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Abstract. The paper concerns the numerical solution for the acoustic scattering prob-
lems in a two-layer medium. The perfectly matched layer (PML) technique is adopted
to truncate the unbounded physical domain into a bounded computational domain.
An a posteriori error estimate based adaptive finite element method is developed to
solve the scattering problem. Numerical experiments are included to demonstrate the
efficiency of the proposed method.
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1 Introduction

Numerical solutions of scattering problems have drawn considerable attention in both
the engineering and mathematical communities. The first key point of numerical so-
lutions is the treatment of radiation conditions at infinity. It involves the truncation of
an unbounded domain to a bounded domain and imposes highly accurate boundary
conditions at the artificial boundary (cf. e.g. [24–26, 40]). Scattering problems involv-
ing infinite boundaries, such as the scattering in layered media and half-spaces (cf. e.g.
[9, 17, 20, 22, 41]), are studied recently. With the appearance of infinite boundaries, the
scattering waves usually comprise reflective waves and evanescent waves. Hence the
numerical treatment of radiation conditions becomes very challenging and appeals for
new theories and methods.
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Figure 1: A schematic of the geometry for the scattering problem in a two-layer media.

In this paper, we study the two-dimensional acoustic scattering problems in a two-
layer medium:

∆u+k2u=0 in R
2\D̄, (1.1a)

u= g on ΓD, (1.1b)

[u]=

[

∂u

∂x2

]

=0 on Σ, (1.1c)

√
r

(

∂u

∂r
−iku

)

→0 as r= |x|→∞, (1.1d)

where D⊂R2 is a bounded domain with Lipschitz boundary ΓD and g∈ H1/2(ΓD), u is
the scattering field, Σ= {(x1,x2)∈R2 : x2 = 0} is the interface, and [u]Σ := u+−u− is the
jump of u across Σ from above to below. We assume the wave number k is positive and
piecewise constant, defined by

k(x)=

{

k+, if x∈R2
+,

k−, if x∈R2
−,

(1.2)

where R2
±= {(x1,x2)∈R2 :±x2>0}. Without loss of generality we assume in this paper

that k−>k+>0. We consider an acoustic incident wave in a two-layer medium. Due to the
existence of Σ, the scattering waves consist of both propagating modes and evanescent
modes. The problem geometry is shown in Fig. 1.

The PML method was first proposed by Bérénger [3] for solving the time dependent
Maxwell equations. Following this, various constructions of PML absorbing layers have
been proposed and studied in the literature. A detailed review of these methods can
be found in Turkel and Yefet [39], Teixeira and Chew [38]. The basic idea of the PML
method is to surround the computational domain by a layer of finite thickness with spe-
cially designed model medium that absorbs all the waves that propagate from inside the
computational domain. Bao and Wu first proved the exponential convergence of the PML
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method for time-harmonic Maxwell’s equations in 2005 [2]. The convergence of the PML
method for homogeneous background materials has been well-studied, cf., [27,33,34] for
circular PML methods for acoustic scattering problems, [2, 10] for circular PML methods
for electromagnetic scattering problems, and [4, 11] for UPML methods. It is proven that
the PML solution converges exponentially to the solution of the original scattering prob-
lem as the thickness of the PML layer tends to infinity. In [4–7], Bramble and Pasciak
studied the stability and exponential convergence of the PML method in both circular
and Cartesian coordinates for acoustic and electromagnetic scattering problems. In [35],
Liang and Xiang studied the convergence of an anisotropic PML method for Helmholtz
scattering problems. We also refer the reader to the papers [8, 15, 29, 31] on the PML
methods for elastic scattering problems. The analysis for two-layer media is very chal-
lenging for scattering by both propagating waves and evanescent waves. In [14,16], Chen
and Zheng proved the exponential convergence of the PML method for time-harmonic
acoustic and electromagnetic scattering problems in two-layer media. The main objec-
tive of this paper is to study the adaptive finite element PML method for the scattering
problems in layered media.

In the practical application of PML methods, Chen and coauthors developed the
adaptive PML method for solving acoustic and electromagnetic scattering problems [10–
13]. The adaptive PML method provides a complete numerical strategy to solve the scat-
tering problems using finite elements. It produces automatically a coarse mesh size away
from the fixed domain and thus makes the total computational costs insensitive to the
thickness of the PML absorbing layer. The main idea of the method is to use the a pos-
teriori error estimate to determine the PML parameters and to use the adaptive finite
element method to solve the PML equations. In [28], Jiang and Zheng proposed an ef-
ficient adaptive finite element algorithm to solve the multiple scattering problem. The
computation effort is comparable to that of single scattering problems. In [30], Jiang and
Li studied the adaptive PML method for the time-harmonic acoustic-elastic interaction
problem in three dimensions. In the literature, there is rare work on the adaptive finite
element PML method for the scattering problems in layered media and on rigorous a
posteriori error estimate.

