y=4D)=0,

∂v

∂x
(x=0,y)=

∂v

∂x
(x=2D,y)=0,

v(x,y=0)=v(x,y=4D)=0.

(4.1)

In addition, a single Dirichlet point for the pressure field, p= 0, was set in the corner of
the computational domain. The values of physical properties and operating conditions
governing the flow under consideration are specified in Table 1. The center of mass of
the rising bubble is a local quantity given by:

XC=(XC,YC)=

∫

Ω2
xDV

∫

Ω2
dV

, (4.2)
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Table 1: The values of physical properties and operating conditions.

ρ1 ρ2 µ1 µ2 D g σ Re We Fr ρ1/ρ2 µ1/µ2

1000 100 10 1 0.5 0.98 24.5 98.99 4 1 10 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.9

1

1.1

1.2

1.3

1.4

h=1/40
h=1/80
h=1/160
h=1/320

Figure 3: Bubble shapes obtained on four different grids at time t=3.

where Ω2 denotes the region occupied by the bubble. Following Wadell [49], the bubbles
”degree of circularity“ φ is defined in R

2 as

φ=
Pa

Pb
=

πDa

Pb
, (4.3)

where Pa is the perimeter of a circle with diameter Da, which has an area equal to that of
a bubble with perimeter Pb. The rising velocity, UC, is defined as the mean velocity of the
bubble:

UC=(UC,VC)=

∫

Ω2
uDV

∫

Ω2
dV

. (4.4)

To prove the grid independence of the results, the simulations were performed on four
different grids with a time step of ∆t=h/2, where h corresponds to a grid step. A grid in-
dependence of the obtained results is favorably verified by indistinguishable differences
between the final shapes of the bubble obtained at t=3 on the two finest grids (see Fig. 3).
In addition, it can be clearly recognized that the bubble shape obtained at time t= 3 on
the finest grid is in excellent agreement with the corresponding results reported in Hys-
ing et al. [38] (see Fig. 4). Mass conservation of the bubble is next verified by comparison
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Table 2: Mass discrepancy (%) at t=3 in test case 1.

h 1/40 1/80 1/160 1/320

Mass leakage [%] 0.3364 0.0917 0.0560 0.0204

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.9

1

1.1

1.2

1.3

1.4

Present results
Hysing et al. [38]

Figure 4: Bubble shapes obtained at final time (t = 3): comparison between the present and the previously
published results.

between the initial and the final areas of the bubble. It can be seen that for all the grids
the mass lost does not exceed 0.35% of the initial mass, as summarized in Table 2. Figs. 5,
6 and 7 compare between the present and the previously reported time evolutions of the
circularity, the Y-axis position and the VC velocity component of the bubble center of
mass, respectively. All the results were calculated on the grid characterized by h=1/160
with ∆t=1/16. In addition, Table 3 presents a quantitative comparison between the cor-
responding instantaneous values of the global minima of circularity, global maxima of
rising velocity and vertical position of center of mass at t=3.

It can be clearly recognized that all the presently obtained characteristics are very
close to the corresponding previously obtained results for the entire range of time values.
The maximal discrepancy between all the flow characteristics does not exceed 0.04%.
The maximal deviation between the circularities is observed around their global minima
(close to the time t = 1.9), characterizing the most significant deformation of the shape
of a rising bubble compared to its initially circular geometry. From this point on, the
circularity smoothly increases until finally attaining its asymptotic value that indicates
that the bubble has reached its terminal velocity. The fact that the bubble has reached
its terminal velocity is also confirmed by noting a constant slope of the time evolution
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Figure 5: Time evolution of the circularity values: (a) the whole time history; (b) close-up view around the time
t=1.9.

Table 3: . Global minima values of circularity with corresponding incident times, global maxima values of rising
velocity and final vertical position of the center of mass.

Present method TP2D FreeLife MooNMD

φmin 0.9011 0.9013 0.9011 0.9013

t|φ=φmin 1.900 1.9041 1.8750 1.900

Vmax 0.2416 0.2417 0.2421 0.2417

t|V=Vmax 0.9232 0.9213 0.9313 0.9239

Y(t=3) 1.0813 1.0813 1.0799 1.0817

of the Y coordinate around time t= 2.9 (see Fig. 6-b). It is remarkable that the value of
the terminal velocity is lower than the value of the global velocity maxima observed at
by about 10% (see Fig. 7-b). Increasing the vertical velocity of the bubble is followed by
enhanced deformation of the bubble shape, which results in a moderate deceleration of
the bubble until it reaches its terminal velocity.
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Figure 6: Time evolution of the Y position of the center of mass: (a) the whole time history; (b) close-up view
around the time t=2.9.

