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Abstract. In this paper, we describe our initiative to utilize a modern well-tested nu-
merical platform in the field of material physics: the Genetic Hybrid Algorithm (GHA).
Our aim is to develop a powerful special-purpose tool for finding ground state struc-
tures. Our task is to find the diamond bulk atomic structure of a silicon supercell
through optimization. We are using the semi-empirical Tersoff potential. We focus on
a 2x2x1 supercell of cubic silicon unit cells; of the 32 atoms present, we have fixed 12
atoms at their correct positions, leaving 20 atoms for optimization. We have been able
to find the known global minimum of the system in different 19-, 43- and 60-parameter
cases. We compare the results obtained with our algorithm to traditional methods of
steepest descent, simulated annealing and basin hopping. The difficulties of the opti-
mization task arise from the local minimum dense energy landscape of materials and
a large amount of parameters. We need to navigate our way efficiently through these
minima without being stuck in some unfavorable area of the parameter space. We
employ different techniques and optimization algorithms to do this.

AMS subject classifications: 82-08
PACS: 81.05.Cy
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1 Introduction

Our interest in especially semiconductor-oxide interface and surface structures is due
to their prevalence in modern electronics and devices; these structures heavily affect the
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performance of the different components presentin the devices. On the interface there are
two different interconnected crystal structures often leading to structures hard to predict.
This is what makes them a difficult research object. Finding these structures by hand,
i.e. designing the interfaces by trial and error needs special knowledge and takes a lot
of time, which is why a flexible, powerful optimizing tool would be beneficial for many
research problems across the field. Measuring the interface structures experimentally is
also difficult as they are buried in the material. That is why simulations and calculations
conducted on many different interface models are indispensable in understanding the
nature and behavior of these structures. The scale of these structures is often measured
in Angstrém’s (A) which is short for 1071m.

We started a collaboration between the School of Business and Economics at Abo
Akademi University and University of Turku’s Materials Research Laboratory in order
to develop a tool for optimizing atomic structures, with the algorithm especially tuned
for interface structures. In geno-mathematical programming artificial intelligence is con-
nected to mathematical programming methodology on parallel supercomputers. The
approach provides a powerful basis for coping with difficult irregular optimization prob-
lems and solving them concurrently. We were also interested in the performance of our
special-purpose algorithm in the physics based problem of optimizing atomic structures
of materials, designed using a modern numerical platform as a base. The optimization
is done by minimizing the potential energy, measured in electronvolts (eV), of the struc-
ture. The difficulty does not lie in finding a nearby local minimum from a given starting
structure, as this can usually be achieved through the steepest descent method in a small
amount of steps, but in navigating past all these minima to the global minimum. The
energy landscape is filled with these local traps that do not reveal much if any indication
on where the true global minimum lies.

Exploring the whole landscape is only doable in very small cases. This is because
along with the increasing parameter count the number of local minima of the task rises
exponentially with the number of atoms: for example with Lennard-Jones clusters it was
shown that the number of minima multiplies by around 2-3 per atom added [23]. This
makes almost any interesting interface or surface system hard to study. In this article, we
show that even our small silicon case can be problematic if not treated properly.

In theory, good molecular dynamics (MD) simulation should be able to find the global
minimum given enough time and proper annealing. In practice, the required time is of-
ten very large and might require a lot of parameter fine-tuning while still leaving defects
at the end of the simulation. Of course, even then we can never be sure that the result
is the true global minimum, unless we know the answer beforehand. Large scale com-
puting is a crucial part of bigger MD simulations and advances in that field continue to
be made even today, for example speeding up node and core communication [7,26], re-
ducing memory usage [7], improving threading [14] and creating faster algorithms for
force computations [8]. In our work presented in this paper, all the cores work fairly
independently, but in the future the algorithm could be expanded to include more com-
munication between the cores. We did a series of MD simulations of our silicon test case
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shown in Section 2, where we find that while we cannot guarantee the global minimum,
it becomes very likely to be found as the simulation time increases.

