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Abstract. In this work we focus on the construction of numerical schemes for the ap-
proximation of stochastic mean-field equations which preserve the nonnegativity of
the solution. The method here developed makes use of a mean-field Monte Carlo
method in the physical variables combined with a generalized Polynomial Chaos (gPC)
expansion in the random space. In contrast to a direct application of stochastic-Galerkin
methods, which are highly accurate but lead to the loss of positivity, the proposed
schemes are capable to achieve high accuracy in the random space without loosing
nonnegativity of the solution. Several applications of the schemes to mean-field mod-
els of collective behavior are reported.
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1 Introduction

An increasing number real world phenomena have been fruitfully described by kinetic
and mean-field models. Particular attention has been paid in the past decade to self-
organizing systems in social-economic and life sciences. Without intending to review the
very huge literature on these topics, we refer the reader to [4,6,11,14,15,21,31,35,38] and
the references therein.

Kinetic models may be derived in a rigorous way from microscopic particle dynamics
in the limit of a large number of agents [7, 11, 23, 27, 34, 38]. It is a well known fact that
the main disadvantage of the microscopic approach to capture the asymptotic behavior
of interacting systems relies on the so-called curse of dimensionality. For example, if we
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consider N interacting individuals the cost is of order O(N2), becoming rapidly unafford-
able in the case of large systems. For this reason, kinetic and mean-field type modeling
have been developed to represent the evolution of distribution functions obtained in the
asymptotic regimes, which of course become independent of the size of the system.

The introduction of uncertainty in the mathematical modeling of real world phenom-
ena seems to be unavoidable for applications. In fact we can often have at most statistical
information of the modeling parameters, which must be estimated from experiments or
derived from heuristic observations [5, 8, 29]. Therefore, to produce effective predictions
and to better understand physical phenomena, we can incorporate all the ineradicable
uncertainty in the dynamics from the beginning of the modeling.

In the following a formal derivation of uncertain mean-field equations for a class of
microscopic models for alignment is proposed. At the numerical level one of the most
popular techniques for uncertainty quantification is based on stochastic Galerkin (SG)
methods. In particular, generalized polynomial chaos (gPC) gained increasing popular-
ity in UQ, for which spectral convergence on the random field is observed under suitable
regularity assumptions [19, 25, 26, 30, 37, 40, 42, 43]. Nevertheless, these methods need a
strong modification of the original problem and when applied to hyperbolic and kinetic
problems lead to the loss of some structural properties, like positivity of the solution,
entropy dissipation or hyperbolicity, see [17]. Beside SG-based methods, non-intrusive
approaches for UQ have been developed in recent years like the stochastic collocation
(SC) methods [19, 32, 40, 41]. These methods have the nice feature to keep the struc-
tural properties of the underlying numerical solver for the deterministic problem. In this
work we focus on the construction of numerical schemes which preserve the positivity
of relevant statistical quantities, keeps the high accuracy typical of gPC approximations
in the random space and takes advantage of the reduction of computational complex-
ity of Monte Carlo (MC) techniques in the physical space [2, 9, 18, 34]. We investigate
these Monte Carlo gPC (MCgPC) methods for mean-field type equations, which permits
with a strongly reduced cost, to obtain a positive numerical approximation of expected
quantities.

The rest of the paper is organized as follows. In Section 2 we introduce the micro-
scopic models of swarming with random inputs and review some of their main prop-
erties and their mean-field limit. Section 3 is devoted to the construction of numerical
methods for uncertainty quantification. We first survey some results on gPC expansions
and derive the classical stochastic Galerkin scheme for the mean-field problem. Subse-
quently we describe the new particle based gPC approach. Finally, in Section 4 several
numerical results are presented which show the efficiency and accuracy of the new Monte
Carlo-gPC approach.

2 Microscopic and mean-field models with uncertainty

In the following we introduce some classical microscopic models of collective behavior
[11, 16, 20] in the stochastic case characterized by random inputs. In collective motion of
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groups of animals three zones are distinguished: the first is the repulsion region, where
agents try to avoid physical collisions, hence in the immediate proximity they align to
the possible direction of the group and, at last, the attraction region, where individuals
too far from the group are attracted to the collective center of mass.

The microscopic description of a dynamical systems composed of N individuals is
described by a system of ordinary differential equations for (xi(θ,t),vi(θ,t))∈R

dx ×R
dv ,

i=1,··· ,N with the general structure


























ẋi(θ,t)=vi(θ,t),

v̇i(θ,t)=S(θ;vi)+
1

N

N

∑
j=1

[

H(θ;xi,xj)(vj(θ,t)−vi(θ,t))

+A(θ;xi,xj)+R(θ;xi,xj)
]

,

(2.1)

where xi(θ,0)=x0
i , vi(θ,0)=v0

i denote the initial positions and velocities of the agents and
we introduced the functions depending on the random input θ: H(θ;xi,xj), representing
the alignment process, A(θ;xi,xj) the attraction dynamics and the term R(θ;xi,xj) the
short-range repulsion. In (2.1) the function S(θ;vi) describes a self-propelling term.

We will assume through the paper that the stochastic quantity θ is distributed accord-
ing to a known probability density g : R→R

+, such that g(θ)≥0 a.e. in R, supp(g)⊆ IΘ

and
∫

IΘ
g(θ)dθ=1.

2.1 Cucker-Smale dynamics with uncertainty

In the case of flocking dynamics [1, 10, 16] the interaction function depends on the Eu-
clidean distance between two agents, i.e. H(θ;xi,xj)=H(θ;|xi−xj|) is of the form

H(θ;|xi−xj|)=
K

(1+|xi(θ,t)−xj(θ,t)|2)γ
, (2.2)

with K,γ>0 which may depend on stochastic inputs. We will refer to a system of agents
with trajectories (2.1) and interaction function of the form (2.2) as Cucker-Smale (CS)
model. Further, we set in (2.1) A(·;·,·)≡0 and R(·;·,·)≡0.

