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Abstract. We study the stability and dynamic transitions of the western boundary cur-
rents in a rectangular closed basin. By reducing the infinite dynamical system to a
finite dimensional one via center manifold reduction, we derive a non-dimensional
transition number that determines the types of dynamical transition. We show by
careful numerical evaluation of the transition number that both continuous transitions
(supercritical Hopf bifurcation) and catastrophic transitions (subcritical Hopf bifurca-
tion) can happen at the critical Reynolds number, depending on the aspect ratio and
stratification. The regions separating the continuous and catastrophic transitions are
delineated on the parameter plane.
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1 Introduction

Wind-driven circulation/currents and their variability is a central theme in the study of
climate dynamics and oceanography. See [10] for a recent comprehensive review of the
survey of wind-driven circulation from the perspective of dynamical systems theory. One
of the strongest near-surface, mid-latitude currents is the Gulf stream [28]. This current
intensifies along the western shores of the North Atlantic (east coast of North America),
exhibiting boundary layer characteristics with an intense crowding of the streamlines,
and is commonly referred to as the western boundary current. The western boundary
currents, which are of intense shear flows, are subject to internal instabilities. In this
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article, we aim to theoretically and numerically study the variability and dynamical tran-
sitions of the western boundary currents in a rectangular closed basin.

The study of the western boundary currents has a long history. Earlier works on this
topic are mainly done by physicists relying on either analytical solutions of simplified
models or purely numerical simulation. Stommel first studies the western boundary
currents in the linear regime and discovers that the variation of the Coriolis effect with
latitude is the physical mechanism behind the intense currents. Munk in [20] proposes
another linear model and finds an analytical solution known as the Munk boundary layer
profile that represents a concentrated current like the Gulf stream. The boundary layer
analysis of a nonlinear model and the numerical integration can be found in [2, 29, 30]
by Veronis. These early results, cf. in particular [4], already suggest that, for the Rossby
number in the geophysical regime, there is a critical Reynolds number below which a
steady-state solution is approached asymptotically, while shear flow instabilities develop
after the transition.

Ierley and Young in [11] study the linear instabilities of a family of basic states includ-
ing the Munk profile in the western boundary currents by numerically solving a modified
Orr-Sommerfeld equation. It is found that the critical Reynolds number at which the ba-
sic states become unstable is relatively low (between 20 to 100) and that the unstable
modes are trapped in the boundary layer with a slowly varying oscillatory tail. A sys-
tematic numerical investigation of the linear instabilities of the western boundary current
is carried out by Berloff and Meacham in [3], and by Berloff and McWilliams in [1] for
both no-slip and free-slip boundary conditions. Their numerical method is based on the
theory of dynamical systems that a change in the stability properties of a steady-state so-
lution will lead to a change in the nature of the solution to which the model asymptotes
at a considerable time. By examining carefully the asymptotics of the numerical solution
at varying Reynolds number, they only find supercritical Hopf bifurcations in which the
amplitudes of the bifurcated limit cycles tend to zero as the critical Reynolds number is
approached from the unstable side, though in reality, as we show in this article, subcrit-
ical Hopf bifurcations are also possible for certain parameter values. Similar numerical
results are also reported in [12, 13]. Mathematically, the existence of bifurcating peri-
odic solutions in a quasi-geostrophic model of wind-driven circulation is investigated by
Chen and Price in [6], see also [5]. We refer to the review articles [8, 10] and references
therein for the detailed bifurcation analysis of general circulation models.

Previous works on the instabilities of the western boundary currents and the result-
ing formation of periodic vortices are limited by the scope of the numerical investigation
in the presence of multiple control parameters. In this article, we tackle this problem
from the perspective of the dynamic transition theory developed by Ma and Wang [18]
which is entirely different from previous researches. The main philosophy of this theory
is to search for the full set of transition states, giving a complete characterization of sta-
bility and transition. The set of transition states can be represented by a local attractor.
Following this philosophy, the dynamic transition theory aims to identify the transition
states and to classify them both dynamically and physically. One important ingredient
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of the theory is the introduction of a new classification scheme of transitions, with which
phase transitions are classified into three types: continuous, catastrophic, and random.
Roughly speaking, a continuous transition means that the basic state bifurcates to a local
attractor; a catastrophic transition means that a system will jump to another state, and
a random transition indicates that both continuous and catastrophic transitions are pos-
sible depending on the initial perturbation. The theory has been successfully applied in
the study of a number of transition problems, including transitions of quasi-geostrophic
channel flows [7], instability and transitions of Rayleigh-Benard convection [16, 23, 24],
dynamic transitions of Cahn-Hilliard equation [14, 15], boundary layer separation [17],
see also [21, 31]. In this article, we show that the type of the transition of the west-
ern boundary currents, represented by the Munk boundary layer profile in the quasi-
geostrophic circulation model, can be uniquely determined by the sign of a parameter,
called transition number whose value can be efficiently computed numerically.