This paper aims to investigate the adaptive finite element PML method for solving
the acoustic scattering problems in a two-layer medium. The PML technique is adopted
to truncate the unbounded physical domain into a bounded computational domain. To
efficiently resolve the solution with possible singularities, the a posteriori error estimate
based on adaptive finite element method is developed to solve the truncated PML prob-
lem. The error estimate consists of the PML error and the finite element discretization
error, and provides a theoretical basis for the mesh refinement. Numerical experiments
are reported to show the competitive behavior of the proposed method.

The paper is organized as follows. In Section 2, we introduce the model equations
for the acoustic scattering problems in a two-layer medium. In Section 3, we present the
PML formulation on the truncated domain, and the exponential convergence of the PML
problem. In Section 4, we introduce the conforming finite element approximation to the
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PML problem. Reliable a posteriori error estimate is derived to control both the thickness
of the PML and the mesh refinements. In Section 5, we propose an APML algorithm
based on reliable a posteriori error estimates, and show some numerical experiments.

2 Problem formulation

In (1.1), the model equations for acoustic scattering in two-layer media is proposed. In
this section, an exact transparent boundary condition is introduced to reformulate the
scattering problem into a boundary value problem in a bounded domain. Then we pro-
pose a weak formulation of the scattering problem (1.1) in the bounded domain.

Let B = {x = (x1,x2) ∈ R2 : |xj|< Lj, j = 1,2} be a rectangular box which encloses all
scatterers and inhomogeneities of the medium. Let Ω be a bounded Lipschitz domain,
and let Γ be the boundary of Ω. Denote by L2(Ω) the usual Hilbert space of square
integrable functions. The space is equipped with the following inner product and norm

(u,v)=
∫

Ω
u(x)v̄(x)dx and ‖u‖L2(Ω)=(u,u)1/2,

where v̄ denotes the complex conjugate of v. Let H1(Ω) be the standard Sobolev space
equipped with the norm

‖u‖H1(Ω)=
(

‖u‖2
L2(Ω)+‖∇u‖2

L2(Ω)

)1/2
. (2.1)

For any Λ⊂Γ, the subspace with zero trace on Λ is denoted by H1
Λ(Ω) :={v∈H1(Ω) :v=

0on Λ}. In particular, we use the conventional notation H1
0(Ω) :={v∈H1(Ω) :v=0on Γ}.

The trace space Hs(Γ) is defined by

Hs(Γ)={u∈L2(Γ) :‖u‖Hs(Γ)<∞}.

It is clear to note that the dual space of Hs(Γ) is H−s(Γ) with respect to the scalar product
in L2(Γ) defined by

〈u,v〉Γ =
∫

Γ
uv̄ds.

Now we introduce the Dirichlet-to-Neumann (DtN) operator T :H1/2(ΓB)→H−1/2(ΓB),
where ΓB is the boundary of B. Given v∈H1/2(ΓB), we define

T v=∂nu on ΓB,

where u is the solution of the exterior Dirichlet problem of the Helmholtz equation:

∆u+k2u=0 in R
3\ B̄, (2.2a)

u=v on ΓB, (2.2b)

[u]=

[

∂u

∂x2

]

=0 on Σ, (2.2c)

√
r

(

∂u

∂r
−iku

)

→0 as r= |x|→∞. (2.2d)
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The well-posedness of the exterior problem (2.2) is proved by Theorem 3.1 in [14]. There-
fore the DtN operator T : H1/2(ΓB)→H−1/2(ΓB) is well-defined and is a bounded linear
operator.

Using the DtN operator T , we reformulate the boundary value problem (1.1) from
the open domain into the bounded domain: Given g∈H1/2(ΓD), find u such that

∆u+k2u=0 in Ω :=B\D̄, (2.3a)

u= g on ΓD, (2.3b)

[u]=

[

∂u

∂x2

]

=0 on Σ∩Ω, (2.3c)

∂nu=T u on ΓB. (2.3d)

Let a : H1(Ω)×H1(Ω)→C be the sesquilinear form:

a(u,v)=
∫

Ω

(

∇u·∇v̄−k2uv̄
)

dx−
∫

ΓB

(T u)v̄ds. (2.4)

Then the scattering problem (1.1) is equivalent to the following weak formulation: Find
u∈H1(Ω) such that u= g on ΓD, and

a(u,v)=0, ∀v∈H1
ΓD
(Ω). (2.5)

For any g∈H1/2(ΓD), the scattering problem (1.1) has a unique solution u∈H1
loc(R

2\D̄),
which can be proved by using integral method in Colton and Kress [19, Chap. 3], and sim-
ilar argument as that in [32]. By the well-posedness of the problem (1.1), the variational
problem (2.5) has a unique weak solution u∈H1(Ω). Then the general theory in Babuška
and Aziz [1, Chap. 5] implies that there exists a constant γ such that the following inf-sup
condition is satisfied

sup
0 6=v∈H1(Ω)

|a(u,v)|
‖v‖H1(Ω)

≥γ‖u‖H1(Ω), ∀v∈H1(B). (2.6)

3 The PML problem

In this section, we introduce the PML formulation for the scattering problem, and the
transparent boundary condition of the PML problem.