4.2 Test case 2 – Drop under shear flow

The initial state of the problem is given in Fig. 8. The circular drop submerged into fully
developed Couette flow is subjected to a pure shear stress, while the gravity force is
neglected. Under the action of shear stresses the flow undergoes deformation until the
increasing surface-tension forces are equalized with the shear forces and the drop shape
reaches equilibrium. The square box domain is of dimensions [2D×2D], and the center
of the submerged circular drop with diameter D coincides with the geometrical center of
the box (point [D,D] ). Following the works of Kapil and Pozrikidis [41] and Chinyoka
et al. [40] the simulations were performed for four different values of Reynolds number,
Re= 1,10,50 and 100, two values of viscosity ratio µ2/µ1 = 1 and 10, and two values of
capillary number, Ca= 0.2 and 0.4. Note that the capillary number relates between the
viscous and surface tension forces and is defined in the present study as

Ca=
We

Re
=

Uµmin

σ
, (4.5)
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Figure 7: Time evolution of the rise velocity: (a) the whole history; (b) close-up view around the time t=0.9.
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Figure 8: Initial state of the circular drop submerged into a fully developed Couette flow.
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Table 4: Mass discrepancy (%) at t=3 in test case 2.

Ca=0.2 Ca=0.4

µr =1 µr =10 µr =1 µr =10

Re=1 0.0089 0.0038 0.0051 0.0038

Re=10 0.0089 0.0064 0.0051 0.0064

Re=50 0.0102 0.0178 0.0064 0.0166

Re=100 0.0102 0.0228 0.0064 0.0216

The boundary conditions applied in the above configuration at the top and bottom walls
of the cavity for all the velocity components are of the Dirichlet type:

u(x=0,y=2D)=−u(x,y=0)=U,

v(x,y=2D)=v(x,y=0)=0.
(4.6)

In addition, periodic boundary conditions were applied for the velocity and pressure
fields in the horizontal, x, direction. A single Dirichlet point for the pressure field, p=0,
was set in the corner of the computational domain. The mesh grid h=1/300 and time step
∆t=10−4 were utilized in all the simulations. A comparison between the present and the
previously published data [40] for the drop shapes at steady state as a function of various
values of operating conditions are presented in Fig. 9. An excellent agreement between
the results is observed for the entire range of parameters. It can be seen that increasing
the Ca number results in more pronounced elongation of the drop shape, which can be
explained by the reduced surface tension force. In contrast, increasing the viscosity ratio
leads to decreasing the deformation of the drop shape. The mass leakage calculated for
all the configurations analyzed in test case 2 is summarized in Table 4 at final time t=3.
It can be seen that the maximal value of mass lost does not exceed 0.023% of the initial
drop mass.

4.3 Test case 3 – Rosette shape

This benchmark investigates the dynamics of the relaxation of a rosette shaped drop to
a circular disc in a quiescent viscous liquid. In this configuration, the flow is driven by
the surface tension forces, while the momentum of the flow is diffused by the viscosity
of the fluid. Gravity is neglected. The initial configuration in this problem consists of a
rosette shaped drop. The center of the drop coincides with the center of a square cavity.
The initial shape of the drop is defined by

X(0≤ θ≤2π)=

{

X=D ·(0.5+rcos(θ)),

Y=D ·(0.5+rsin(θ)),
(4.7)

where r = 0.25+0.1cos(nθ) and n is the oscillation mode. No-slip boundary conditions
were applied at all the cavity walls. In addition, a single Dirichlet point for the pres-
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Figure 9: Drop shapes at t=3: (a) Ca=0.2, µr=1; (b) Ca=0.2, µr=10; (c) Ca=0.4, µr=1; and (d) Ca=0.4,
µr =10. Plus markers - Chinyoka et al. [40] results, lines - the present results.

