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Abstract. We develop a novel finite element method for a phase field model of nematic
liquid crystal droplets. The continuous model considers a free energy comprised of
three components: the Ericksen’s energy for liquid crystals, the Cahn-Hilliard energy
representing the interfacial energy of the droplet, and an anisotropic weak anchoring
energy that enforces a condition such that the director field is aligned perpendicular
to the interface of the droplet. Applications of the model are for finding minimizers
of the free energy and exploring gradient flow dynamics. We present a finite element
method that utilizes a special discretization of the liquid crystal elastic energy, as well
as mass-lumping to discretize the coupling terms for the anisotropic surface tension
part. Next, we present a discrete gradient flow method and show that it is monotone
energy decreasing. Furthermore, we show that global discrete energy minimizers Γ-
converge to global minimizers of the continuous energy. We conclude with numerical
experiments illustrating different gradient flow dynamics, including droplet coales-
cence and break-up.
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1 Introduction

The purpose of this paper is to couple Ericksen’s model for nematic liquid crystals to
an interfacial energy (modeled via the Cahn-Hilliard equation) in order to model liquid
crystal droplets. Interest in developing numerical methods for modeling liquid crystals
or complex fluids involving liquid crystals has grown in recent years, [2, 5, 20, 28, 34, 35,
40,41,54]. One driver for this development is the large host of technological applications
of liquid crystals [1, 4, 8, 9, 29, 36, 38, 42, 45, 49, 55]. Popular models representing liquid
crystal substances include the Q-tensor model, the Oseen-Frank model, and Ericksen’s
model with a variable degree of orientation. A common issue in any of these methods
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is capturing defects. For instance, in [5], Barrett et al. presents a fully discrete finite el-
ement method for the evolution of uniaxial nematic liquid crystals with variable degree
of orientation. An advantage of their method is that they are able to provide conver-
gence results. However, in order to avoid the degeneracy introduced by the degree of
orientation variable s, they use a regularization of Ericksen’s model.

The use of diffuse interface theory to describe the mixing of complex fluids has
likewise grown in popularity and the research group which includes J. Zhao, X. Yang,
Q. Wang, J. Shen (among others) has released several papers on this subject [57–62]. Their
models may be described as energy minimizing models whereby their energy functionals
are composed of a kinetic energy and a free energy. The kinetic energy is based on fluid
velocity coming from a fluid model, such as Stoke’s flow. The free energy is then broken
down into three parts: the mixing energy, the bulk free energy for liquid crystals, and
an anchoring energy. For instance, in [62], Zhao et. al. develop an energy-stable scheme
for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and
viscous fluids where they use the Cahn-Hilliard energy to describe the mixing energy
and the Oseen-Frank energy to describe the bulk free energy for liquid crystals. Defects
are effectively regularized by penalizing the unit length constraint.

The work presented herein is unique in the following sense: the Cahn-Hilliard en-
ergy is combined directly with Ericksen’s energy in order to develop a phase field model
for nematic liquid crystal droplets in a pure liquid crystal substance. In this way, the
model we present herein should be considered as a first approximation to modeling de-
formable colloids in liquid crystalline substances. We therefore make the assumption that
the liquid crystal properties are congruent across the interface of the droplet. The model
considers a free energy which is comprised of three components: the Ericksen’s energy
for liquid crystals, the Cahn-Hilliard energy representing the interfacial energy of the
droplet, and an anisotropic weak anchoring energy that enforces a condition such that
the director field is aligned perpendicular to the interface of the droplet. The goal is to
find minimizers of this free energy. To this end, we present a finite element discretization
of the energy and apply a modified time-discrete gradient flow method to compute min-
imizers. The numerical scheme considered herein combines the finite element approxi-
mation of the Ericksen model of nematic liquid crystals in [40], which captures point and
line defects and requires no regularization, and the technique considered in [24] which
follows a convex splitting gradient flow strategy for modeling the Cahn-Hilliard equa-
tion.

An outline of the paper is as follows. Section 2 describes the continuous energy model
for the liquid crystal/surface tension system. In Section 3, we present a discretization of
the total energy (2.12) followed by the development of a discrete gradient flow strategy
in Section 4. In Section 5, we present a fully discrete finite element scheme based on
the gradient flow strategy and prove its stability. In Section 6, we demonstrate that the
discrete energy converges to the continuous energy using the tools of Γ-convergence.
We conclude with several numerical experiments in Section 7, and some discussion in
Section 8.