The major part of this work is dedicated to the center manifold reduction under the
condition of Principle of Exchange of Stability that is established by earlier works on lin-
ear stability analysis. That is, we reduce the original system of partial differential equa-
tions to a system of ordinary differential equations on the center manifold generated by
the unstable modes at the critical Reynolds number. The dynamic transition is then stud-
ied via the reduced system following the ideas from the dynamic transition theory. The
transition number signifying types of dynamical transitions is derived from the reduced
equations. Numerical evaluations of the transition number demonstrate that both contin-
uous transitions (supercritical Hopf bifurcation) and catastrophic transitions (subcritical
Hopf bifurcation) can happen at the critical Reynolds number, depending on the stratifi-
cation and the aspect ratio of the basin. Thus our result gives a complete characterization
of the formation of periodic vortices as a result of the dynamic transition of the western
boundary currents at the first critical Reynolds number.

The rest of this paper is organized as follows. In Section 2, we introduce the gov-
erning equations and the basic flow. The linear stability analysis and the Principle of
Exchange of Stability condition (PES) is pursued in Section 3. The main transition theo-
rem and its proof is presented in Section 4. In Section 5 we outline a Legendre-spectral
numerical procedure for computing the transition number and illustrate different types
of transitions depending on the parameters of stratification and aspect ratio of the basin.
We conclude the article with a summary in Section 6.

2 Governing equation

The mechanism of instability for the western boundary currents is rather complicated. In
this article we focus exclusively on the viscous instability of the western boundary cur-
rents governed by a simplified quasi-geostrophic (QG) reduced gravity model, cf. [2, 3].
We restrict our study to a rectangular basin of the midlatitudes with x being in the west-
east direction and y in the south-north direction after the β−plane approximation, see
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the monographs [19, 22]. As in [2], we neglect the mechanism of bottom topography and
thermohaline effects of the ocean, instead adopt a 1.5−layer model of stratification where
an upper active layer is superimposed over a static lower layer of infinite depth. The den-
sity difference of the two layers will be represented by a reduced gravitational constant.
We make a further simplification in the model: the basin is assumed to be narrow so
that the wind stress is uniform in y and periodic boundary condition is imposed in the
y-direction. This simplification leads to a modified Orr-Sommerfeld eigenvalue problem
for linear stability analysis, which is convenient for numerical investigation. The scales
in our model represent roughly those of the Black Sea, cf. [2]. We point out that the physi-
cal problem of instability associated with the western boundary currents are intrinsically
multi-dimension. It is our hope that the results derived from the simplified model bear
physical relevance to the instability and transition of the western boundary currents in
real world. The analytical approach of dynamical transition theory we undertake here
is still applicable in the general setting, though a robust numerical procedure capable
of dealing with high-dimensional data (eigenvalue problems by PDEs with multiple pa-
rameters) needs to be developed.

In the setting outlined above, we adopt the Equivalent Barotropic (EB) model as a
simplification for the motion of the western boundary currents in a rectangular domain
Ω={(x,y)|x∈ (0,Lx),y∈ (0,Ly)}. In terms of the stream function ψ, the governing equa-
tion is

∂

∂t

(

∆ψ− 1

R2
d

ψ

)

+ J(ψ,∆ψ)+β0
∂ψ

∂x
=ν∆2ψ+F(x), (2.1)

where Rd=

√
g′H1

f0
is the deformation radius, g′ is the reduced gravity constant, H1 is the

depth of the west boundary layer, ν is the eddy viscosity coefficient, f0 is the constant
Coriolis parameter, β0 is the derivative of the Coriolis parameter, F(x) is the force in
relation to wind stress (curl of the wind stress) acting on the sea surface, and J(u,v) :=
∂u
∂x

∂v
∂y − ∂u

∂y
∂v
∂x . Periodic boundary condition is assumed in the y-direction, and the no-slip

no-penetration boundary condition is prescribed in the x-direction:

ψ(0,y)=ψ(a,y)=
∂ψ(0,y)

∂x
=

∂ψ(a,y)

∂x
=0. (2.2)

The term ∆ψ− 1
R2

d

ψ is recognized as the potential vorticity. Note that the term 1
R2

d

ψ in the

potential vorticity disappears in the Jacobian J due to the skew-symmetry of J. The EB
model can be viewed as a simplification of the more often used two-layer model when
the lower layer is at rest. It can be derived as a quasi-geostrophic approximation of the
shallow water equation in the two-layer setting. We refer to [3, 19, 22, 27] for the detailed
derivation of the EB model.

The wind force F(x) is uniform in the y-direction which determines a steady-state
(meridional flow) of the form Ψs(x)=Ψ0ψs(x) with Ψ0 being the characteristic value of
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the steady-state stream function. In light of the definition of J(·,·), one infers that the
steady-state stream function ψs(x) satisfies the following ordinary differential equation

−ν
d4ψs

dx4
+β0

dψs

dx
=

F(x)

Ψ0

supplemented with the same boundary conditions as (2.2). In this study we shall adopt
the celebrated Munk boundary layer profile (specified below) for the steady-state flow
following [3, 11, 20].