Advanced techniques like basin hopping [24], meta dynamics [11], swarm simulation
[2,3], genetic and evolution based methods have been developed and used over the years
to find the global minimum of a system. They have been implemented to various degrees
in software like USPEX [15], GASP [27] and CALYPSO [25] to name a few.

2 Silicon: 20-atoms case

Because finding the one global minimum amongst all the multiple local minima is a chal-
lenging task, we chose a well-known case of bulk silicon for our first study. The more
difficult case of interfaces is left for future research. The structure of silicon we are try-
ing to find is the well-known diamond structure, which can be represented as a cubic box
with a periodic boundary condition, also known as a unit cell. We chose our optimization
task to be a 2x2x1 a supercell of these cubic diamond cells. The dimensions of this cell
were not part of the optimization. The supercell contains 32 atoms in total, but we fixed
all of the border atoms in place as shown with grey atoms in Fig. 1. This leaves 20 atoms
for optimization, each having spatial coordinates x, y and z that gives us 60 parameters
in total. Unlike in some smaller optimization tasks, we could not solve a problem of this
size by brute force. The parameters have only simple box constraints determined by the
supercell we are using. The cell dimensions are 10.86 A,10.86 A and 5.43 A, which leads
to atom i’s coordinates (x;, y;, z;) having the box constraints given in Eq. (2.1):

0<x;<10.86, 0<y;<10.86, 0<z;<5483. (2.1)
We have fixed the border atoms for the following reasons:

e The end goal is to produce a package that searches interface and surface structures,
which usually have a fixed known bulk structure surrounding the optimized re-
gion.

e It provided a starting point for the optimizer while also making it easier for us to
analyze if the produced structure was correct or what kind of techniques would be
needed to correct it.

o At the start we did not want to concern our optimizer with the periodic boundary
conditions.

This leaves three of the four layers to be optimized. These layers have 8, 4 and 8 atoms.
The middle layer has 8 atoms in it too, but four of those are frozen in place on the border
of the supercell.

We further divide this optimization task into three different cases with 60, 43 and 19
parameters with the latter two having assumptions that reduce the parameter count. In
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Figure 1. Presentation of our test case target solution from an angled and top-down perspective. The optimized
atoms are colored while the fixed atoms are grey and located on the borders of the supercell. This is the ideal
diamond structure for silicon we are trying to achieve.

the 60-parameter case all atoms have their positions optimized independently. The 43-
parameter case assumes that the atoms reside in 3 layers. All the atoms share 3 height
coordinates in total, reducing the parameter count by 17. The final 19-parameter case
assumes, in addition that the two 8 atom layers have the atoms arranged in squares with
4 rows and 4 columns. This drops the parameter count from 43 to 19, as the new 8
row /column parameters replace the 32 x- and y-parameters of 16 atoms. In the structure
of Fig. 1 these 8 parameters correspond to columns and rows of the yellow and purple
atoms. In the global minimum structure these rows and columns are evenly spaced.

Especially the layer assumption is reasonable in many interface and surface models
as long as we give some leeway for the atoms within the layer. In the 19-parameter case
the row /column assumptions for atoms on a layer can also be useful as the low energy
structures often have some form of symmetry that just needs to be found. In general us-
ing symmetries can be very advantageous as the reduction in parameters yields a smaller
dimensional problem to be explored. The structures produced through these high sym-
metry cases can also be used as a starting point for runs where the symmetry assumptions
are relaxed.

2.1 The Tersoff potential

We tried searching for the diamond structure through traditional molecular dynamics to
give us a reference point for comparison. We used the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software for our simulations [17]. In this test
case, we are using the Tersoff-potential [21], which is a fast many body bond-order poten-
tial’. The Tersoff potential allows fast computations and still describes silicon fairly well
in different environments. Comparative testing with alternative potentials and pseudo-
potential methods (e.g. the slower but more accurate ReaxFF-potential [22] and VASP
[10]) is left for future research.