3.1 PML formulation

First, we introduce an uniaxial absorbing PML layer. Let B1 = {x = (x1,x2)∈R2 : |xj|<
Lj+dj, j= 1,2} be a larger rectangular box which contains B. As is shown in Fig. 2, the
domain Ω is surrounded by a PML layer of thickness dj, j = 1,2, which is denoted as
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Figure 2: A schematic of the geometry for the PML problem.

ΩPML :=B1\B̄. Let αj(t)=1+iσj(t), j=1,2, be the PML function which is continuous and
satisfies

σj(t)=0 for |t|< Lj and σj(t)>0 otherwise.

Following [18], we introduce the PML by the complex coordinate stretching:

x̃j =
∫ xj

0
αj(τ)dτ, j=1,2. (3.1)

Notice that x̃j depends only on xj and for this reason the method is called the uniaxial
PML method.

For convenience of theoretical analysis, we make the following assumption on the
fictitious medium property which is rather mild in practical applications of the UPML
method:

(H1) σj(t)=σ>0, ∀|t|≥ Lj, j=1,2, where σ is a positive constant.

(H2)

∫ L1+d1

0
σ1(t)dt=

∫ L2+d2

0
σ2(t)dt=: σ̄, σ̄≥1 is a constant.

Let ũ(x)=u(x̃) be the PML extension of the solution u of the scattering problem (2.5).
It is obvious that ũ satisfies

∂2ũ

∂x̃2
1

+
∂2ũ

∂x̃2
2

+k2ũ=0 in R
2\D̄,

which yields the desired UPML equation by the chain rule

∇·(A∇ũ)+bk2ũ=0 in R
2\D̄,
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where A=diag(α2(x2)/α1(x1),α1(x1)/α2(x2)) is a diagonal matrix, and b=α1(x1)α2(x2).

We define ρ(x̃,y) :=(z2
1+z2

2)
1/2, where

z1=
[

(x̃1−y1)
2
]1/2

, z2 =
[

(x̃2)
2
]1/2

+|y2|, ∀x,y∈R
2.

By the following elementary Lemma 3.1 and (H2), we find that, for any x∈ΓB1
, y∈ΓB,

Imρ(x̃,y)≥γ0σ̄, γ0=
min(d1,d2+L2)

√

(2L1+d1)2+(2L2+d2)2
. (3.2)

Lemma 3.1. ([13, Lemma 3.2]) For any ã= a1+ia2 and b̃=b1+ib2 with a1,a2,b1,b2∈R such
that a1a2+b1b2>0 and a2

1+b2
1 >0, we have

Im(ã2+ b̃2)1/2≥ a1a2+b1b2
√

a2
1+b2

1

.

The outgoing wave ũ(x) decays exponentially in the PML layer. Therefore, the homo-
geneous Dirichlet boundary condition is imposed on ΓB1

to truncate the PML problem.
We arrive at the following truncated PML problem: Find û such that

∇·(A∇û)+bk2û=0 in Ω1 :=B1\D̄, (3.3a)

û= g on ΓD, (3.3b)

[û]=

[

∂û

∂x2

]

=0 on Σ∩Ω1, (3.3c)

û=0 on ΓB1
. (3.3d)

The weak formulation of the truncated PML problem (3.3) reads as follows: Find
û∈H1

ΓB1
(Ω1) such that û= g on ΓD, and

b(û,v)=0, ∀v∈H1
0 (Ω1), (3.4)

where the sesquilinear form b : H1(Ω1)×H1(Ω1) is defined by

b(u,v)=
∫

Ω

(

A∇u·∇v̄−k2buv̄
)

dx.

In Section 3.3, we will present the exponential convergence of the solution of PML
problem (3.3) to the solution of the original scattering problem.
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3.2 PML problem in the layer

Given ξ∈H1/2(ΓB), consider the following boundary value problem in the PML layer:

∇·(A∇ϕ)+bk2 ϕ=0 in ΩPML, (3.5a)

ϕ= ξ on ΓB, (3.5b)

[ϕ]=

[

∂ϕ

∂x2

]

=0 on Σ∩ΩPML, (3.5c)

ϕ=0 on ΓB1
. (3.5d)

Introduce the sesquilinear form c : H1(ΩPML)×H1(ΩPML)→C as follows:

c(ϕ,ψ)=
∫

ΩPML

(

A∇ϕ·∇ψ̄−bk2 ϕψ̄
)

dx.