For notational simplicity, let us denote the perturbation around Ψs(x) also by ψ, and
insert Ψs(x)+ψ into the system (2.1)

∂

∂t

(

∆ψ− 1

R2
d

ψ

)

+ J(ψ,∆ψ)+β0
∂ψ

∂x

=ν∆2ψ− J(Ψs ,∆ψ)− J(ψ,∆Ψs). (2.3)

As is appropriate for the study of western boundary layer, cf. [3], we choose the viscous

boundary layer length scale δM =
(

ν
β0

)
1
3 to be the length scale; Ψ0

δM
to be the velocity scale

which gives the time scale
δ2

M
Ψ0

. The nondimensionalization of Eq. (2.3) gives

∂

∂t
(∆ψ−Sψ)+us

∂∆ψ

∂y
− ∂ψ

∂y

d2us

dx2
+ J(ψ,∆ψ)+

1

R

∂ψ

∂x
=

1

R
∆2ψ. (2.4)

Here R= Ψ0
ν is the Reynolds number, S=

( δM
Rd

)2
is the square of the ratio of the Munk scale

to the Rossby deformation radius which can be viewed as a measure of stratification in
the EB model as well. The case S→0 gives rise to the barotropic QG equation, cf. [19,22].
In this work, we limit our study to viscous instability of the western boundary currents
represented by the Munk profile, cf. [11], i.e.,

us =
dψs

dx
= e

−x
2 sin

√
3

2
x. (2.5)

Note that the Munk-profile satisfies the steady-state equation with zero forcing F = 0
(constant wind stress). We remark that the real western boundary current is due to
nonzero F which would give a different boundary layer profile. The Munk-profile is an
approximation and convenient for theoretical analysis. It will be clear that our method
applies to general boundary layer profile.

Throughout the remainder of this article, we use parameters a and b to represent the
dimensionless length in the x and y directions respectively. We introduce the aspect ratio
α = b

a . In the following sections, we study the instability and transition of the Munk
boundary layer profile based on the perturbation Eq. (2.4) as R,S,α vary.
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3 The eigenvalue problem and principle of exchange of stability

The Munk boundary layer profile introduced in (2.5) is of shear flow type which tends to
be unstable at large Reynolds number [1,3,11]. In what follows we will study the instabil-
ities of the Munk profile and the resulting transitions to new states from the perspective
of the dynamic transition theory developed by Ma and Wang [18]. We first establish the
so-called Principle of Exchange of Stability (PES) from a linear stability analysis, cf. As-
sumption 3.1, determining the critical Reynolds number at which the basic profile loses
stability. We then reduce the original system of partial differential equations to a sys-
tem of ordinary differential equations on the center manifold generated by the unstable
modes at the critical Reynolds number. The dynamic transition is studied via the reduced
system.

We proceed with the linear stability analysis. Let us consider the linear part of Eq. (2.4),
i.e., without the nonlinear term J(ψ,∆ψ). Since periodic boundary condition is prescribed
in the y-direction and the coefficients of the linear equation depend only on x, the follow-
ing separation of variables (normal mode ansatz) can be assumed

ψ= eibmy+βtu(x), bm =2mπ/b, m∈Z, β∈C,

which leads to an eigenvalue problem similar to the celebrated Orr-Sommerfeld equation
[9]

(

D2−b2
m

)2
u−iRbmus

(

D2−b2
m

)

u+iRbmu′′
s u−Du

=βR
(

D2−b2
m−S

)

u,

u(0)=Du(0)=u(a)=Du(a)=0.

(3.1)

Here we adopt the notation D for the derivative with respect to x, i.e., D= d
dx . It is clear

that the eigenvalues β are discrete. Note also that the eigenvalues and eigenfunctions
corresponding to −m are the complex conjugate of the respective eigenvalues and eigen-
functions corresponding to m. Hence we only need to consider nonnegative m′s. For the
sake of convenience, let us define a family of ordinary differential operators Am and Lm

as follows

Amu=R
(

D2−b2
m−S

)

u, m=0,1,2,··· ,
Lmu=

(

D2−b2
m

)2
u−iRbmus

(

D2−b2
m

)

u+iRbmu′′
s u−Du.

(3.2)

Then, the eigenvalue problem can be expressed in an abstract form

Lmuk =βkAmuk, k=1,2,···→∞, ∀m∈Z
+
0 . (3.3)

We also need the adjoint eigenvalue problem

L∗
mu∗

k =βkAmu∗
k , k=1,2,···→∞, ∀m∈Z

+
0 , (3.4)
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where the dual operator L∗
m is defined by

(Lmu,v)=(u,L∗
mv).

It is evident that the eigenvalue problem (3.1) can not be solved explicitly, as in the
case of Orr-Sommerfeld equation. In Section 4, we will describe a spectral method for
numerically solving the eigenvalue problem. Nonetheless, by a simple energy argument
we can show that modes of large wave number (bm large) tend to be stable for fixed
Reynolds number, and that there exists a Reynolds number below which all modes are
stable. Similar results also hold for Orr-Sommerfeld equation, cf. [9]. More precisely, we
have the following proposition:

Proposition 3.1. For the eigenvalue problem (3.3), the zero mode m=0 is always stable.

Moreover, there exists a positive number C = R‖us‖∞

2 such that for all bm ≥C, the corre-
sponding eigenvalues from (3.3) have negative real part, i.e. Re(βk)<0. In particular, if
R≤ 4π

b‖us‖∞
, then the basic profile ψs is stable.

Proof. For notational simplicity we omit the dependence of variables on the index k. Us-
ing u to express the conjugate of u, 〈,〉 and ‖ · ‖ to express the complex L2(0,a)- inner
product and norm respectively, then taking the L2 inner product of (3.1) with u one de-
rives that

Re(β)=
D1−D2

D3
, (3.5)

in which Di (i=1,2,3) are

D1=Re(iRbm〈usD2u,u〉+Re(〈Du,u〉),
D2= 〈D2u,D2u〉+2b2

m〈Du,Du〉+b4
m〈u,u〉,

D3=R(〈Du,Du〉)+R(b2
m+S)〈u,u〉.