The potential energy formula consists of a sum of two- and three-body interactions

fPotential energy refers to the Tersoff potential throughout the paper
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and is implemented in LAMMPS in the following form:

E= 2 T fer)Uf(ry) + by fa(ri)),
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where the sums go over all atoms, 7;; is the distance between atoms i and j, 6; is the bond
angle between bonds ij and ik, fc is a smooth cutoff function, fr is a repulsive two-body
interaction and term b;;f4 is the three-body interaction. The parameters A, B, D, R, B, A1,
A2, A3, 7y, m, n, ¢, d and 6, are material specific constants. We used the values specified in
the Ref. [21] for these parameters.

2.2 Steepest descent and annealing simulations

We wanted to see how good the traditional molecular dynamics methods are at solving
this problem. Starting with the steepest descent method, we generated 100000 random
initial structures and applied the steepest descent to each of them. The optimization
was terminated when a local minimum was reached within the desired energy toler-
ance; we found out that increasing the tolerance from 1078 eV improved the results only
marginally. The energy distribution of the found minimum in these optimization runs
is presented in Fig. 2 along with the distribution of optimization steps required to find
the minimum. From this figure we see that none of these runs could even come close to
finding the global minimum around —148 eV. Indeed, most of the runs stop in the region
—135eV to —130 eV, which is the same region our algorithm easily is stuck into, but more
on this later in Section 4.

It is worth noting that if we free the border atoms, the steepest descent method ac-
tually becomes noticeably more effective, shifting the minima peak and allowing us to
reach lower energies (Fig. 2 dashed line). This must be due to the cell being less rigid,
allowing the atoms to move around more freely. However, we chose to keep these atoms
frozen, as interface structure calculations do have a more rigid bulk part surrounding
the interface. In any future cases, however one should consider keeping the surrounding
bulk relatively flexible, in order not to hamper the optimization process.
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Figure 2: These are the distributions of lowest energy and steps required to achieve that energy from 100000
steepest descent simulations. Different curves correspond to a different energy tolerance used by LAMMPS to
end the search. The solid lines correspond to runs with the border atoms fixed in place. The dashed line is
from a similar simulation with only one fixed atom. Fixing only one atom made the simulations slightly faster
than freeing all of the atoms. The graphs have been smoothed. We see that around the tolerance of 10~ the
results start converging.
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Figure 3: LAMMPS annealing done from random starting positions. At the end of each simulation, we searched
the nearest minimum through the steepest descent method. Each line corresponds to a different amount of
applied annealing. The graph legend gives the amount of annealing steps done by LAMMPS, which also equals
to simulated time in femtoseconds.

After these simulations, we switched to considerably slower annealing simulations
[9], where we were able to obtain better results (Fig. 3). In these annealing simulations
the system is in a heat bath, which gives the atoms enough kinetic energy to overcome
the potential energy barriers. The temperature of the system is slowly reduced to a very
low temperature allowing the structure to settle in a local minimum.

In these simulations one step done by LAMMPS corresponds to 1 femtosecond(fs)
of simulated time. The calculations now absorb considerably more CPU time, as we set
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a single annealing to take 4000, 8000, 16000, 32000 48000 and 64000 steps. In contrast
most of the steepest descent calculations took between 50 and 300 steps, with the average
being around 100. Because the simulations take that much longer, we only did 1000
simulations/annealing time. In Fig. 3, we can see that most runs end with an energy
above —140 eV, even if we increase the simulation time.

We see that even this simple case is hard to solve quickly through traditional methods
of annealing and steepest descent. Even with 64000 steps, annealing had a success rate
of only 1.1%. If we increase the duration of the simulation by tenfold to 640000 steps, the
success rate rises noticeably to 41.9%. This run is not shown in Fig. 3 as it would cause a
very tall spike at the global minimum energy and render the graph harder to interpret.

We believe this is a good first test case for our optimizer providing enough challenge
and a straightforward way to progress into more challenging SiO, /Si-interfaces and sur-
face structures in the future.

3 Algorithm: methods and techniques

3.1 Introduction to genetic hybrid algorithms

Genetic hybrid algorithms are a combination of two parts, genetic and local search, that
complement each others. Genetic algorithms are known for being population based
search algorithms, that try to copy the process of natural evolution through natural se-
lection and genetic dynamics. They were first described by Holland in the 70s [6].