In the deterministic setting, different regimes are described by the introduced model
in relation to the choice of K,γ> 0. In particular, the following result has been proven
in [16], see Theorem 2 on p. 855. We also refer the reader to [10, 22, 23] for related results
and improvements.

Theorem 2.1. Assume that one of the following conditions holds:

i) γ≤1/2

ii) γ>1/2 and
[

(

1

2γ

)
1

2γ−1

−
(

1

2γ

)
2γ

2γ−1

]

(

K2

8N2Λ(v0)

)

1
2γ−1

>2Γ(x0)+1, (2.3)
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where

Γ(x)=
1

2 ∑
i 6=j

|xi−xj|2, Λ(v)=
1

2 ∑
i 6=j

|vi−vj|2.

Then there exists a constant B0 such that Γ(x(t))≤ B0 for all t∈R
+ while Λ(v(t)) converges

toward zero as t→+∞, and the vectors xi−xj tend to a limit vector x̂ij, for all i, j≤N.

Therefore in the case γ≤ 1/2 we will refer to unconditional alignment (or flocking)
given that the velocities alignment does not depend on initial configuration of the system
or on dimensionality. In this case all the agents of the population have the same velocity,
they form a group with fixed mutual distances with a spatial profile which depends on
the initial condition. If γ>1/2 flocking may be expected under the condition of equation
(2.3).

Proposition 2.1. Let us consider the evolution of the stochastic CS model (2.1) with inter-
action function of the form (2.2) and K=K(θ), i.e. for a deterministic γ≤1/2















ẋi(θ,t)=vi(θ,t), i=1,··· ,N,

v̇i(θ,t)=
1

N

N

∑
j=1

K(θ)

(1+|xi(θ,t)−xj(θ,t)|2)γ
(vj(θ,t)−vi(θ,t)),

subject to deterministic initial conditions xi(θ,0)= x0
i , vi(θ,0)= v0

i for all i=1,··· ,N. The
support of the velocities exponentially collapse for large time for each θ ∈ IΘ provided
K(θ)>0.

Proof. We omit the proof that is reminiscent of well established results, see for example
Proposition 5 on p. 231 of [10]. Similar results have been also obtained in [22, 31].

In the case K = K(θ) and γ = γ(θ)> 0 we can study the behavior of the system in
a neighbor of the deterministic value γ0 ≤ 1/2 for which unconditional alignment does
emerge provided K>0. We can prove the following result.

Proposition 2.2. In a neighbor of γ0≤1/2 a linearization of the uncertain CS model with
K(θ)>0, γ(θ)>0 reads















ẋi(θ,t) =vi, i=1,··· ,N,

v̇i(θ,t) =
1

N

N

∑
j=1

K(θ)

(1+|xi−xj|2)γ0

(

1−(γ(θ)−γ0)log(1+|xi−xj|2)
)

(vj−vi),
(2.4)

for which unconditional flocking of the velocities follows if

γ(θ)<γ0. (2.5)
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Proof. We can linearize the interaction function H(θ; ·) in a neighbor of γ0≤1/2 as follows

H(θ;|xi−xj|)=
K(θ)

(1+|xi−xj|2)γ0
+

∂H̄

∂γ
(θ;|xi−xj|)(γ(θ)−γ0),

being H̄=K(θ)/(1+|xi−xj|2)γ̄ and where γ̄=λγ0+(1−λ)γ(θ), λ∈[0,1]. Hence, it is seen
that the linearized system assumes the form (2.4) for which we impose the positivity of
the strength of interaction, condition that leads to (2.5).

2.2 Other swarming models with uncertainty

The microscopic model introduced by D’Orsogna, Bertozzi et al. in [20] describes dynam-
ics which self-propulsion, attraction and repulsion zones. The model is given as follows











ẋi(θ,t)=vi(θ,t),

v̇i(θ,t)=(a−b|vi(θ,t)|2)vi(θ,t)− 1

N ∑
j 6=i

∇xi
U(θ;|xj(θ,t)−xi(θ,t)|) (2.6)

for all i=1,··· ,N. In the system of differential equations (2.6) the quantities a, b are non-
negative parameters representing the self-propulsion of individuals and a friction term
following Rayligh’s law respectively. Further, U : R

2d× IΘ →R is an uncertain potential
modeling short-range range repulsion and long-range attraction. A typical choice for the
potential U is a Morse potential of the form

U(θ;r)=−CA(θ)e
−r/ℓA +CR(θ)e

−r/ℓR , (2.7)

where CA(θ), CR(θ), ℓA, ℓB are the uncertain strength and length of attraction/repulsion
respectively. In collective behavior description of interest is the case C(θ) :=CR/CA > 1
and ℓ := ℓR/ℓA < 1 corresponding to long-range attraction and short-range repulsion. It
is well-known that several equilibria may be described through this system: the first of
stability for C(θ)ℓ2d >1 for all θ∈ IΘ, with agents forming a crystalline pattern, whereas
if C(θ)ℓ2d <1 the agents tend to a single or double mills of constant speed v=

√
a/b, see

[11]. We may similarly consider the case where uncertainties are present also in the self-
propelling term or in the characteristic lengths of attraction/repulsion as well, anyway
we will limit to the one described here.