Here R is the Reynolds number, Im(A) represents the imaginary part of A, and Re(A)
is the real part of A, where A is a function of complex value. It is clear that D1−D2 < 0
would imply Re(β)<0. Since

Re(〈Du,u〉)= 1

2
(〈Du,u〉+〈u,Du〉)

=
1

2

∫ a

0

d
(

|u|2
)

dz
dz=0,

it follows that

D1≤
Rbm‖us‖∞

2C1
〈D2u,D2u〉+RbmC1‖us‖∞

2
〈u,u〉.
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Hence

D1−D2≤
(

Rbm‖us‖∞

2C1
−1

)

〈D2u,D2u〉−2b2
m〈Du,Du〉

+

(

RbmC1‖us‖∞

2
−b4

m

)

〈u,u〉.

It is clear that D1−D2<0 when m=0 (bm=0). That is the mode m=0 is stable. Otherwise,

for m 6=0, let C1=
Rbm‖us‖∞

2 . Then

RbmC1‖us‖
2

−b4
m ≤0 ⇒ Re(β)<0.

It follows that there exists a positive number C = R‖us‖∞

2 such that for all bm ≥ C, the
corresponding eigenvalues have negative real part. Furthermore, it is clear that

R≤ min
m∈Z+

2bm

‖us‖∞

=
4π

b‖us‖∞

⇒ Re(β)<0.

This concludes the proof of the proposition.

Remark 3.1. The bound derived here is by no means optimal. Better bounds can be
obtained following [25].

Proposition 3.1 suggests the existence of a critical Reynolds number, possibly depend-
ing on the stratification S and the aspect ratio α, across which certain modes will lose
stability. For the development of the nonlinear instability and transition theory, we need
the PES condition. Without loss of generality we assume that the eigenvalues {βm,k}m,k

of Lm are ordered by decreasing real part for each m. That is, we assume that

Reβm,1≥Reβm,2≥···→−∞, ∀m∈Z
+.

Then the principle of exchange of stabilities (PES condition) takes the following form:

Assumption 3.1 (Principle of Exchange of Stabilities). There exists an integer n∈Z+ and
a critical Reynolds number R∗

>0 such that, for a small δ>0 the eigenvalues satisfy

Reβn,1(R)











>0 if R∗
<R<R∗+δ,

=0 if R=R∗,

<0 if R<R∗,

(3.6)

Reβm,k(R
∗)<0 if m 6=n or k>1. (3.7)
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Figure 1: The mode-dependent critical Reynolds number, i.e. zero of Reβm,1(R
∗
m) = 0 as a function of the

aspect ratio α= b
a with a=50 fixed for different m.

Figure 2: Neutral curves, R∗=minm∈NR∗
m in which Reβm,1(R

∗
m)=0 for different aspect ratio α= b/a, where

a is taken as 50.

It is generally a challenge to verify the PES condition rigorously, except when the
eigenvalue problem can be solved analytically. Here we resort to numerical solutions
of the eigenvalue problem and establish the PES condition numerically. We explore the
values of the critical R∗ from a global perspective. More precisely, we compute for each
α>0 the value R∗

m such that Reβm,1=0. By doing this we obtain, for each m, a curve R∗
m=

R∗
m(α) that determines the onset of linear instability. Plots of mode-dependent critical

Reynolds number R∗
m(α) as a function of α are shown in Fig. 1 for a few selected values

of m.

Furthermore, for all but countably many values of α, there is only one wavenumber
n = n(α) for which R∗

n = minm∈N R∗
m. Thus this is the value R∗ = R∗

n at which the first
transition occurs. This defines a continuous function R∗=R∗(α) that is piecewise smooth,
with possible cusp points or corners at the values of α for which there is more than one
wavenumber n giving rise to linear instability. The neutral curves R∗(α) is shown in
Fig. 2 for different stratification S. Here, it is worth mentioning that Imβn,1 6= 0 for all
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parameters S∈ [0.1,0.9] and α∈ [0.1,1.3], where α=b/a is the aspect ratio.
We will proceed under the working assumption that the integer n has been chosen

to satisfy the PES condition. As soon as linear instabilities occur at the critical Reynolds
number, the nonlinear system (2.4) undergoes a dynamic transition classified as one of
the three types: continuous, catastrophic, or random, cf. [18]. In the following we study
the transition as R crosses the critical value R∗, for different values of S and α.

4 The transition theory

Following the dynamic transition theory [18], the type of transitions is determined by re-
ducing the nonlinear system (2.4) to the center manifold in the first unstable eigenmodes.
Specifically one can establish that:

Lemma 4.1. The transition of the nonlinear system (2.4) at R=R∗ is equivalent to that of the
following ordinary differential equation

dη

dt
=βn,1η+Pη|η|2+o(|η|3), (4.1)

where η is complex-valued, and P is the transition number whose sign determines the transition
types.