sure field, p=0, was set in the corner of the computational domain. Following the study
of Li et al. [25], the problem was studied for three different modes of n = 3,5 and 8 as
shown in Fig. 10. Since neither the characteristic velocity, nor the Reynolds and Weber
number values were specified in [26], the present simulations were carried out by solv-
ing dimensional NS equations on the computational domain [D×D] with physical and
geometrical parameters provided by [25], as detailed in Table 5. The problem was solved
on h=1/64 and h=1/128 grids with ∆t=h/16. Time evolution of the rosettes is visual-
ized by presenting the rosette shapes at various time instances in the range of 0≤ t≤ 1,
as shown in Fig. 11. Lagrangian markers determining the instantaneous rosette shapes
are superimposed with the corresponding rosette shapes reported in [25]. In agreement
with the Li et al. study [25], all the three modes of the rosette drop relax to a disc shape
at t= 1. However, in some instances the presently obtained rosette shapes precede the
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Figure 10: Initial configurations of rosette shaped drop corresponding to: (a) n= 3 modes; (b) n= 5 modes;
(c) n=8 modes.

Table 5: The values of physical properties and operating conditions.

ρ1 ρ2 µ1 µ2 D σ

1 1 0.01 0.01 1 130

Table 6: Mass discrepancy (%) at t=0.5 in test case 3.

Mode 3 5 8

h=1/64 0.4437 0.472 0.49

h=1/128 0.2028 0.217 0.2075

corresponding shapes reported in [25]. Such a discrepancy, indicating a higher rate of
momentum diffusion in our simulations, can be, apparently, a consequence of differ-
ences in the distribution of Lagrangian markers at each simulation instance. Contrary to
the study of Li et al. [25], in which a constant number of Lagrangian markers are used
for determining the two-phase interface, the presently developed methodology utilizes
a varying number of Lagrangian markers while preserving their even distribution over
the interface. It can also be seen that higher modes are characterized by higher relaxation
rates as a consequence of initially higher values of surface tension forces, which are pro-
portional to the curvature of the interface separating both phases. Conservation of the
area of the drop at each time step of the simulation comprises a critical criterion for veri-
fication of the developed approach, as it is dictated by the flow incompressibility. It was
also verified (see Table 6) that for all simulations the maximal discrepancy in the area did
not exceed 0.5% for h=1/64 and 0.21% for h=1/128.

Despite implicit representation of the surface stress forces, parasitic currents arise
with maximum magnitude in the close vicinity of the interface, as shown in Fig. 12. A rea-
son for the presence of these currents is a slight unbalance between stresses in the interfa-
cial region. The source of the unbalanced stresses is apparently related to the truncation
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Figure 11: Verification of the time instances of a rosette drop characterized by 3, 5 and 8 modes initial shape
when relaxing to circular disc in quiescent liquid.
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Figure 12: The magnitude of parasitic velocities observed for a drop of circular disc shape.

error associated with the second derivative of the Lagrangian coordinate (see Eq. (3.3))
when calculating the local surface tension force. Nevertheless, the maximal magnitude
of the parasitic velocity does not exceed 0.6% of the characteristic velocity, which is too
small to have any effect on the transient and steady state dynamics of the flow under
consideration.

4.4 Test case 4 – Rising bubble undergoing break up

The aim of this simulation is to demonstrate that the developed methodology is also ca-
pable of simulating immiscible two-phase flows with multiple separated boundaries. For
this purpose, the rise of a 2D gas bubble with its subsequent break up in a quiescent liq-
uid is considered. The geometry and boundary conditions of the flow are the same as for
test case 1. The values of physical properties utilized in the present simulations are equiv-
alent (subject to appropriate rescaling) to those used in the previous studies [43–45], as
detailed in Table 7. Unfortunately, the breaking process cannot be directly captured only
by the solution of the NS equations (2.1)-(2.3) with the subsequent Euler integration of

Table 7: The values of physical properties and operating conditions utilized in test case 4.