The weak formulation for (3.5) is: Given ξ∈H1/2(ΓB), find ϕ∈H1(ΩPML) such that ϕ=0
on ΓB1

, ϕ= ξ on ΓB, and

c(ϕ,ψ)=0, ∀ψ∈H1
0 (ΩPML). (3.6)

In order to obtain a constant independent of PML parameter σ in the inf-sup condition,
we define

|||ϕ|||ΩPML
=

(

1

1+σ2
‖∇ϕ‖2

L2(ΩPML)
+(1+σ2)‖kϕ‖2

L2(ΩPML)

)1/2

.

By [14, Lemma 5.1], we know that (3.6) has a unique solution and it holds that

sup
0 6=ψ∈H1

0(ΩPML)

|c(ϕ,ψ)|
|||ψ|||ΩPML

≥ Ĉ|||ϕ|||ΩPML
, ∀ϕ∈H1

0(ΩPML), (3.7)

where

Ĉ=
min(1,σ3)

2(1+σ2)2max(1,k2
−d2)

, d=max(d1,d2). (3.8)

For any ϕ∈H1(Ω), let ϕ̃ be its extension in ΩPML such that

∇·(Ā∇ϕ̃)+ b̄k2 ϕ̃=0 in ΩPML, (3.9a)

ϕ̃= ϕ on ΓB, (3.9b)

[ϕ̃]=

[

∂ϕ̃

∂x2

]

=0 on Σ∩ΩPML, (3.9c)

ϕ=0 on ΓB1
. (3.9d)
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Lemma 3.2 (Estimates for the extension). For any ϕ∈H1(Ω), which is extended to be a func-
tion ϕ̃∈H1(Ω1) according to (3.9), there exists a constant C>0 depending only on k−/k+,L2/L1

but independent of k± and σ such that

‖∇ϕ̃‖L2(ΩPML)≤CĈ−1α0(1+k+L1)‖ϕ‖H1/2(ΓB)
, (3.10)

‖A∇ ¯̃ϕ·n1‖H−1/2(ΓB1
)≤CĈ−1α2

0(1+k+L1)
2‖ϕ‖H1/2(ΓB)

, (3.11)

where α0=maxx∈ΓB1
(|α1(x1)|,|α2(x2)|), and n1 is the unit outward normal vector on ΓB1

.

Proof. For any ζ∈H1(ΩPML) such that ζ=ϕ on ∂B and ζ=0 on Γ, by (3.6) and the inf-sup
condition in (3.7), we know that

Ĉ|||ϕ̃−ζ|||ΩPML
≤ sup

0 6=ψ∈H1
0(ΩPML)

|c(ϕ̃−ζ,ψ)|
|||ψ|||ΩPML

= sup
0 6=ψ∈H1

0(ΩPML)

|c(ζ,ψ)|
|||ψ|||ΩPML

.

By Cauchy-Schwarz inequality, we get

|c(ζ,ψ)|≤Cα0(1+k+L1)‖ζ‖H1(ΩPML)
|||ψ|||ΩPML

.

Noting

|||ζ|||ΩPML
≤Cα0(1+k+L1)‖ζ‖H1(ΩPML)

,

by using the triangle inequality and the trace inequality, we conclude that

|||ϕ̃|||ΩPML
≤CĈ−1α0(1+k+L1)‖ϕ‖H1(ΓB)

, (3.12)

which shows the first estimate in the theorem by using the definition of |||·|||ΩPML
.

Next, for any ψ∈H1(ΩPML) such that ψ=0 on ΓB, using (3.9a) and the integration by
parts, we obtain

∫

Γ
(A∇ ¯̃ϕ·nΓ)ψ̄ds=

∫

∂ΩPML

(A∇ ¯̃ϕ·nΓ)ψ̄ds

=
∫

ΩPML

(A∇ ¯̃ϕ·∇ψ̄+∇·(A∇ ¯̃ϕ)ψ̄)dx=
∫

ΩPML

(

A∇ ¯̃ϕ·∇ψ̄−k2b ¯̃ϕψ̄
)

dx.

It follows from the Cauchy-Schwarz inequality and (3.12) that

∣

∣

∣

∣

∫

Γ
(A∇ ¯̃ϕ·nΓ)ψ̄ds

∣

∣

∣

∣

≤Cα0(1+k+L1)|||ϕ̃|||ΩPML
‖ψ‖H1(ΩPML)

≤CĈ−1α2
0(1+k+L1)

2‖ϕ‖H1(ΓB)
‖ψ‖H1(ΩPML)

,

which completes the proof after using the trace inequality.
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3.3 Transparent boundary condition of the PML problem

Now we introduce the approximate DtN operator T PML : H1/2(ΓB) → H−1/2(ΓB) as-
sociated with the PML problem. Given ξ ∈ H1/2(ΓB), let T PMLξ = ∂n ϕ on ΓB, where
ϕ∈H1(ΩPML) is the solution of (3.5).