In most cases the genetic algorithms are good at exploring the landscape of the whole
parameter space and discovering the regions which possibly have the wanted global min-
imum [4,18]. They do this by trying to use the information gained from the known good
solutions and exploring the parameter space widely. The genetic algorithms however
sometimes have trouble actually pin pointing the global minimum after they have found
the region it belongs to. This is often caused by the algorithm’s inability to make the
necessary small changes to the system [19].

Different local search methods can cover for this weakness of genetic algorithms [5,
12]. From a given starting point the local search methods are usually very efficient at
exploring the region and finding the nearby local minima. The local search methods use
the information available from the surrounding area to find a good nearby minimum
and continue from there on. The quality of starting point is critical for the method. If the
starting point is not in the funnel of the global minimum, then it is very unlikely that the
global minimum will be found.

Genetic hybrid algorithm’s power comes from the combination of these two meth-
ods, where you take advantage of their individual strengths [5,12]. By using the genetics
to explore the vast parameter space and using the different local search methods to ex-
plore the interesting areas for the global minimum. In structure optimization the genetic
methods include operations like exchanging layers between two structures, using parts
of known low energy structures to produce very different possible solution structures
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and different kinds of smaller mutations, like just moving atoms around and switching
coordinates/layers in a given structure. The most basic local search methods are near-
est minimum locating algorithms like steepest descent and different sequential quadratic
programming (SQP) algorithms. When these are combined with methods like basin hop-
ping with its various forms and annealing, we get local search methods that are good at
exploring the nearby minima neighborhood.

3.2 GHA platform and our solver

We are using the Genetic Hybrid Algorithm (GHA) as a platform for algorithmic devel-
opment [16]. It is a computational platform for designing special purpose algorithms for
difficult numerical problems, extensively tested in economics and engineering. Through
GHA we can access different algorithms and non-linear solvers, like nlpqlp, snopt, fsqp,
dncong, cplex, kkt_gl and gurobi, which are powerful tools for mixed-integer non-linear
programming problems. We have linked LAMMPS to GHA as a library for easy and fast
potential energy evaluation. We can also extract forces from LAMMPS for fast gradi-
ent evaluation. For the local search, in addition to the algorithms implemented through
GHA, LAMMPS offers annealing and steepest descent. Later in Table 3 we present a com-
parison done between these algorithms and a sequential quadratic programming (SQP)
implementation.

Next we introduce our program structure, parallelization and the essential low-level
logic (Fig. 4). The searches we have done were multi-core jobs, but there is no search
boosting communication between the cores during the search. All cores are prepared
independently from the same parameters in a preprocessor-function. From there each
core runs the search for a preset length. The exception to this is when we at times choose
to stop the search when one of the cores has found the solution, sending out an interrupt
signal that will force all the other cores to stop the search. At the end each core will
do their core specific post processing involving mostly clean up of the memory and some
result processing. The root level I/O is done last, including most importantly information
of the search.

More specifically each core performs the global minimum search in a series of runs.
The general structure of the search has been illustrated in Fig. 4. Each of these runs starts
with the generation of a large pool of random structures. These are then ranked by their
energy and only a population of POP members is retained; typically this is between 4 and
64 in our calculations. With this population we will then perform genetic manipulation,
in this case arithmetic cross-over and non-uniform mutations, and continue processing
them in series of iteration loops.

Each member of the generated population launches into a series of iteration loops.
One loop consisting of a series of mixed evaluator() and accelerator() calls. The stan-
dard progression is done through box-constrained optimization(BFGS) using evaluator()
calls while the accelerator() is responsible for more radical changes, like different kind of
mutations to the structure.
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pre_processor()

Iteration loop O accelerator()
@ gradient()
@ evaluator()

Given starting
structure

Figure 4: The general structure of the main loops and working of GHA in our case. The main program consists
of a series of runs, which launch into multiple iterative loops, one for each population member, that try to
solve the problem from different starting positions. The figure is only illustrative as the accelerator()-function
is called when it is needed.

After the set amount of iteration cycles only the best structure with lowest energy will
continue to the next run cycle; others are discarded after the run. The search ends after
the chosen number of completed runs is reached. Since we know the global minimum
structure, we also choose to end the search early incase a core reaches the solution.