Re We Fr ρ1/ρ2 µ1/µ2

120.83 2.6 1 40 83.33
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a. Before break up 

=  

b. After break up 

Figure 13: Schematic bubble break up modeling.

the two-phase interface governed by Eq. (3.4). Explicit modeling of the bubble break up
is required. In the present study we adopt an assumption that the breaking process is
followed by formation of a deformed neck, which is thinned by the dynamic local pres-
sure. This scenario is realistic for many physical systems, for example for the microfluidic
dynamics of two-phase immiscible flow in T-junctions [50–52] and is favorably applied
here to simulate bubble break up in buoyant and pure shear flows. A schematic of bubble
break up modeling is shown in Fig. 13. The distance between all points of the body, with
the exception of a pair of points in the immediate neighborhood, is evaluated for every
point of the immersed surface at each computational time step. Once the absolute mini-
mal distance between any two points of the body lmin is less than a given threshold α∆r
(see Fig. 13-a) the body is split into two parts (see Fig. 13-b), where each part is treated
as a separate body at the next computational time. In this study, the value of α was set
in the range of 1≤ α ≤ 1.5, which corresponds to the grid size length and to the range
of influence of the presently utilized discrete Delta function, respectively. Although the
above splitting procedure could result in a certain loss of mass, it was verified that for
the chosen range of values the mass discrepancy of a single break up phenomenon was
within the discretization error of the numerical scheme‡. After the splitting, Lagrangian
points of each newly formed body were redistributed to preserve an even spacing with
the distance approximately equal to the size of Eulerian grid.

The time evolution of the rising initially cylindrical bubble simulated for the physical
parameters listed in Table 7 is shown in Fig. 14 for t= 1.5, 3, 4.5, 6 instances. Mass con-
servation of the rising bubble was verified at all the time instances (see Table 8). It can
be seen that the maximum mass lost does not exceed 0.15% of the initial bubble mass.
The instantaneous shape of the bubble is superimposed with contours corresponding
to the absolute values of the velocity vector, |u|. The obtained results are in acceptable
agreement with the results of Gaudlitz and Adams [43], Wang et al. [44] and Archer and
Bai [45] for t=1.5 and t=3. For these time instances the symmetry of the flow relatively

‡The described break up procedure should be empirically rescaled to preserve mass if multiple break up
phenomena take place.
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Table 8: Mass discrepancy (%) calculated at every time instance in test case 4.

Time 1.5 3 4.5 6

Mass leakage [%] 0.1664 0.2858 0.1141 0.1346

Figure 14: Time evolution of the rising initially cylindrical bubble obtained on a 320×640 grid for the value of
α= 1.5 and zero initial velocity. Initial position of the bubble center was (1.25,1.0). The colors correspond to
absolute values of the velocity vector, |u|.
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to the vertical centerline is preserved. It can be also seen that at t= 4.5 the drop has al-
ready undergone its primary and secondary break ups followed by the slight symmetry
breaking in the shapes of the major and four small pinched off bubbles. The crescent
thin arms from both sides of the bubble continue to elongate even more as the bubble
rises. The flow dynamics after the break up is somewhat different from that observed
in the previous studies [43–45] based on the LS method. One of the reasons for the ob-
served discrepancies could be attributed to the different grid resolutions: the present
results were obtained on a 320×640 grid while all the previously reported results were
obtained on a rather dense 40×80 grid. It should be noted that when such a dense grid
was applied for the present methodology it provided inconclusive results, which can be
seen as a drawback of the FT approach compared to its LS counterpart. On the other
hand, the results obtained by the LS method can be under resolved, which can result in
mass conservation violation. An additional reason for the differences in the post break
up shapes of the bubbles could be due to the modeling of the break up process adopted
in the present study, which can be further modified by various fine-tuning strategies to
better comply with existing experimental or numerical results. Recalling that the main
purpose of this simulation was to demonstrate the capability of the developed algorithm
to handle multiple separated boundaries, development of such fine-tuning strategies was
beyond the scope of the present study.

5 Additional capabilities of the algorithm

In this section we examine additional capabilities of the algorithm aimed at demonstrat-
ing that the developed methodology can favorable address both shear and buoyancy-
driven flows in which multiple break up phenomena take place.