Then the PML problem (3.3) is reduced to the following boundary value problem:
Find uPML such that

∆uPML+k2uPML=0 in Ω, (3.13a)

uPML= g on ΓD, (3.13b)

[uPML]=

[

∂uPML

∂x2

]

=0 on Σ∩Ω, (3.13c)

∂nuPML=T
PMLuPML on ΓB. (3.13d)

The existence and uniqueness of the problem (3.13) is presented in [14]. Then the ap-
proximate DtN operator T PML is well-defined. The weak formulation of (3.13) is to find
uPML∈H1(Ω) such that uPML= g on ΓD, and

aPML(uPML,v)=0, ∀v∈H1
ΓD
(Ω), (3.14)

where the sesquilinear form aPML : H1(Ω)×H1(Ω)→C is defined by

aPML(u,v)=
∫

Ω

(

∇u·∇v̄−k2uv̄
)

dx−
∫

ΓB

(T PMLu) v̄ds. (3.15)

The following lemma establishes the relationship between the variational problem
(3.14) and the weak formulation (3.4). The proof is straightforward based on our con-
structions of the transparent boundary conditions for the PML problem. The details of
the proof is omitted for simplicity.

Lemma 3.3. Any solution û of the variational problem (3.4) restricted to Ω is a solution of the
variational problem (3.14); conversely, any solution uPML of the variational problem (3.14) can be
uniquely extended to the whole domain to be a solution û of the variational problem (3.4) in Ω1.

For the completeness, here we present the estimate for the error T v−T PMLv for any
v∈H1/2(ΓB), and the exponential convergence of PML solution.

Lemma 3.4. ([14, Lemma 7.1]) Let (H2) and γ0σ̄ ≥max(k−1
+ ,min(d1,d2+L2)) be satisfied.

There exists a constant C depending only on γ0, k−/k+, L2/L1 but independent of k±, Lj, and

dj, j=1,2, such that, for any v∈H1/2(ΓB),

‖T v−T
PMLv‖H−1/2(ΓB)

≤C(1+Ĉ−1)γ1(1+k+L1)
3α3

0

(

1+
σ̄

L1

)2
e−k+γ0σ̄‖v‖H1/2(ΓB)

, (3.16)

where γ0 is define by (3.2), α0 is defined in Lemma 3.2, γ1 := eL2

√
k2
−−k2

+ .
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Theorem 3.1. ([14, Theorem 7.2]) Let (H1)-(H2) and γ0σ̄ ≥ max(k−1
+ ,min(d1,d2+L2)) be

satisfied. Let u be the solution of (1.1a)-(1.1d). Then for sufficiently large σ̄, the UPML problem
(3.3) has a unique solution û. Moreover, there exists a constant C depending only on γ0, k−/k+,
L2/L1 but independent of k±, Lj, and dj, j=1,2, such that

‖u−û‖H1(Ω)≤C(1+Ĉ−1)γ1(1+k+L1)
3α3

0

(

1+
σ̄

L1

)2
e−k+γ0σ̄‖û‖H1/2(ΓB)

, (3.17)

where γ0 is define by (3.2), α0 is defined in Lemma 3.2, and γ1 is defined in Lemma 3.4.

4 Finite element approximation

In this section we introduce the finite element approximations of the PML problem (3.4),
and develop the a posteriori error estimate, which is the basis of the adaptive finite ele-
ment method.

Let Mh be a regular tetrahedral partition of the domain Ω1 such that Mh|ΩPML
and

Mh|Ω are also regular tetrahedral partitions of ΩPML and Ω, respectively. Let Vh⊂H1(Ω1)
be the conforming linear finite element space over Ω1, and

Vh,B1
={vh ∈Vh : vh =0 on ΓB1

}, Vh,0={vh ∈Vh : vh =0 on ∂Ω1}.

The finite element approximation to the PML problem (3.4) reads as follows: Find uh ∈
Vh,B1

such that uh= g on ΓD, and

b(uh,vh)=0, ∀vh ∈Vh,0. (4.1)

Theorem 4.1. For sufficiently small mesh size h< h0 , where h0 ≪ 1 is a constant, the discrete
problem (4.1) has a unique solution.

Proof. By Theorem 3.1, the continuous problem (3.3) has a unique solution û. Then the
sesquilinear form b : H1

0(Ω1)×H1
0(Ω1) satisfies the continuous inf-sup condition.

By the definition of Vh,0, we know that Vh,0 is dense in H1
0(Ω1) as the mesh size h→0.