A very important genetic part of our problem specific accelerator() code are the dif-
ferent implemented mutations that are used to generate new structures from a given
structure. The most efficient type of mutations to the structure proved to be the simplest
ones where we move one or two atoms simultaneously to a better position. Simultane-
ous moves of two atoms are especially helpful in breaking the atoms out of strong local
minimum potential wells.

Also in the layered 19- and 43-parameter cases it was pretty straight forward to im-
plement a method that crosses the layers from two models with each other. Yet, we can
use this type of mutation to nudge the structure from a local minimum to the funnel of
another minimum. This is much harder to implement in the 60-parameter case, as the
layers are much harder to identify. One of the important reasons for mutations is their
ability to produce vastly different structures without starting from scratch so we do not
end up exploring only a small portion of the parameter space.

4 Results and comparisons

4.1 Basin hopping

Basin hopping is a well-known algorithm for structure optimization [24]. We imple-
mented a simple form of basin hopping for comparison purposes. To put it shortly, this
method tries to jump from a local minimum well to another, eventually hoping to funnel
into the global minimum.

We start from a local minimum, chosen by randomly placing the atoms and deter-
mining the minimum through steepest descent. Then we choose a nearby structure as
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Figure 5: On the left, the energy progression of a typical 2108 jump basin hopping run. The energy spikes
shortly at every 1000 jumps because we randomize our current location. We see that after we break the energy
barrier of —140 eV we reach the ultimate diamond structure at —148 eV quickly. On the right we present the
energy distribution of the terminal jump location, showing where we spend most of the time in the run.

the jump location, coarsely evaluating its energy by assigning it the value of the nearest
known local minimum energy. The jump is carried out using the Metropolis algorithm:
if the estimated energy is lower than the energy of our current location, we jump. Oth-
erwise the jump is done if a random number is lower than exp(—%—f), where AE is the
energy difference of these two locations, k is Boltzmann'’s constant and T is a temperature
constant affecting the jump chance. If the random number is higher, we try again with a
different jump location until a jump is successful. After the jump, we use steepest descent
to reach the local minimum and prepare for another jump.

The method has its problems as it too can get trapped into a region of local minima
and never reach the funnel of the global minimum. We noticed that in our simple case
too, but we were able to avoid the trapping by randomizing our current location every
1000 jumps. The same effect could be achieved by doing a large enough jump — given
that the required step length can be set correctly. We did a series of 1000 search runs and
were able to find the global minimum consistently, although the time it takes varies a
lot. All searches found the solution: on average it would take around 2237 jumps and
38 steps to find the local minimum after the jump. The spread is very high as sometimes
we could find the minimum almost right away, in less than 50 jumps, and sometimes it
could even take over 10000 jumps. This task as a whole also took a bit over 86 million
steps for LAMMPS to complete. Each subsequent jump takes slightly longer on average
due to each jump using the known local minima in the jumping process. This list of
minima grows as the search progresses leading to an approximately quadratic relation
between the search time and the number of jumps made. This could become problematic
in a more complex task, requiring more advanced methods for processing and sorting the
stored minima. The average 2237 jump search would roughly take around 80 seconds of
CPU time. In Fig. 5 we have illustrated the energy distribution of the found minima and
the progression of one basin hopping search that took 2018 jumps. We see that most of
the jumps land on local minima in the range from —138 eV to —135 eV. Once we get past
the apparent barrier around —139 eV the search quickly finds the global minimum.
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4.2 Geno-mathematical search

Having implemented the GHA-LAMMPS interface and introduced the problem specific
code described above, we conducted a series of independent parallel runs on CrayXC40
at CSC (Helsinki). The parameter cases are shown in Table 1. The simulations with only
1 solution were done using an early mesh interrupt broadcasted when a core found the
known optimum solution at —148.17 eV. This was determined by the evaluated potential
energy of the structure. Since the number of local solutions close to the global optimum
is small and the distance between the global minimum and the nearest local solution is
tangible, the advancement to the global solution from a favorable initial point is relatively
fast. The nearest local minima are single-atom dislocations at around —146 eV.