Proof. The rigorous theory of the equivalence can be found in [18]. Here we focus on
deriving the reduced equation (4.1) with particular emphasis on the expression of the
transition number P. Denote the central space by Hc which is the span of the eigenfunc-
tions corresponding to βn,1. Denote the first eigenfunction and its dual (the real part of
corresponding eigenvalue changes its sign at R=R∗) as follows

ϕ1= eibnyu1(x), ϕ∗
1 = eibnyu∗

1(x). (4.2)

Any element φ in Hc can be expressed as

φ=ηϕ1+ηϕ1. (4.3)

This is an important observation and simplifies our calculation later. Following the ab-
stract approximate expression of the central manifold given by (A.2.14) in [18], we as-
sume the central manifold function h(φ) takes the following form

h(φ)=h2(φ)+o(|η|2),

where h2(φ) is the quadratic part of the center manifold function. Then, straightforward
calculation shows that h2 needs to satisfy

2β1Ah2(φ)−Lh2(φ)=G(φ,φ)

=η2G(ϕ1,ϕ1)+η2G(ϕ1,ϕ1+|η|2(G(ϕ1,ϕ1)+G(ϕ1,ϕ1)). (4.4)
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where G(a,b) is defined by

G(a,b)= J(a,∆b), (4.5)

and the linear differential operators A and L are defined as

Aψ=∆ψ−Sψ, Lψ=
1

Re
∆2ψ−us

∆ψ

∂y
+

∂ψ

∂y

d2us

dx2
− 1

Re

∂ψ

∂x
. (4.6)

In view of definition (4.2) one calculates

G(ϕ1,ϕ1)= ibneib2ny
(

u1u′′′
1 −u′

1u′′
1

)

,

G(ϕ1,ϕ1)=−ibne−ib2ny
(

u1u′′′
1 −u′

1u′′
1

)

,

G(ϕ1,ϕ1)= ibn

(

u1u1
′′′+u′

1u1
′′−b2

nu′
1u1−b2

nu1u1
′),

G(ϕ1,ϕ1)=−ibn

(

u1u′′′
1 +u1

′u′′
1 −b2

nu1
′u1−b2

nu1u′
1

)

.

(4.7)

Hence

G(ϕ1,ϕ1)+G(ϕ1,ϕ1)= ibn

(

u1u1
′′′+u′

1u1
′′−u1u′′′

1 +u1
′u′′

1

)

. (4.8)

Let h2(φ) be

h2(ϕ)=η2φ20+|η|2φ11+η2φ02+o(|η|2), (4.9)

where φ20, φ11, φ02 have the following ansatz

φ20= eib2nyM1(x),

φ11=M2(x),

φ02=−e−ib2ny M3(x).

(4.10)

Eq. (4.4) implies that Mi (i=1,2,3) should satisfy

2βn,1A2n M1−L2n M1= e−i2bnyG(ϕ1,ϕ1),

2βn,1A2n M3−L2n M3= ei2bnyG(ϕ1,ϕ1),

2Re(βn,1)A0M2−L0M2=G(ϕ1,ϕ1)+G(ϕ1,ϕ1),

(4.11)

where one may refer to Eqs. (3.2) for the definition of A2n and L2n. On the other hand,
one observes from (4.7) that

φ20=φ02.

Hence, one only needs to solve

2βn,1A2n M1−L2n M1= e−i2bnyG(ϕ1,ϕ1),

2Re(βn,1)A0M2−L0M2=G(ϕ1,ϕ1)+G(ϕ1,ϕ1),

M1(0)=M′
1(a)=M2(0)=M′

2(a)=0.

(4.12)
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Applying the general formula of the reduced equation (A.2.12) in [18], one derives
the reduced equation

dη

dt
=βn,1η+(G(ϕ,ϕ)+G(ϕ,h2)+G(h2,ϕ),ϕ∗

1)+o(|η|3), (4.13)

in which ϕ1 and ϕ∗
1 are chosen to satisfy the normalizing condition:

(∆ϕ1,ϕ∗
1)/b=

1

b

∫ a

0

∫ b

0
∆ϕ1ϕ∗

1dxdz=1.

It follows from (4.3) and (4.9) that

(G(φ,h2),ϕ
∗
1)=

(

G(ηϕ1+ηϕ1,η2φ20+|η|2φ11+η2φ02),ϕ
∗
1

)

=η3(G(ϕ1,φ20),ϕ
∗
1)+η|η|2 (G(ϕ1,φ20),ϕ

∗
1)

+η|η|2 (G(ϕ1,φ11),ϕ
∗
1)+η|η|2 (G(ϕ1,φ11),ϕ

∗
1)

+η|η|2 (G(ϕ1,φ02),ϕ
∗
1)+η3(G(ϕ1,Φ02),ϕ

∗
1), (4.14)

(G(h2,φ),ϕ∗
1)=

(

G(η2φ20+|η|2φ11+η2φ02,ηϕ1+ηϕ1),ϕ
∗
1

)

=η3(G(φ20,ϕ1),ϕ
∗
1)+η|η|2 (G(φ20,ϕ1),ϕ

∗
1)

+η|η|2 (G(φ11,ϕ1),ϕ
∗
1)+η|η|2 (G(φ11,ϕ1),ϕ

∗
1)

+η|η|2 (G(φ02,ϕ1),ϕ
∗
1)+η3(G(φ02,ϕ1),ϕ

∗
1), (4.15)

Using (4.2) and (4.10) one finds that

(G(ϕ1,φ20),ϕ
∗
1)=(G(φ20,ϕ1),ϕ

∗
1)=0,

(G(ϕ1,φ11),ϕ
∗
1)=(G(φ11,ϕ1),ϕ

∗
1)=0,

(G(ϕ1,φ02),ϕ
∗
1)=(G(φ02,ϕ1),ϕ

∗
1)=0,

(G(ϕ1,φ02),ϕ
∗
1)=(G(φ02,ϕ1),ϕ

∗
1)=0.