Using a general argument of Schatz [36], the following discrete inf-sup condition

sup
0 6=vh∈Vh,0

|b(uh,vh)|
‖vh‖Vh,0

≥ γ̂‖uh‖Vh,0
, ∀vh ∈Vh,0

holds when the mesh size is sufficiently small, i.e., h ≪ 1. Here the constant γ̂ > 0 is
independent of the mesh size. Then the general theory in [1, Chap. 5] implies that the
discrete problem (4.1) has a unique solution.
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4.1 Error representation formula

Lemma 4.1 (Error representation formula). For any ϕ ∈ H1(Ω), which is extended to be a
function ϕ̃∈H1(Ω1) according to (3.9), and ϕ̃h∈Vh,B1

, we have

a(u−uh,ϕ)=−b(uh, ϕ̃− ϕ̃h)+
∫

ΓB

(T −T
PML)uh ϕ̄ds. (4.2)

Proof. First by (2.4), (2.5), (3.14), and (3.15), we have

a(u−û,ϕ)= aPML(û,ϕ)−a(û,ϕ)=
∫

ΓB

(T −T
PML)ûϕ̄ds. (4.3)

Then it yields that

a(u−uh,ϕ)=a(u−û,ϕ)+a(û−uh,ϕ)

=
∫

ΓB

(T −T
PML)ûϕ̄ds+b(û−uh, ϕ̃)−

∫

ΓB

T (û−uh)ϕ̄ds

−
∫

ΩPML

(A∇(û−uh)·∇ ¯̃ϕ−k2b(û−uh) ¯̃ϕ)dx. (4.4)

Recalling that n is the unit outer normal to ΓB which points outside B and n1 is the unit
outer normal vector on ΓB1

directed outside ΩPML, we deduce that

∫

ΩPML

(A∇(û−uh)·∇ ¯̃ϕ−k2b(û−uh) ¯̃ϕ)dx=−
∫

ΓB

∂n
¯̃ϕ(û−uh)ds

=−
∫

ΓB

(T PML(û−uh))ϕ̄ds, (4.5)

where we have used (3.9a)-(3.9b), the definition of T PML, and the identity (c.f., [13,
Lemma 5.1])

∫

ΓB

(T PML ϕ)ψ̄ds=
∫

ΓB

(T PMLψ̄)ϕds, ∀ϕ,ψ∈H1(ΩPML).

By (3.4), (4.1), and (4.4)-(4.5),

a(u−uh,ϕ)=b(û−uh, ϕ̃)+
∫

ΓB

(T −T
PML)uh ϕ̄ds

=−b(uh, ϕ̃− ϕ̃h)+
∫

ΓB

(T −T
PML)uh ϕ̄ds,

which completes the proof.
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4.2 The a posteriori error analysis

For any K∈Mh, we denote by hK its diameter. Let Bh denote the set of all sides that do
not lie on ∂Ω1. For any e∈Bh, he stands for its length. For any K∈Mh, we introduce the
residual:

RK :=∇·(A∇uh)+bk2uh for K∈Mh. (4.6)

For any interior side e∈Bh which is the common side of K1,K2∈Mh, we define the jump
residual across e:

Je :=(A∇uh)|K1
·ν−(A∇uh)|K2

·ν for e∈Bh, (4.7)

where we have used the notation that the unit normal vector ν on e points from K2 to K1.
For any K∈Mh, we define the local error estimator ηK as

ηK :=

(

‖hK RK‖2
L2(K)+

1

2 ∑
e⊂∂K

he‖Je‖2
L2(e)

)1/2

.

Theorem 4.2. There exists a constant C>0 depending only on γ0,k−/k+,L2/L1 and the mini-
mum angle of the mesh Mh such that the following a posterior error estimate holds

‖u−uh‖H1(Ω)≤CĈ−1α0(1+k+L1)

(

∑
K∈Mh

η2
K

)1/2

+CĈ−1γ1(1+k+L1)
3α3

0

(

1+
σ̄

L1

)2
e−k+γ0σ̄‖uh‖H1/2(ΓB)

.

Proof. Let Πh : H1
ΓB1

(Ω1)→Vh,B1
be Scott-Zhang [37] interpolation operators satisfying the

following interpolation estimates: For any ϕ∈H1(Ω1),

{

‖ϕ−Πh ϕ‖L2(K)≤ChK‖∇ϕ‖L2(K̃)2 ,

‖ϕ−Πh ϕ‖L2(e)≤Ch1/2
K ‖∇ϕ‖L2(ẽ)2

for K∈Mh, (4.8)

where K̃ and ẽ are the union of all elements in Mh having a non-empty intersection with
K∈Mh and the side e, respectively.