Table 1: Results obtained with 1024/4096 parallel cores, where each search found the known global energy
optimum f*=—1.4817e+02 eV. The runs with only 1 solution had an interruption signal broadcasted to stop
the search once the solution was found. Each core conducts its own search. Each row corresponds to one search
done with the given number of cores in parallel. The success rate for the interrupt searches is left out, because
only one core finds the solution in each of the cases before the search is forced to stop by the interrupt signal.

Success fr Average time
n Cores rate energy (eV) (CPU s/core)
(i) Success rate in massive search
19 1024  98.9%  -1.4817e+02 1920
19 1024  89.2%  -1.4817e+02 1080
19 1024  99.0%  -1.4817e+02 1740
(ii) Solution speed with early mesh interrupt
19 1024 - -1.4817e+02 25.2
19 4096 - -1.4817e+02 12.6
43 1024 - -1.4817e+02 1740
43 4096 - -1.4817e+02 995
60 1024 - -1.4817e+02 43.2
60 4096 - -1.4817e+02 63.6

The message of Table 1 is that, when early mesh interrupt is activated, the silicon
structure optimization problem is solved to optimum (f* = —1.4817¢+02) in at most 30
CPU-minutes from an arbitrary starting point using concurrent search with 1024 parallel
cores and different parametrizations. With early mesh interrupt and n =19 and n =60
the processing time is less than 64 CPU-seconds. Studying the sensitivity of CPU-time
to mesh size and corroborating the evidence with massively parallel Monte Carlo sim-
ulation are left for future research. We also note that the efficiency of our algorithm is
critically dependent on the starting point for the local search. Whereas we have applied
simple genetic manipulation, more advanced initialization techniques applied in future
development efforts, such as variants of e.g. Basin hopping may influence performance
significantly.



922 A. Lahti, R. Ostermark and K. Kokko / Commun. Comput. Phys., 25 (2019), pp. 911-927

The n = 43 search takes significantly longer to complete than the other cases. We
believe this must be due to the rigidity problems mentioned earlier in Section 2.2. The
constraints on the system cause high-energy barriers that are hard to overcome for the
system. We are not sure why this does not affect the 7 =19 case. The significant drop in
parameter count may overweight the problems caused by the energy barriers.

We did another series of searches, shown in Table 2, where we fixed the random
number seed to core specific values to give us replicable starting structures for the runs.
The purpose of these runs is to show how short high population runs compare to longer
runs with a smaller population. From these searches we see that using higher population
in a short run is much more beneficial than just letting a low population search go on
for longer. The results with the interrupt signal can be quite misleading due to how
the parallelization behaves in very short runs. On the operating system level different
cores start the search at different times. This becomes apparent, when we notice that the
similar run with no interrupt signal actually has a core find the solution over twice as
fast as with the interrupt signal. This is why we left out the mean time for these runs as
it would be heavily influenced by the cores that have not even started yet. If the search
time is measured in minutes the differences in core start up aren’t significant anymore.

In the long run, the 60-parameter case is slower than the 19-parameter case as ex-
pected. The completion time of the cores — the time needed to obtain the global optimum
from a unique random starting point — in the long and short 60-parameter run is pre-
sented in Fig. 6. The graph suggests that the high population runs are more suitable for
short search runs.

Table 2: Runs using the same random variable seed as in Table 3. The purpose of these calculations was to
pit long search, with low population count (POP) and many iterations, to short search, with less iterations
and high population count. The short search, while having much lower success rate, finds the global minimum
faster. The highest reached runtime was nearing 14 hours in the 60-parameter case. The mean time for short
runs with interrupt is left out, because it doesn’t give useful information due to all searches being stopped when
one of the cores finds the solution. Success rate is left out for the same reason, as only one solution is found.