Remark 2.1. As a modification of the classical CS model recent literature considered the
case of non-symmetric interactions [31]. The authors considered the case where align-
ment is based on a relative influence between agents, its version with uncertainty reads
as follows for all i=1,··· ,N















ẋi(θ,t)=vi(θ,t),

v̇i(θ,t)=
1

N

N

∑
j=1

h(θ;xi,xj)(vj(θ,t)−vi(θ,t)),
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where h(θ;·,·) express an uncertain relative alignment strength between the agents i, j and
is defined as

h(θ;xi,xj)=
H(θ;|xi−xj|)

H̃(θ;xi)
, H̃(θ;xi)=

1

N

N

∑
k=1

H(θ;|xi−xk|),

and H(θ;·) is given by (2.2). The introduced model prescribes weighted interactions be-
tween the agents of the system, this symmetry breaking of the original CS dynamics
links this problem to more sophisticated modeling, for example leader-follower models
and limited perception models as well. We refer the reader to [11,36] for more details and
further references.

2.3 Mean-field limit

In the case of very large number of interacting individuals the numerical solution of the
coupled system of ODEs poses serious problems due to the curse of dimensionality. For
this reason the description of the interacting systems at different scales [2, 11, 23] is of
primary importance. Therefore, we tackle the problem by considering the distribution
function of particles dependent on the stochastic variable θ∈ IΘ f (θ,x,v,t)≥0 with posi-
tion x∈R

dx , v∈R
dx at time t≥0. The evolution of f is then derived from the microscopic

dynamics via asymptotic techniques.

To obtain the mean-field formulation of the CS dynamics with stochastic interactions
we can follow the usual approaches for all θ ∈ IΘ, see [11, 13, 23]. Let us consider the
system of ODEs (2.1), a possible way to derive the corresponding evolution for f ≥ 0
relies in BBGKY hierarchy [11, 13, 23, 31]. Let us define the N−particle density function

f (N)= f (N)(θ,x1,v1,··· ,xN ,vN ,t),

whose evolution, thanks to the mass conservation, is described in the terms of the Liou-
ville equation

∂t f (N)+
N

∑
i=1

vi ·∇xi
f (N)=− 1

N

N

∑
i=1

∇vi
·
(

N

∑
j=1

Hij(θ)(vj−vi) f (N)

)

, (2.8)

where we indicated with Hij(θ)=H(θ;xi−xj). Further, we define the marginal distribu-
tion

f (1)(θ,x1,v1,t)=
∫

Rdv(N−1)

∫

Rdx(N−1)
f (N)(θ,x1,v1,x2,···,N ,v2,···,N ,t)dx2,···,Ndv2,···,N ,

where

(x2,···,N,v2,···,N)=(x2,v2,··· ,xN ,vN).
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By direct integration of (2.8) against dx2,···,N ,dv2,···,N we have that the transport term cor-
responds to

∫

Rdv(N−1)

∫

Rdx(N−1)

N

∑
i=1

vi ·∇xi
f (N)dx2,···,Ndv2,···,N =v1 ·∇x1

f (1)(θ,x1,v1,t).

For what it may concern the last term of (2.8), thanks to the interchangeability of the
particles we have

1

N

N

∑
i=1

∫

Rdv(N−1)

∫

Rdx(N−1)

N

∑
j=1

∇vi
Hij(θ)(vj−vi) f (N)dx2,···,Ndv2,···,N =

1

N

∫

Rdv(N−1)

∫

Rdx(N−1)

N

∑
j=2

∇v1
H1j(θ)(vj−v1) f (N)dx2,···,Ndv2,···,N.

By taking a closer look to this term we can observe how, thanks to the symmetry of the
problem for all 2≤ j,k≤N, j 6= k we have

∫

Rdv(N−1)

∫

Rdx(N−1)
H1j(θ)(vj−v1) f (N)dx2,···,Ndv2,··· ,N

=
∫

Rdv(N−1)

∫

Rdx(N−1)
H1k(θ)(vk−v1) f (N)dx2,···,Ndv2,··· ,N,

and we obtain

1

N

N

∑
i=1

∫

Rdv(N−1)

∫

Rdx(N−1)

N

∑
j=1

∇vi
Hij(θ)(vj−vi) f (N)dx2,···,Ndv2,···,N

=
N−1

N

∫

Rdv(N−1)

∫

Rdx(N−1)
H12(θ)(v2−v1) f (N)dx2,···,Ndv2,···,N . (2.9)

Similarly to f (1)(θ,x1,v1,t), let us define then the marginal density

f (2)(θ,x1,v1,x2,v2,t)=
∫

Rdv(N−2)

∫

Rdx(N−2)
f (N)dx3,···,Ndv3,···,N .

We can then reformulate (2.9) as

N−1

N
∇v1

∫

Rdv

∫

Rdx
H12(θ)(v2−v1) f (2)dx2dv2.

Finally, the integration of (2.8) against dx2,···,N,dv2,··· ,N gives

∂t f (1)(θ,x1,v1,t)+v1 ·∇x1
f (1)=−N−1

N

∫

Rdv

∫

Rdx
H12(θ)(v2−v1) f (2)dx2dv2. (2.10)



J. A. Carrillo, L. Pareschi and M. Zanella / Commun. Comput. Phys., 25 (2019), pp. 508-531 515

Now, we define

f (θ,x1,v1,t)= lim
N→+∞

f (1)(θ,x1,v1,t),

f̃ (θ,x1,v1,x2,v2,t)= lim
N→+∞

f (2)(θ,x1,v1,x2,v2,t),

and we make the ansatz for the propagation of chaos

f̃ (θ,x1,v1,x2,v2,t)= f (θ,x1,v1,t) f (θ,x2,v2,t).