It follows that

(G(φ,h2),ϕ
∗
1)+(G(h2,φ),ϕ∗

1)

=((G(ϕ1,φ20),ϕ
∗
1)+(G(ϕ1,φ11),ϕ

∗
1)+(G(φ20,ϕ1),ϕ

∗
1)+(G(φ11,ϕ1),ϕ

∗
1))η|η|2. (4.16)

Therefore, the reduced equation (4.13) is simplified as

dη

dt
=βn,1η+Pη|η|2+o(|η|3).

where P is given by the following integral

P=(G(ϕ1,φ20),ϕ
∗
1)+(G(ϕ1,φ11),ϕ

∗
1)

+(G(φ20,ϕ1),ϕ
∗
1)+(G(φ11,ϕ1),ϕ

∗
1). (4.17)
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Indeed, the exact expression of the transition number P can be written as follows

P=4niπ
∫ a

0
u1

′u∗
1(M′′

1 −4b2
n M1)dx+2niπ

∫ a

0
u1u∗

1(M′′′
1 −4b2

n M′
1)dx

−2niπ
∫ a

0
M′

1u∗
1(u

′′
1 −b2

nu1)dx−4niπ
∫ a

0
M1u∗

1(u
′′′
1 −b2

nu′
1)dx

−2niπ
∫ a

0
u1u∗

1 M′′′
2 dx+2niπ

∫ a

0
M′

2u∗
1(u

′′
1 −b2

nu1)dx.

This completes the proof.

Now we are ready to state the main transition theorem.

Theorem 4.1. If the first simple eigenvalue is complex, then the following two assertions hold
true:

(1) If ReP= P1 < 0, the system (2.4) undergoes a continuous transition (a supercritical Hopf
bifurcation) at R=R∗. In particular, the steady-state solution 0 bifurcates to a stable periodic
trajectory Γ at R=R∗, satisfying Γ→0, as R→R∗+. Furthermore, the periodic orbit can
be approximated by the following formula

ϕ=

(

β11

|P1|

) 1
2 (

eiβ12t ϕ1+e−iβ12t ϕ1

)

+o
(

|β11|
1
2

)

, (4.18)

where β11 > 0,βn,1 = β11+iβ12 and ϕ1 = eibnyu1(x) with u1(x) the corresponding eigen-
function. The topological structure of the continuous transition is illustrated in Fig. 3.

(2) If ReP = P1 > 0, the system (2.4) undergoes a catastrophic transition (subcritical Hopf
bifurcation) at R=R∗. An unstable periodic orbit Γ1 collides with the steady-state 0 leading
to the loss of stability of 0 at the critical number R∗. In addition, there exists a subcritical
number Rs (Rs ≤R∗) at which there exists a singular separation of periodic orbits, and a
nonzero attractor Γ2 bifurcates from 0 at R=Rs. In particular, there is no periodic solution
bifurcating from 0 for R>R∗. The topological structure of the catastrophic transition is
illustrated in Fig. 4.

Remark 4.1. We can deduce from Theorem 4.1 that, there exist two types of transition-
continuous and catastrophic transitions for system (2.4) at R=R∗. For continuous one,
the flow will become from Munk profile to a periodic motion while for catastrophic one
the flow jumps to another state which in general belongs to an attractor containing more
than one asymptotic state, cf. Fig. 4.

Proof. It is known that the reduced equation is

dη

dt
=βn,1η+Pη|η|2+o(|η|3)
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Figure 3: Topological structure of the continuous transition ReP<0. A Hopf bifurcation occurs at R∗, indicating
that a stable limit cycle Γ bifurcates from 0 at R=R∗, and whose size grows continuously with R.

Figure 4: Topological structure of the catastrophic transition ReP> 0. A periodic orbit Γ1 occurs from 0 on
R<R∗. A nonzero attractor Γ2 appears at Rs.

from which we have

dη

dt
=βn,1η+Pη|η|2+o(|η|3).

Straightforward calculation gives

d|η|2
dt

∣

∣

∣

∣

R=R∗
=η

dη

dt

∣

∣

∣

∣

R=R∗
+η

dη

dt

∣

∣

∣

∣

R=R∗

=
(

2Re(βn,1)|η|2+Re(P)|η|4+o(|η|4)
)

∣

∣

R=R∗

=P1|η|4+o(|η|4). (4.19)

Then, (4.19) means that 0 is local global stable point of (2.4) at R=R∗ if P1 < 0. There-
fore, using Theorem 2.3.5 in [18], (2.4) bifurcates from (ψ,R)=(0,R∗) to a stable periodic
solution on R>R∗. Similarly, if P1 > 0, it is clear that 0 is unstable, (2.4) bifurcates from
(ψ,R)= (0,R∗) to an unstable periodic solution on R<R∗. Using Theorem 2.5.4 in [18],
there exists a subcritical number R=Rs at which (2.4) has a singular separation of periodic
orbits.