We first simulate a multiple break up phenomenon for the flow configuration consist-
ing of a circular drop under the action of pure shear flow. The drop is placed in the center
of a long 10×1 channel with no-slip velocities Uî and −Uî at the top and the bottom
walls, respectively, and periodic boundary conditions in the horizontal direction. Grav-
ity is neglected. The values of physical parameters utilized in the simulation are given in
Table 9. The time evolution of the drop shape is shown in Fig. 15. At times 70≤t≤100 the
obtained results qualitatively repeat the instability phenomena observed at the central
portion of bubble [53]§. The instability is preceded by elongation of the drop, which re-
sembles the shape of a dumbbell at t=40, and is then followed by detachment of daughter
drops via an end-pinching mechanism at 40≤t≤70. It is remarkable that while spreading
over the channel the slope of the elongated drop and of a series of its daughter drops fur-
ther created as a result of the drop break up asymptotically decreases to approximately
zero. We next simulate a multiple break up phenomenon by analyzing the configuration
corresponding to the rising air bubble in water. The simulation was performed for the
physical parameters listed in Table 10. Density and dynamic viscosity ratios were chosen

§The values of Re and We were multiplied by a factor of 8 to fit the scaling of the present study.
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Figure 15: Interface evolution of circular drop under pure shear flow undergoing multiple break up phenomena,
Re=1, We=7.2, 10×1 channel, obtained on a 50×500 grid.

Table 9: The values of physical properties and operating conditions used for 10:1 pure shear flow.

Re We Fr ρ1/ρ2 µ1/µ2

1 7.2 1 1 1

Table 10: The values of physical properties and operating conditions utilized for the configuration corresponding
to air bubble rising in water.

Re We Fr ρ1/ρ2 µ1/µ2

300 2.6 1 1000 185

to fit air-water two-phase flow. The relatively high value of We number was taken to
diminish the surface tension effects and to ensure that the break up phenomenon takes
place before the bubble reaches its terminal velocity. The time evolution of a rising bubble
for a number of time instances t=0.5, 1, 1.5, 2, 2.5, 3 is presented in Fig. 16. At the begin-
ning of the motion the bubble undergoes deformation stages similar to those observed
for test case 4. The crescent shape of the air bubble at t=0.5 is transformed to the shape
of a dumbbell followed by further twisting and thinning at its ends and finally leading
to the flow instability and multiple break up phenomenon at t=3.
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Figure 16: Interface evolution of circular air bubble rising in water. The simulations were obtained for Re=300,
We=2.6, Fr=1 on a 320×640 grid.

6 Conclusions

In the framework of the present study, a novel methodology was developed extending
the IB method based on the distributed Lagrange multiplier approach to configurations
relevant to two-phase immiscible flows. The capabilities of the developed method were
demonstrated by utilizing the fully pressure-velocity coupled direct solver (FPCD) [34] as
a computational platform. The idea underlying the developed approach is that the initial
system of fully pressure-velocity coupled NS equations is extended by including addi-
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tional relationships implicitly linking between the Euler flow fields and the distributed
Lagrange multipliers, enforcing kinematic constraints of the impermeability of both flu-
ids on the interface separating the two phases.

The fully coupled formulation enables accurate mass conservation of both phases
without the need for any additional correction procedure, which is of significant compu-
tational advantage. The developed method was extensively verified for four typical two-
phase flows dominated by buoyancy, shear stress and surface tension forces. For all cases,
a satisfactory quantitative agreement with independent numerical results available in the
literature was achieved, verifying the developed methodology. The grid independence
of the obtained results was also established. The capability of the developed method to
handle two-phase flows with high values of density and viscosity ratios and low values
of surface tension was demonstrated. A complex multiple break up phenomenon was
favorable modelled for a number of representative shear and buoyancy-driven flows.

Our approach can be applied for the simulation of 2D and axi-symmetric flows, as
well as for the analysis of 3D flows with periodic boundary conditions in the third, span
wise, direction. The focus of our future work will be: first, introducing modeling for
merging of multiple surfaces and second, extension of this approach to the simulation of
general 3D flows. The first goal will make it possible to simulate mixing flow phenomena
typical for classical dam break flow, for example, and will upgrade the overall flexibil-
ity of the developed approach bringing it closer to functionalities of VOF and LS meth-
ods. The second goal will be achieved by utilizing segregated pressure-velocity coupling,
such as the SIMPLE algorithm (or its derivatives) combined with the Schur complement
method, as detailed in our recent work [54] addressing natural convection flow in the
presence of immersed bodies of an arbitrary geometry.
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