Search Job 4 POP Cores Success Time (s) Energy (eV) '
rate  Mean Fastest Best Mean Variance

Short with interrupt 19 64 4096 - - 18.1  -1.4817e+02 -119.19 88.39

Short with interrupt 60 64 4096 - - 116 -1.4817e+02 -122.16 20.22

Short no interrupt 60 64 1024 3.71% 953 42.6 -1.4817e+02 -135.95 22.72
Short no interrupt 60 64 4096 3.03% 944 41.8 -1.4817e+02 -135.86 21.77
Long no interrupt 19 4 1024 97.9% 1940 12.7 -1.4817e+02 -148.06 1.208
Long no interrupt 60 4 1024 99.5% 5090 66.4 -1.4817e+02 -148.13  0.3406

We did three searches with mesh size 1024 where we fixed the seed for the random
number generation like in Table 2 and tried to optimize the structures using only one
of three methods: in the first search we only used the steepest descent method from
LAMMPS, in the second we used the BFGS/SQP-algorithm [1] and in the third we used

only LAMMPS annealing. The purpose of these runs was to see how these methods
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Figure 6: The search completion rate of different cores as a function of time in the case of the long and short
60-parameter run in Table 2. In the close up we see that the short run(blue line) initially has faster solution rate,
but the solution rate starts to stagnate towards the end of the run and the long run with a smaller population
catches up to it.

perform in isolation compared to our results in Table 2 and each others, given the same
starting structures. There was no big difference between the first two searches neither in
the obtained energy values nor in the solution time. The results are presented in Table 3.

Table 3: Comparing the steepest descent and BFGS/SQP-algorithms from the same starting position, with
mesh size 1024. We also listed a similar simulation that used annealing only.

Search Job n  Mean time (ms) Best energy (eV) Mean energy (eV) Variance
Steepest descent 60 1.09 -135.945 -129.774  5.74455
BFGS/SQP 60 111 -135.397 -129.306  5.39542
LAMMPS annealing 60 11.6 -131.15 -123.974 6.2765

5 Discussion

It is worth noting that often we are not only interested in the global minimum but also
in the local minima nearby as they may be more stable under different circumstances.
Some of them can also be useful when comparing simulations to data obtained from
experiments, as crystals are not perfect in reality. They can sometimes also give useful
information about different reaction paths, especially when studying a system with de-
fects, complex interfaces or surfaces. This kind of information can be stored during the
simulation and analyzed afterwards. Through replicable core specific random numbers,
we can study the solution process of any interesting crystal structure in detail on a single
core by specifying the output level of GHA correspondingly.

There is still the issue of identifying the interesting minima, as most of the found
local solutions are uninteresting amorphic structures. There are measures for differenti-
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ating structure, like the fingerprint function used in USPEX and geometric measures like
neighbor counts and the radial distribution function [13].

As we found out with the LAMMPS simulations, fixing some of the atoms actually
does not help at all; instead, it hinders the optimization by making some energy barriers
harder to bypass. Further testing is required, but it would seem that fixing atoms in place,
even if those spots are known correct locations, is not an efficient choice. Restricting their
movement to a small area surrounding this location might allow the structure to flex
around the energy barriers.

We have probed different methods for generating the initial raw pool of structures.
As a word of caution, it is easy to make a structure generation algorithm that leaves
out a big portion of the possible structures, but it is harder to control what is left out.
We have to be careful not to rule out some possibly successful structures. At the same
time, some methods produce mostly unwanted high-energy structures or, for example
identical inferior structures. There is also the question of how much we want to refine the
initial structures. When two atoms are close to each other, the associated two-body term
gives an exponentially growing positive contribution to the total potential energy of the
structure. This makes energy-based ranking of the structures slightly problematic, so we
have either discarded or modified these converging structures to get a proper evaluation
of their energy.

One way to circumvent energy spiking is to design an initial structure having every
atom close to the typical silicon bond distance from its neighbor. The procedure is not too
time consuming and ensures we are not wasting potentially good structures, since atom
pair proximity related energy spikes are avoided. Another way is to develop the struc-
tures with unusually high energies a bit, either through applying some steepest descent
type of optimization or identifying and moving the problematic atoms.