Taking ϕ̃h=Πh ϕ̃∈Vh,B1
in the error representation formula (4.2), we get

a(u−uh,ϕ)=−b(uh, ϕ̃−Πh ϕ̃)+
∫

ΓB

(T −T
PML)uh ϕ̄ds= I1+ I2. (4.9)

It follows from the integration by parts and (4.6)-(4.7) that

I1= ∑
K∈Mh

(

∫

K
RK(ϕ̃−Πh ϕ̃)dx+

1

2 ∑
e⊂∂K

∫

e
Je(ϕ̃−Πh ϕ̃)ds

)

.
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By (4.8) and the estimate (3.10), we have

|I1|≤C

(

∑
K∈Mh

η2
K

)1/2

‖∇ϕ̃‖L2(Ω)

≤CĈ−1α0(1+k+L1)

(

∑
K∈Mh

η2
K

)1/2

‖ϕ‖H1/2(ΓB)
.

By Lemma 3.4, we have

|I2|≤CĈ−1γ1(1+k+L1)
3α3

0

(

1+
σ̄

L1

)2
e−k+γ0σ̄‖uh‖H1/2(ΓB)

‖ϕ‖H1/2(ΓB)
.

The proof is completed by using the above estimates in (4.9) and the inf-sup condition
(2.6).

5 Numerical experiments

According to the discussion in Section 4, we choose the PML medium property as the
power function and need to specify the thickness d1, d2 of the layers and the medium
parameter σ̄. It is clear to note from Theorem 4.2 that the a posteriori error estimate
consists of two parts: the PML error ǫPML and the finite element discretization error ǫFEM,
where

ǫFEM=

(

∑
K∈Mh

η2
K

)1/2

, (5.1)

ǫPML=γ1(1+k+L1)
3α3

0

(

1+
σ̄

L1

)2
e−k+γ0σ̄‖uh‖H1/2(ΓB)

. (5.2)

In our implementation, we first choose d1, d2 and σ̄ such that

γ1(1+k+L1)
3α3

0

(

1+
σ̄

L1

)2
e−k+γ0σ̄ ≤10−8, (5.3)

which makes the PML error (5.2) negligible compared with the finite element discretiza-
tion error (5.1). Once the PML region and the medium property are fixed, we use the
standard finite element adaptive strategy to modify the mesh according to the a posteri-
ori error estimate. The adaptive FEM algorithm is summarized in Table 1.

In the following, we present three examples to demonstrate the competitive numer-
ical performance of the proposed algorithm. The first-order linear element is used for
solving the PML problem. Our implementation is based on Matlab PDE Toolbox.

In the three examples, the wave numbers of the two media are k+ = 1 and k− = 20.
We choose σ = 5 for the medium property. Note that we can adjust the thickness of
the PML layers such that the PML error is negligible compared with the finite element
discretization error.



280 X. Jiang, Y. Qi and J. Yuan / Commun. Comput. Phys., 25 (2019), pp. 266-288

Table 1: The adaptive FEM algorithm.

1 Given a tolerance ǫ>0 and mesh refinement threshold τ∈ (0,1);

2 Choose dj and σ such that γ1(1+k+L1)
3α3

0(1+
σ̄
L1
)2e−k+γ0σ̄

<10−8;

3 Construct an initial tetrahedral partition Mh over Ω1 and compute error estimators;

4 While ǫh>ǫ do

5 choose M̂h ⊂Mh according to the strategy ηM̂h
>τηMh

;

6 refine all the elements in M̂h and obtain a new mesh denoted still by Mh;

7 solve the discrete problem (4.1) on the new mesh Mh;

8 compute the corresponding error estimators;

9 End while.

Example 5.1. Let the scatterer D=(−0.2,0.2)×(0.1,0.5), enclosed in the box B=(−1,1)×
(−1,1). We consider a scattering problem whose exact solution is known:

u(x)=















Φ(k+,x,y)−Φ(k+,x,y′)+
i

2π

∫ ∞

−∞

1

µ1+µ2
eiξ(x1−y1)+iµ1(x2+y2)dξ, x∈R2

+,

i

2π

∫ ∞

−∞

1

µ1+µ2
eiξ(x1−y1)+i(µ1y2−µ2x2)dξ, x∈R2

−,
(5.4)

where µ1=(k2
+−ξ2)1/2, µ2=(k2

−−ξ2)1/2, y=(0,0.2)⊤ is the source, and y′=(0,−0.2)⊤ is
the image of y. The thickness of the PML layers are chosen as d1=d2=1. Here Φ(k+,x,y)
is the Green function for the Helmholtz equation with constant wave number k+, that is,

Φ(k+,x,y)=
i

4
H

(1)
0 (k+|x−y|)= i

4π

∫ ∞

−∞

1

µ1
eiξ(x1−y1)+iµ1|x2−y2|dξ. (5.5)

Fig. 3 displays the errors against the number of nodal points N in Ω. It clearly shows
that the adaptive FEM yields quasi-optimal convergence rates, i.e.,

‖u−uh‖H1(Ω)=O(N−1/2), ηh =O(N−1/2), (5.6)

where ηh is the a posterior error estimator. Fig. 4 plots the initial mesh with 1904 elements
of the domain Ω1 (left) and the adaptive mesh with 20751 elements of Ω1 (right), respec-
tively. From Fig. 4, we see that the mesh is much coarse away from the inner boundary
since the solution decays exponentially in the PML, and the mesh in Ω∩R2

− is very fine
due to the large wave number k− = 20 compared with k+ = 1 in R2

+. Fig. 5 shows the
amplitude of the real part of uh, which implies the solution decays very fast away from
the inner boundary of the PML layer.