Finally, from (2.10) we have

∂t f (θ,x,v,t)+v·∇x f (θ,x,v,t)=∇v ·[H[ f ](θ,x,v,t) f (θ,x,v,t)] , (2.11)

where

H[ f ](θ,x,v,t)=
∫

Rdv

∫

Rdx
H(θ;x,y)(v−w) f (θ,y,w,t)dydw, (2.12)

where H(θ;x,y)=H(θ;|x−y|) has been defined in (2.2).
Alternative formal derivations require to assume that the set of particles remains in

a given compact domain. Once this condition is met, thanks to the Prohorov’s theorem,
we can prove the convergence of the associated empirical distribution density f N , up to
extraction of a subsequence, to a continuous probability density, see [11] Section 3.2 for
details.

3 Monte Carlo gPC methods

In this section we introduce the Stochastic Galerkin (SG) numerical method for a general
differential problem. In particular we will discuss numerical methods belonging to the
class of generalized polynomial chaos (gPC). Without intending to review all the per-
tinent literature we indicate the following references for an introduction [28, 30, 40, 42].
In our schemes, Monte Carlo (MC) methods will be employed for the approximation of
the distribution function f (θ,x,v,t) in the phase space whereas the random space at the
particles level is approximated through SG-gPC techniques.

For the sake of clarity, we recall first some basic notions on gPC approximation tech-
niques and SG methods applied directly to the distribution function f (θ,x,v,t) and the
corresponding mean-field system.

3.1 Preliminaries on gPC techniques

Let (Ω,F ,P) be a probability space, where as usual Ω is the sample space, F is the σ-
algebra and P is a probability measure, and let us define a random variable

θ : (Ω,F)→ (IΘ,BR),
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Table 1: The different gPC choices for the polynomial expansions.

Probability law of θ Expansion polynomials Support

Gaussian Hermite (−∞,+∞)

Uniform Legendre [a,b]

Beta Jacobi [a,b]

Gamma Laguerre [0,+∞)

Poisson Charlier N

with IΘ ⊆ R and BR the Borel set. Let us take into account moreover the space time
domains S⊆R

dx×R
dv ,d≥1 and [0,T]∈R

+ respectively. In this short paragraph we focus
on real-valued functions depending on a single random input of the form f (θ,x,v,t) :
Ω×S×[0,T]→R

d with f (·,x,v,t)∈L2(Ω,F ,P) for all (x,v,t)∈S×[0,T]. We consider now
the linear space P

M generated by orthogonal polynomials in θ with degree up to M:
{Φh(θ)}M

h=0. They form an orthogonal basis of L2(Ω,F ,P)

∫

IΘ

Φh(θ)Φk(θ)dg(θ)=
∫

IΘ

Φ2
h(θ)dg(θ)δhk ,

where δhk is the Kronecker delta function and g(θ) is the probability distribution function
of the random variable θ ∈ IΘ. Let us assume that g(θ) has finite second order moment,
then the polynomial chaos expansion of f (·,x,v,t) is defined as follows

f (θ,x,v,t)= ∑
m∈N

f̂m(x,v,t)Φm(θ),

where f̂m(x,v,t) is the Galerkin projection of f (θ,x,v,t) into the polynomial space P
m

f̂m(x,v,t)=
∫

IΘ

f (θ,x,v,t)Φm(θ)dg(θ), m∈N. (3.1)

We exemplify the resulting numerical method on a general nonlinear initial value
problem

∂t f (θ,x,v,t)=J [ f ](θ,x,v,t) (3.2)

with f (θ,x,v,t) solution of the differential model and J [·] a differential operator. Here
the random variable θ acts as a perturbation of J [·], or propagates from uncertain initial
conditions.

The generalized polynomial chaos method approximates the solution f (θ,x,v,t) of
(3.2) with its M-th order truncation f M(θ,x,v,t) and considers the Galerkin projections of
the problem for each h=0,··· ,M

∂t

∫

IΘ

f (θ,x,v,t)·Φh(θ)dg(θ)=
∫

IΘ

J [ f ](θ,x,v,t)·Φh(θ)dg(θ).
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Thanks to the Galerkin orthogonality we typically obtain a system of M+1 deterministic
coupled equations

∂t f̂h(x,v,t)= Ĵh({ f̂k}M
k=0)(x,v,t). (3.3)

The related deterministic coupled subproblem can be solved through suitable numerical
techniques. The approximation of the statistical quantities of interest are defined in terms
of the introduced projections. From (3.1) we have

E[ f (θ,x,v,t)]≈ f̂0(x,v,t), (3.4)

and its evolution is approximated by (3.3). Thanks to the orthogonality of the polynomial
basis it is possible to show that

Var[ f (θ,x,v,t)]≈E





(

M

∑
h=0

f̂h(x,v,t)Φh(θ)− f̂0(x,v,t)

)2




=
M

∑
h=0

f̂h(x,v,t)E[Φ2
h(θ)]− f̂ 2

0 (x,v,t). (3.5)

One of the most important advantages of the gPC-SG type methods is their exponential
convergence with respect to the stochastic quantity to the solution of the problem, unlike
usual sampling techniques for which the order is O(1/

√
M) where M is the number of

samples. Despite this property, numerical solution of gPC-SG systems are costly in the
case of nonlinear problems, since all modes are coupled, and for this reason requires a
clear effort in order to design efficient codes [30, 40].