Remark 4.2. Theorem 4.1 does not cover the case ReP=0. In the case of ReP=0, higher
order approximation of the center manifold function (e.g. third order part of the center
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manifold function) is needed in Lemma 4.1. Similar transition theorem can be estab-
lished, albeit with more involved calculation.

5 Numerical evaluation and results

Theorem 4.1 says that the types of the transition of the nonlinear system (2.4) are com-
pletely determined by the sign of the transition number P defined in (4.17). To numer-
ically evaluate the transition number, one needs to find the critical Reynolds number,
solve for the first eigenfunction and its dual from Eqs. (3.3) and (3.4) respectively, and
then evaluate P using (4.17). In what follows we first introduce a Legendre-spectral
method for solving Eqs. (3.3) and (3.4), and present the steps for computing transition
number P. Then we demonstrate the numerical results and the physical implications.
See [26] for a comprehensive study of the spectral method.

5.1 Numerical procedures for the evaluation of P

Let us define a function space H1 as follows:

H1={u∈H2(−1,1)| u(−1)=u(1)=u′(−1)=u′(1)=0}. (5.1)

It is clear that the eigenfunction uk in (3.3) belongs to H1. Now we approximate H1 by the
following finite dimension subspace, cf. [26]

H1,N ={ΣN−4
m=0cmωm | cm ∈R}, N=6,7,··· ,

ωm=dm

(

Lm−
2(2m+5)

2m+7
Lm+2+

2m+3

2m+7
Lm+4

)

,

dm =
1

√

2(2m+3)2(2m+5)
,

{Lm}∞
m=0 is a family of Legendre orthogonal polynomials.

Now let uN be given by

uN =ΣN−4
m=0 pmωm.

Let Ln and An be the matrices with elements given by respectively

Ln
ij=(Ln(ωi),ωj),

An
ij=(An(ωi),ωj).

(5.2)

We refer to (4.6) for the definition of L and A. Then Eq. (3.2) gives

Ln=Σ6
i=1Ci, An=D1+D2, (5.3)
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in which Ci (i=1,··· ,6) and Di (i=1,2) are given by

C1=(D2ωi,D
2ωj), C2=2b2

n(Dωi,Dωj),

C3=(b4
n+iReb3

n)(ωi,ωj), C4=(ωi,Dωj),

C5=−iRebn(usD2ωi,ωj), C6= iRebn(u
′′
s ωi,ωj),

D1=−Re(Dωi,Dωj), D2=−Re(b2
n+S)(ωi,ωj).

(5.4)

Then, it follows from Eq. (3.3) that

(An)−1 LnPn,k
N =λn,kPn,k

N , (5.5)

in which Pn,k
N is defined as

Pn,k
N =









pn,k
0

...

pn,k
N−4









, (5.6)

Reλn,1≥Reλn,2≥Reλn,3 ··· . (5.7)

It is clear that the first eigenvalue is numerically given by

Reβn,1=Reλn,1=min
m∈N

Reλm,1. (5.8)

And the critical Reynolds number R∗ is then determined by solving equation

Reλn,1(R)=0. (5.9)

For different stratification number S and aspect ratio α, the solutions of (5.9) are shown
in Fig. 2.

Now the evaluation of the transition number P can be decomposed into several steps
as follows:

1. Solving the linear equation (5.5), one can get the approximate first eigenfunction

φN
1 =ΣN−4

i=0 pn,1
i ωi and its dual φ∗N

1 =ΣN−4
i=0 pn,1

i ωi, which satisfy (AφN
1 ,φ∗N

1 )=1.

2. Using the results obtained from the first step one can compute

φN
1

(

φN
1

)′′′
−
(

φN
1

)′(
φN

1

)′′
=ΣN−4

i=0 M1N
i ωi,

φN
1

(

φN
1

)′′′
+
(

φN
1

)′(
φN

1

)′′
−φN

1

(

φN
1

)′′′
+
(

φN
1

)′(
φN

1

)′′
=ΣN−4

i=0 M2N
i ωi.

3. Based on the results in the second step, one computes

SN
i1 =

N−4

∑
j=0

(

(

L2m∗
)−1

)

ij

M1N
j , SN

i2 =
N−4

∑
j=0

(

(

L0
)−1
)

ij
M2N

j .
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4. Let φN
20 and φN

11 be given by

φN
20= ibm∗eibm∗yΣN−4

i=0 SN
i1ωi,

φN
11= ibm∗ΣN−4

i=0 SN
i2 ωi,

ϕN
1 = eibnyφN

1 , ϕ∗N
1 = eibnyφ∗N

1 ,

then the transition number P is evaluated by

P=
(

G(ϕN
1 ,φN

20),ϕ
∗N
1

)

+
(

G(ϕN
1 ,φN

11),ϕ
∗N

1

)

+
(

G(φN
20,ϕN

1 ),ϕ
∗N
1

)

+
(

G(φN
11,ϕN

1 ),ϕ
∗N
1

)

.

In the following subsection, we report the numerical results and discuss the physical
implications.