In the following two examples, the exact solutions are unknown. We compute the two
examples by using both the uniaxial PML method and the circular PML method [11]. The
complex coordinate stretching of the circular PML method is defined by

x̃= x(1+iσ(r−R)) for all x∈R
2\B̄R,

where r= |x| and σ=5.
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Figure 3: Example 5.1: Quasi-optimality of H1- error estimates and the a posteriori error estimates.
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Figure 4: Example 5.1: The initial mesh and an adaptive mesh with 20751 elements of Ω1.
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Figure 5: Example 5.1: The amplitude of the real part of uh.
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Example 5.2. This example concerns the scattering of the incident plane wave uinc(x)=
e−ikx1 by a slim rectangular obstacle D=(−1.5,1.5)×(0.1,0.3) which is contained in the
box B=(−3,3)×(−1,1). We choose d1=3 and d2=1 for the thickness of the uniaxial PML
layers. For the circular PML method, we choose R= L1=3 and the thickness of the PML
layer d=d1 =3.

Fig. 6 shows that the quasi-optimality of the a posteriori error estimates holds for both
the uniaxial PML method and the circular PML method. Table 2 compares the numerical
results by using the two PML methods, which indicates that the uniaxial PML method is
flexible for high aspect ratio scatterers.
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Figure 6: Example 5.2: Quasi-optimality of the a posteriori error estimates using both the uniaxial PML method
and the circular PML method.

Table 2: Comparison of numerical results using the uniaxial PML method and the circular PML method for
Example 2. DoFh is the number of nodal points of mesh Mh.

Uniaxial PML method Circular PML method

DoFh ηh DoFh ηh

3326 6.0378 15277 6.1625

4423 4.5894 25876 4.7140

7648 3.3755 39392 3.7765

Figs. 7 and 9 plot the adaptive meshes using the uniaxial PML method and the circular
PML method, respectively. Figs. 8 and 10 show the amplitudes of the real part of uh using
the uniaxial PML method and the circular PML method, respectively. We observe that the
solutions using the two PML methods are consistent with each other.
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Figure 7: Example 5.2: An adaptive mesh with 29927 elements of Ω1 using the uniaxial PML method.
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Figure 8: Example 5.2: The amplitude of the real part of uh using the uniaxial PML method.
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Figure 9: Example 5.2: An adaptive mesh with 30406 elements of Ω1 using the circular PML method.
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Figure 10: Example 5.2: The amplitude of the real part of uh using the circular PML method.
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Example 5.3. This example concerns the scattering of the incident plane wave uinc(x)=
e−ikx1 by two adjacent circular obstacles D1 and D2 centered at c1=(−0.2,−0.3) and c2=
(0.2,−0.3) with radius r=0.2. Clearly there is a strong singularity between the two circles
in this example. The scatterers are contained in the box B=(−1.5,1.5)×(−1,1). We choose
d1 = 1 and d2 = 0.5 for the thickness of the uniaxial PML layers. For the circular PML
method, we choose R= L1=1.5 and the thickness of the PML layer d=d1 =1.

Fig. 11 shows that the quasi-optimality of the a posteriori error estimates holds for
both the uniaxial PML method and the circular PML method. It indicates that the two
PML methods are comparable in solving this example.

Figs. 12 and 14 plot the adaptive mesh using the uniaxial PML method and the circu-
lar PML method, respectively. Figs. 13 and 15 show the amplitude of the real part of uh
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Figure 11: Example 5.3: Quasi-optimality of the a posteriori error estimates using both the uniaxial PML
method and the circular PML method.
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Figure 12: Example 5.3: An adaptive mesh with 48076 elements of Ω1 using the uniaxial PML method.
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Figure 13: Example 5.3: The amplitude of the real part of uh using the uniaxial PML method.
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Figure 14: Example 5.3: An adaptive mesh with 48264 elements of Ω1 using the circular PML method.
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Figure 15: Example 5.3: The amplitude of the real part of uh using the circular PML method.

using the uniaxial PML method and the circular PML method, respectively. We observe
that the solutions using the two PML methods are also consistent with each other for this
example.
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