3.2 Stochastic Galerkin methods for the mean-field system

Let us consider the stochastic mean-field equation (2.11) with nonlocal drift H[·] of the
form (2.12). The gPC approximation for this problem is given by the following system of
differential equations

∂t f̂h(x,v,t)+v·∇x f̂h(x,v,t)=∇v ·
[ M

∑
k=0

Hhk[ f̂ ](x,v,t) f̂k(x,v,t)
]

, (3.6)

with

Hhk[ f̂ ]=
1

‖Φh‖2
L2

M

∑
m=0

∫

IΘ

H[ f̂m]Φk(θ)Φm(θ)Φh(θ)dg(θ). (3.7)

The system of differential equations (3.6) may be written in vector notations as follows

∂t f̂(x,v,t)+v·∇x f̂(x,v,t)=∇v ·
[

H[f̂](x,v,t)f̂(x,v,t)
]

,
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where f̂=( f̂0,··· , f̂M)T and the components of the (M+1)×(M+1) matrix H[f̂] are given
by (3.7). We define the total mass and the mean velocity as the quantities:

ρ=
∫

Rdv×Rdx
f M(θ,x,v,t)dxdv and V(θ,t)=

1

ρ

∫

Rdv×Rdx
v f M(θ,x,v,t)dxdv,

with

f M(θ,x,v,t)=
M

∑
m=0

f̂m(x,v,t)Φm(θ).

Proposition 3.1. The total mass ρ does not depend on the stochastic quantity θ ∈ IΘ in
the case of deterministic initial distribution f (θ,x,v,0)= f0(x,v) and is conserved in time
under the conditions

∫

Rdv
v f̂h(x,v,t)dv

∣

∣

∣

|x|→+∞
=0 and

∫

Rdx

M

∑
k=0

Hhk[ f̂ ] f̂k(x,v,t)dx
∣

∣

∣

|v|→+∞
=0

for all h=0,··· ,M.

Proof. Integrating (3.6) in phase space leads to

∂t

∫

Rdv×Rdx
f̂h(x,v,t)dxdv=0

under the above assumptions. Therefore, the total mass is conserved in time and since
the initial data does not depend on θ, then f̂h =0 for h 6=0 and the result follows.

Proposition 3.2. The mean velocity of (3.6)-(3.7) is conserved in time provided

∫

Rdv
v⊗v f̂h(x,v,t)dv

∣

∣

∣

|x|→+∞
=0 and

M

∑
k=0

v
∫

Rdx
Hhk[ f̂ ] f̂k(x,v,t)dx

∣

∣

∣

|v|→+∞
=0. (3.8)

Proof. For all h=0,··· ,M let us consider the quantity
∫

Rdv×Rdx v f̂h(x,v,t)dxdv. From (3.6)
we have

∂t

∫

Rdv×Rdx
v f̂h(x,v,t)dxdv+

∫

Rdv×Rdx
∇x ·(v⊗v f̂h(x,v,t))dxdv

=
∫

Rdv×Rdx
v∇v ·

[ M

∑
k=0

Hhk[ f̂ ] f̂k(x,v,t)
]

dxdv.

Thanks to (3.8) we have

∂t

∫

Rdv×Rdx
v f̂h(x,v,t)dxdv=−

M

∑
k=0

∫

Rdv×Rdx
Hhk[ f̂ ] f̂k(x,v,t)dxdv,



J. A. Carrillo, L. Pareschi and M. Zanella / Commun. Comput. Phys., 25 (2019), pp. 508-531 519

from the definition of Hhk[·], it follows that

M

∑
m,k=0

∫

Rdv×Rdx

∫

Rdv×Rdx
H(x,y;θ)v f̂m(y,w,t)dydw f̂k(x,v,t)dxdv

=
M

∑
m,k=0

∫

Rdv×Rdx

∫

Rdv×Rdx
H(y,x;θ)w f̂m(x,v,t)dxdv f̂k(y,w,t)dydw,

implying that

M

∑
m,k=0

Hmk[ f̂ ] f̂k(x,v,t)=0

due to the symmetry of the interaction function H(·,·;θ) for all θ. Being f M(θ,x,v,t) =

∑
M
m=0 f̂m(x,v,t)Φm(θ), the result follows.

3.3 Monte Carlo gPC scheme

Similarly to classical spectral methods, the solution of the coupled system f M looses its
positivity and so it looses a clear physical meaning. This fact represents a serious draw-
back for real world applications of these expansions for which positivity of statistical
quantities, like the expected solution, is necessary. In order to overcome this difficulty,
we construct an effective numerical method for the solution of the mean-field stochastic
equations of collective behavior having roots in Monte Carlo methods (see [33, 34] for
an introduction). In particular we employ the results reported in Section 2.3, where we
formally derived the mean-field description of an interacting system of agents from a
microscopic stochastic dynamics. The proposed method for mean-field equations of col-
lective behavior is capable to efficiently approximate statistical quantities of the system
(3.4)-(3.5) and to conserve their positivity.

3.3.1 Stochastic Galerkin methods for the particle system

Similarly to what we described for the mean-field equations we can consider the gPC ap-
proximation of the microscopic dynamics. We approximate the position and the velocity
of the ith agent as follows

xi(θ,t)≈ xM
i =

M

∑
k=0

x̂i,k(t)Φk(θ), vi(θ,t)≈vM
i =

M

∑
k=0

v̂i,kΦk(θ),

where

x̂i,k=
∫

IΘ

xi(θ,t)Φk(θ)dg(θ), v̂i,k =
∫

IΘ

vi(θ,t)Φk(θ)dg(θ).
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We obtain the following polynomial chaos expansion for all h=0,··· ,M


















d

dt
x̂i,h(t)= v̂i,h(t),

d

dt
v̂i,h(t)=

1

N

N

∑
j=1

M

∑
k=0

e
ij
hk(v̂j,k(t)− v̂i,k(t)),

where

e
ij
hk =

1

‖Φh(θ)‖2

∫

IΘ

H(θ;xi,xj)Φk(θ)Φh(θ)dg(θ),

defines a time-dependent matrix E=
[

e
ij
hk

]

h,k=0,···,M. At the microscopic level the conserva-

tion of the mean velocity holds thanks again to the symmetry of the interaction function
H(·,·;θ) introduced in (2.2). In fact, the gPC approximation vM(θ,t) also conserves the
mean velocity as proven in [3].