5.2 Numerical results and physical implications

5.2.1 Periodic orbit in case of continuous transition

According to the transition Theorem 4.1, in case of ReP=P1<0 the nonlinear system (2.4)
undergoes a continuous transition at R∗ and the new state ψnew can be approximated by

ψnew=ψs+

(

β11

|P1|

) 1
2 (

eiβ12tφ1+e−iβ12tφ1

)

+o

(

β
1
2
11

)

, (5.10)

which is the superposition of the basic steady-state (the Munk profile) and the bifurcated
time-periodic solution for R>R∗ and R−R∗

R∗ ≪1. Formula (5.10) provides a new effective
method for capturing the bifurcated periodic flow, in comparison to the traditional nu-
merical bifurcation theory where one has to solve the nonlinear system up to long time
to find the stable bifurcated solution.

For the purpose of illustration of the structure of the bifurcated periodic flow, we take
b=10π and S=0.2, then we find that the corresponding critical Reynolds number takes
the value R∗=30.71255. Taking R=32.71255, the structure of the bifurcated solution ψnew

in a period T=89.6809 is displayed in Fig. 5.
Observing from (a)-(b) in Fig. 5, one sees that the periodic flow given by (5.10) moves

in the y-direction, with two (counterclockwise) vortices close to the boundary x=0. We
point out that the magnitude of the bifurcated limit cycle grows with the square root of
the difference R−R∗ which is illustrated in Fig. 3.

5.2.2 Effect of stratification and aspect ratio on types of transition

In earlier numerical investigation of instabilities associated with the western boundary
current such as that in [3], only supercritical Hopf bifurcation (continuous transition in
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Figure 5: The evolution of the periodic solution with b = 10π, R= 32.71255 at period T/4-(a), 2T/4-(b),
3T/4-(c) and T-(d).

the language of dynamic transition) is discovered and the effect of the aspect ratio is
often overlooked. As stated in the transition Theorem 4.1, the types of transition that
the nonlinear system (2.4) undergoes at the critical Reynolds number R∗ can be either
continuous or catastrophic, and which type occurs is uniquely determined by the sign of
the real part of the transition number P, cf. (4.17). In this section, we calculate numerically
the value of the transition number for S∈ [0,0.8] and α∈ [0.1,0.5] as used in [3]. We shall
show that the dynamical system can indeed undergo a catastrophic transition (subcritical
Hopf bifurcation).

Here we take a=50, α∈ (0.1,0.5) and S∈{0,0.2,0.4,0.6}, we compute the correspond-
ing values of the real part of P which are shown in Fig. 6. One observes that for small
stratification number 0<S≪1 the corresponding transition number ReP is negative for
all α∈ [0.1,0.5], i.e., the type of transition is continuous in this parameter range. In this
case, there exists a periodic orbit as the Reynolds number R crosses the respective critical
value R∗. On the other hand for S= 0.6 and 0.25≤ α< 0.4, the transition number ReP is
positive. Hence, two types of transition can happen for the system (2.4).

Fig. 6 shows that the types of transitions, being continuous or catastrophic, for the
nonlinear system (2.4) at the critical Reynolds number, depend critically on the combina-
tion of stratification S and aspect-ratio α. It appears that the system favours continuous
transition in the sense that continuous transition occurs for the majority of the parame-
ter values, which to some extent explains why only supercritical Hopf bifurcations are
observed in earlier numerical studies. In Fig. 7 we delineate the regions separating the
continuous and catastrophic transitions in the S−α parameter plane with 0<S<0.8 and
0.1<α<0.65. It is shown that the plane is separated by a discontinuous curve into two re-
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Figure 6: The values P1 of the real part of the transition number as a function of the aspect ratio α and
stratification S. Positive values indicate a catastrophic transition; negative values imply continuous transition.

Figure 7: Regions separating the two types of transition: Region-I, continuous transition; Region-II, catastrophic
transition.

gions: Region-I where continuous transition occurs, and Region-II in which catastrophic
transition happens.

Our analysis and numerical results reveal the loss of stability of the western boundary
current is associated with oscillatory instability. The mechanisms for the oscillatory insta-
bility are intrinsically different: in the case of continuous transition (supercritical Hopf
bifurcation) a stable periodic orbit bifurcates from the steady-state solution and grows
continuously as the Reynolds number increases; whereas in the case of catastrophic tran-
sition an unstable limit cycle occurs before the Reynolds number reaches its threshold,
and no new periodic orbits bifurcate from it after the loss of stability of the basic flow.
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The type of transition responsible for the instability depends on the stratification and the
aspect ratio. Although these conclusions are drawn for the somewhat simpler one-layer
quasi-geostrophic potential vorticity equation when the aspect ratio is small, they pro-
vide further insight into the complex instabilities of the western boundary current and
general circulation models.

6 Conclusion

In this article we study analytically and numerically the instabilities of the western bound-
ary current governed by the quasi-geostrophic potential vorticity equation in a rectangu-
lar closed basin. By reducing the infinite dynamical system to a finite dimensional one
via center manifold reduction, we derive a non-dimensional transition number whose
sign determines the types of dynamic transition. We show by careful numerical evalua-
tion of the transition number that both continuous transitions (supercritical Hopf bifurca-
tion) and catastrophic transitions (subcritical Hopf bifurcation) can happen at the critical
Reynolds number, depending on the aspect ratio and the stratification. Our results give a
complete characterization of the instability mechanism of the western boundary current
in the QG setting. Our method is useful for the study of instabilities and transitions in
general circulation models.
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