We tried a method of inserting atoms into the cell one by one. However, we quickly
noticed that this was not an effective strategy, as it leads to the atoms clustering in some
areas of the cell. We believe this is because the silicon atoms want to form quadruple
bonds, which is not possible in their natural location when the simulation area is still
half-empty in the beginning of the optimization. As we start inserting the atoms, the
only place where they can form these bonds to achieve lower energy is in the region
where there already are atoms. This leads to unwanted clustering in some region of the
cell. Perhaps this could be circumvented by restricting the placement of an atom to areas
far from the previously placed atoms.

Another issue is how good the initial structures should be. With the future in mind,
creating an algorithm that generates as good initial structures as possible is desirable.
However, we did not want to have too good structures right now, as one of the points of
this test case was to assess the performance of the GHA optimizer and develop methods
to advance through complex energy landscapes to the global minimum.

Even after we implemented more structure optimization specific techniques the ma-
jor energy obstacle was between —140 eV and —130 eV. Most of the calculations would
end up there easily, but getting forward proved to be challenging. We tried analyzing
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the structures around the problematic energy area above —140 eV, but the local minima
found there did not really resemble the desired diamond structure. It is a known prob-
lem in optimization, that the structures have a tendency to turn out fairly disordered and
amorphic. That was the case here too. We tried developing some metric to differentiate
these structures and find the ones that could potentially lead to the global minimum but
we did not find such metric.

If a structure could break the barrier at 140 eV, the optimizer often ended up pro-
gressing to the perfect diamond structure around —148.17 eV. We believe that the small
number of minima between —140 eV and the global minimum of —148.17 eV and shal-
lowness of the minima in this region make it easy for the system to jump to the funnel
of the global minimum. An eyeball test indicates a clear ordered structure with only one
or two atomic dislocations and rest of the diamond structure intact around this energy
region. That means that most of the minima between —148 eV and —140 eV correspond
to structures, which can be corrected with just a few well-done atom displacements. Our
calculations confirm this, as passing the barrier around —140 eV usually leads to a rapid
advancement to the global minimum.

In the annealing Fig. 3, we see that the graph becomes spiky around this region from
—148 eV to —140 eV, with small gaps between the spikes. The spikes are not very sharp
though, which we believe is because of the frozen atoms in the cell. Most of the spikes
correspond to some 1-2 atom dislocations. For example, ideally, the single atom dislo-
cations should correspond to a unique structure, but that is not the case here. When we
introduce a dislocation defect, its location affects the energy of the resulting structure. If
the dislocation is near the corner or the edge of the cell, the environment reacts differently
as some atoms are unable to move. We tested this by doing simple dislocation defects to
the system and noticed a 0.5 eV difference depending on where the dislocation was. With
an analogous two-atom dislocation, we noticed differences up to 2 eV.

It is clear that the solution for the type of task considered in this study is very de-
pendent on the initial structure. As we saw in our long searches, a single core could
take anywhere from ten seconds to fourteen hours to reach the known global minimum.
At the same time, concurrent processing of our algorithm with a large mesh from core
specific random numbers with early mesh interrupt activated guarantees — beyond rea-
sonable doubt — the global solution in seconds, when modelling the structure as a full
60-parameter or restricted 19-parameter problem. This is indeed an encouraging and
exceptional result in a difficult global optimization problem.

6 Conclusions

We have successfully used the optimizing platform GHA in our case of silicon structure
optimization and presented the results. GHA has inbuilt support for the necessary large
scale computing and has the required versatility to solve the case, producing results that
are comparable to other methods like basin hopping and annealing. With the future
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in mind, we hope to refine and extend this approach to more relevant material physics
problems related to oxides, interfaces and defects.

In order to solve more complicated atomic structures than the one probed in this
study, we would have to be able to reduce the processing time significantly and guaran-
tee the optimal solution using only a single processor. This would allow, e.g. massively
parallel search of interesting crystal candidates using modern Geno-mathematical tech-
niques, with potential for new discoveries in atomic interface and surface structures.

At the same time, there is a lot of room for improvement of the search algorithm.
Incorporating the basin hopping and other popular methods is one way we could try to
achieve this. Another possibility is to use elaborate statistical distributions for the starting
positions. In the searches presented in this paper, we used the uniform distribution, but
distributions generated through, e.g. Copula-theory [20] might prove to be better suited
for this case.
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