3.3.2 Monte Carlo-gPC approximations

Let us finally tackle the limiting stochastic mean-field equation in its gPC approxima-
tion. As already observed the particle solution of (3.6)-(3.7) corresponds to compute the
original O(M2N2) dynamics, since at each time step and for each gPC mode every agent
averages its velocity with the projected velocities of the whole set of agents. A reduction
in computational cost may be achieved through a Monte Carlo (MC) evaluation of the
interaction step as introduced in [2]. Once we have an effective MC algorithm for trans-
port and interaction in phase space, the expected solution may be reconstructed from
expected positions and velocities of the microscopic system, which has been computed
in the gPC setting.

Algorithm 1 (MC-gPC for stochastic mean-field equations).

1. Consider N samples (xi,vi) with i=1,··· ,N from the initial f0(x,v), and fix S≤N a
positive integer;

2. for n=0 to T−1

for i=1 to N

a) sample S particles j1,··· , jS uniformly without repetition among all particles;

b) perform gPC up to order M ≥ 0 over the set of S ≤ N particles: we need to
compute the dynamics for (x̂js ,h,v̂js ,h) where s=1,··· ,S and h=0,··· ,M;

c) compute the position and velocity change

v̂n+1
i,h = v̂i,h+

∆t

S

S

∑
s=1

M

∑
k=0

e
ijs
kh(v̂js ,k− v̂i,k)

end for
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3. Reconstruction Eθ [ f (x,v,θ,n∆t)].

end for

The Monte Carlo evaluation of the interaction step described in Algorithm 1 allows
to reduce the overall cost to O(M2SN), where S≪ N. Of course, in the case S= N, we
obtain the original cost of the N particles system. Clearly, the introduced method is still
spectrally accurate with respect to the stochastic variable θ provided we have a smooth
dependence of the particle solution from the random field.

Stochastic mean–field equation

gPC for mean–field equation

Solution coupled system of PDEs

Approximation expected solution

System of ODEs, N ≫ 0

MC-gPC algorithm

Reconstruction expected solution
]

Figure 1: Two possible numerical approaches to stochastic mean-field models, the right branch describe the
MC-gPC scheme.

In Fig. 1 we sketch the two possible approaches to numerical solution of stochastic
mean-field equations. On the left, we first consider the gPC approximation of the orig-
inal PDE of the mean-field type, then through a deterministic solver we tackle the cou-
pled system of equations in order to approximate the expected quantities. On the right
we consider the MC-gPC scheme, therefore we work on the particle system thanks to a
Monte Carlo evaluation of the interactions, then by considering the gPC scheme at the
microscopic level we can reconstruct statistical quantities. Several approaches are possi-
ble when reconstructing densities from particles, in the present manuscript we consider
the histogram of position and velocity of the set of particles in the phase space. Other
approaches are the so-called weighted area rule [24], where each particle is counted in a
computational cell and is counted in the neighbor cells with a fraction proportional to the
overlapping area, or reconstruct the density function by a convolution of the empirical
particle distribution with a suitable mollifier [33]. Clearly, the resulting method preserves
the positivity of the distribution function.

Remark 3.1. Concerning the computational accuracy of the method in the case S=N, we
have a convergence rate of the order O(1/

√
N), where N is the number of samples, in the



522 J. A. Carrillo, L. Pareschi and M. Zanella / Commun. Comput. Phys., 25 (2019), pp. 508-531

physical space due to the Monte Carlo approximation and a spectral convergence with
respect to M in the random space. In the case S<N the fast evaluation of the interaction
sum with S points, in a single time step, introduces an additional error O(

√
1/S−1/N)

at the particles level. Therefore, in practical applications very few modes are necessary to
match the accuracy of the Monte Carlo solver. In particular, we will show how, for a fixed
number of particles N, macroscopic expected quantities are approximated with spectral
accuracy, typical of SG methods.

4 Applications

In this section we present numerical tests based on stochastic mean-field equation of
collective behavior. In particular, we give numerical evidence of the effectiveness of MC-
gPC methods showing that the method does not loose the spectral convergence of gPC
methods when approximating the expected solution of the system and that preserves the
positivity of the statistical quantities. In all tests the time integration has been performed
through a 4th order Runge-Kutta method.

4.1 1D tests

The space homogeneous case. Let us consider the space independent case in the one
dimensional setting, i.e. H(θ;xi,xj) = K(θ)> 0, for all θ. The evolution of the density
function f (θ,v,t), v∈R is given by the following stochastic mean-field equation

∂t f (θ,v,t)=∂v

[

K(θ)(v−u) f (θ,v,t)
]

, (4.1)

with u=
∫

IΘ
v f0(v)dv, whose gPC approximation is given for all h=0,··· ,M by

∂t f̂h(v,t)=
1

‖Φh‖2
∂v

[

M

∑
k=0

(v−u)Hhk f̂k(v,t)

]

, (4.2)

where now

Hhk =
∫

IΘ

K(θ)Φh(θ)Φk(θ)dg(θ), f̂h(v,t)=
∫

IΘ

f (θ,v,t)Φh(θ)dg(θ).

The long time solution of (4.1) is a Dirac delta δ(v−u) provided K(θ)>0 for all θ, see
[10, 39]. We compute the transient behavior of the gPC coupled system of homogeneous
equations (4.2) through a central difference scheme. Let us consider an initial density
function f0(v) of the form

f0(v)=β

[

exp(− (v−µ)2

2σ2
)+exp(− (v+µ)2

2σ2
)

]

, σ2 =0.1, µ=
1

4
, (4.3)
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Figure 2: Left: expected density at time T = 1 obtained from (4.2) through the gPC and the one obtained
through MCgPC schemes with a sampling of S= 5 at each time step. We considered 101 gridpoints in the

velocity space, ∆t=∆v2, the gPC expansion has been performed up to order M= 5. Right: convergence of

the MCgPC algorithm based on a reference expected temperature T re f at time T=1 calculated at the particle

level with 105 particles.
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Figure 3: Left: evolution of the expected density toward the Dirac delta δ(v−u), u=0 for the MCgPC scheme
at different times with S= 50 uniformly sampled points at each time step. Right: mean-field convergence of
the MCgPC algorithm with fixed S = 50 and an increasing number of particles N, we compare the obtained

expected temperature with a reference one T re f at time T=1 which is computed from the mean-field problem
evolved with 801 gridpoints.

with β> 0 a normalization constant. Discrete samples of the initial velocities of the mi-
croscopic system of ODEs are obtained from f0(v) in (4.3).

In Figs. 2-3 we study the convergence of the expected temperature of the system

T =
∫

IΘ

∫

R

(v−u)2 f (θ,v,t)dvdg(θ)

obtained through the MCgPC algorithm for an increasing order of the gPC expansion.
We considered N = 104 particles computing the evolution up to time T = 1.0 with time
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step ∆t=10−2, the MCgPC method considered an increasing number of interacting par-
ticles S=10,102,104. In particular in Fig. 3, we consider as reference temperature the one
obtained at the mean-field level with a high number of gridpoints at time T=1, whereas
in Fig. 2 as reference temperature we consider the one obtained with N = 105 particles
interacting with the full set, i.e. S=105, at time T=1.

We can observe in Fig. 2 (right) that for this test case the error with respect to S, for a
given M≥4, decays as O(1/S−1/N) instead of O(

√
1/S−1/N). This is due to the fact

that we are evaluating the error for the temperature and that the mean velocity is zero.

Stochastic 1D Cucker-Smale dynamics. In this test, we consider the 1D Cucker-Smale
dynamics. Let us consider as initial distribution the following bivariate and bimodal
distribution

f0(x,v)=
1

2πσxσv
exp

(

− x2

2σ2
x

)[

exp
(

− (v+ v̄)2

2σ2
v

)

+exp
(

− (v+ v̄)2

2σ2
v

)]

,

with v̄=1, σ2
x=0.5, σ2

v=0.2. Our initial data for particle positions and velocities are sample
from f0.

In Fig. 4 we present the evolution over the time interval [0,5] of the expected distri-
bution following the stochastic Cucker-Smale dynamics with stochastic interactions. The

(a) t=0 (b) t=1

(c) t=3 (d) t=5

Figure 4: 1D Cucker-Smale dynamics computed through the MCgPC algorithm over the time interval t∈ [0,5],
∆t=10−2. We considered N=105 agents, S=5, and a stochastic Galerkin decomposition up to order M=5.
Stochastic interactions are given by H(xi,xj;θ) with γ(θ)=0.05+0.05θ, θ∼U([−1,1]).
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results are obtained through the MCgPC scheme with N = 105 particles, whose interac-
tions are calculated over subsets of S= 5 particles. The stochastic interactions are given
by

H(θ;|xM
i −xM

j |)= 1

(1+|xM
i −xM

j |2)γ(θ)
, (4.4)

with γ(θ)=0.1+0.05θ a stochastic quantity depending on θ∼U([−1,1]).

We considered an M = 5 order stochastic Galerkin method at the microscopic level.
The expected distribution is then reconstructed in the domain [−2,2]×[−2,2] discretized
with 50 gridpoints both in space and velocity.

4.2 2D tests

Stochastic 2D Cucker-Smale. In Fig. 5 we computed the evolution over the time inter-
val t∈ [0,10] of 2D Cucker-Smale non homogeneous mean-field model in the space do-
main [−2,2]×[−2,2] through the MCgPC scheme. As initial distribution we considered
uniformly distributed N=105 particles on a 2D annulus with a circular counterclockwise

(a) t=0 (b) t=2

(c) t=8 (d) t=10

Figure 5: 2D Cucker-Smale with N = 105 agents, H(θ;|xi−xj|) with γ(θ) = 0.1+0.05θ, θ ∼U ([−1,1]). 2D

Cucker-Smale dynamics computed through the MCgPC algorithm over the time interval t∈ [0,10], ∆t= 10−2.

We considered N = 105 agents, S= 5, and a stochastic Galerkin decomposition of order M = 10. Stochastic
interactions are given by (4.4).
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motion

f0(x,v)=
1

|C|χ(x∈C)δ

(

v− k∧x

|x|

)

,

being C :={x∈R
2 : 0.5≤|x1−x2|≤1} and k the fundamental unit vector of the z-axis.

Similarly to the 1D case we considered stochastic interactions described by (4.4). The
mean-field Monte Carlo step has been considered with S= 5 interacting particles. The
stochastic Galerkin projection has been considered up to order M=10.

The evolution shows how the initial distribution flocks exponentially fast and that at
time t=8 the final flocking structure is essentially reached. The reconstruction step of the
mean density for position and velocity has been done with 50 gridpoints in both space
dimensions. In order to highlight the flocking formation in each figure we also add the
velocity field (arrows in the plots) to illustrate the flock direction.

D’Orsogna-Bertozzi et al. model. In this paragraph we consider the D’Orsogna-
Bertozzi et al. model to reproduce in the stochastic setting the typical mill dynamics
described in [11, 20]. According to what we introduced in Section 2.2 we consider long-
range attraction and short-range repulsion given by a stochastic Morse potential with
CA=CA(θ), CR=CR(θ).

In Fig. 6 we present the evolution of the solution over t∈ [0,200] with the same initial
data as in the previous example. In order to perform the MCgPC scheme we consider
N=105 agents, the mean-field Monte Carlo is considered with S=10 interacting agents
at each time step and the stochastic Galerkin projection uses M=8 terms. The stochastic
Morse potential is given by CA(θ)=30+θ, CR(θ)=10+θ, with θ∼U([−1,1]). Other typical
parameters are the following ℓA =100, ℓR =3.

From the reconstruction of the expected density, over a 50×50 grid, we can observe
the emergence of a double mill structure. This fact is reminiscent of the phenomena re-
ported in [12] in which single mills prefer to bifurcate to double mills for small noise
added to the particle model. This interesting phase transition seems to be a robust be-
havior for general noisy data based on our present considerations of random parameters.

4.3 2D test with 2D uncertainty

Within this section we investigate the case of the full particle system (2.1), where the dy-
namics of self-propulsion, attraction and repulsion are given by the D’Orsogna-Bertozzi
et al. model whereas the alignment dynamics is given by the Cucker-Smale model. In
particular, we concentrate on the case where the evolution of the system is affected by an
uncorrelated 2D random term θ =(θ1,θ2), i.e. θ ∼ g(θ1,θ2)= g1(θ1)g2(θ2). At the kinetic
level the model is described by the evolution of the density function f = f (θ1,θ2,x,v,t)
solution of the following kinetic equation

∂t f +v·∇x f =
[

(∇xU∗ρ)·∇v f +∇v ·[H[ f ]−((α−β|v|2)v) f ]
]

, (4.5)
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(a) t=10 (b) t=20

(c) t=150 (d) t=200

Figure 6: Evolution of the expected density from the D’Orsogna-Bertozzi et al. model with stochastic interac-

tions through the MCgPC scheme over the time interval t∈ [0,200], ∆t=10−2. We considered N=105 agents,
S= 10 and a stochastic Galerkin decomposition of order M= 8. At t= 200 the velocity field is reconstructed
discriminating the orientation of the particles to highlight the emerging double mill structure.

where the alignment term is given by the nonlocal operator

H[ f ](θ1,θ2,x,v,t)=
∫

R2

∫

R2

K

(1+|x−y|2)γ(θ1)
(v−w) f (θ1,θ2,x,v,t)dvdx,

and the potential U(θ2;|x−y|) depends only on θ2 as defined in (2.7). In order to apply
the MCgPC method, we consider the 2D stochastic Galerkin decomposition

xM(θ1,θ2,t)=
M

∑
k,h=0

x̂i,khΦk(θ1)Ψh(θ2), vM(θ1,θ2,t)=
M

∑
k,h=0

v̂i,khΦk(θ1)Ψh(θ2),

being {Φk(θ1)}M
k=0 and {Ψh(θ2)}M

h=0 the orthogonal basis of the introduced random terms.
The projection of the particle system is given for all ℓ,r=0,··· ,M by



















d

dt
x̂i,ℓr = v̂i,ℓr,

d

dt
v̂i,ℓr =

M

∑
k,h=0

Si
ℓrkhv̂i,kh+

1

N

N

∑
j=1

M

∑
k,h=0

E
ij
ℓrkh(v̂j,kh− v̂i,kh)−

1

N ∑
j 6=i

B
ij
ℓr,
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(a) t=0.5 (b) t=1.5

(c) t=2.5 (d) t=5

Figure 7: Evolution up to t=5 with ∆t=10−2 of the expected density from the D’Orsogna-Bertozzi et al. model
with alignment. We consider bivariate stochastic attraction repulsion strength, CA(θ2)=30+θ2, CR(θ2)=10+θ2,
θ2 ∼U ([−1,1]), and stochastic alignment dynamics γ(θ1)= 0.1+0.05θ1 with (θ1,θ2)∼ g1(θ1)g2(θ2). Here we

take N=105 agents, S=5 and M=5.

being Si
ℓrkh, E

ij
ℓrkh, B

ij
ℓr defined as follows

Si
ℓrkh=

∫∫

IΘ1
×IΘ2

(a−b|vM
i |2)Φℓ(θ1)Ψr(θ2)Φk(θ1)Ψh(θ2)dg1(θ1)dg2(θ2),

E
ij
ℓrkh=

∫∫

IΘ1
×IΘ2

H(θ1;|xM
i −xM

j |)Φℓ(θ1)Ψr(θ2)Φk(θ1)Ψh(θ2)dg1(θ1)dg2(θ2),

B
ij
ℓr =

∫∫

IΘ1
×IΘ2

∇xU(θ2;|xM
i −xM

j |)Φℓ(θ1)Ψr(θ2)dg1(θ1)dg2(θ2),

with U(·) the Morse potential defined in (2.7). In Fig. 7, we present the MCgPC solu-
tion in case of stochastic attraction repulsion strengths: CA(θ2)=30+θ2, CR(θ2)=10+θ2,
θ2∼U([−1,1]), and alignment dynamics (2.2) with parameters: K=5.0, γ(θ1)=0.1+0.05θ1,
θ1∼U([−1,1]). The initial data is the same as in the previous two examples. The compu-
tational cost of the method now is O(NSM2), therefore we considered S=5 and M=4 to
obtain a similar cost of the case presented in Fig. 6.
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5 Conclusion

In this paper we develop a novel approach for the construction of nonnegative gPC ap-
proximations of mean-field equations. The method is based on a Monte Carlo approxi-
mation of the kinetic mean-field equation in phase space combined with a gPC approxi-
mation of the random inputs on the particle samples. The idea presented here in principle
admits several generalizations to other kinetic equations like Vlasov-Fokker-Planck equa-
tions and Boltzmann equations. These aspects will be the subject of future investigations
and will be presented elsewhere.
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