
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0158

Vol. 26, No. 1, pp. 57-86
July 2019

Improving Linked-Lists Using Tree Search Algorithms

for Neighbor Finding in Variable-Resolution Smoothed

Particle Hydrodynamics

Shahab Khorasanizade1 and J. M. M. Sousa1,∗

1 IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,
1049-001 Lisboa, Portugal.

Received 10 June 2018; Accepted (in revised version) 24 October 2018

Abstract. Improving linked-lists for neighbor finding with the use of tree search algo-
rithms is proposed here, aiming to cope with highly non-uniform resolution simula-
tions employing a meshless method. The new procedure, coined Quadtree Cells Grid,
has been implemented in Smoothed Particle Hydrodynamics (SPH). The SPH scheme
employed is adaptive, thus allowing for particle refinement in desired regions of the
flow. Owing to the wide range of coexisting particle mass levels, standard linked-
list neighbor search algorithms become ineffective. Hence, an alternative is found
based on the use of hierarchical data structures, using quadtrees (in 2D problems).
The present algorithm exploits the advantages of both linked-lists and quadtree meth-
ods with the goal of increasing computational efficiency, when dealing with highly
non-uniform particle distributions. Test cases involving two distinct flow problems
have demonstrated that the computational cost of the current adaptive neighbor find-
ing algorithm scales linearly with the total number of particles, thus retrieving this
characteristic of linked-lists in uniform grid search. Nevertheless, the memory usage
increased as a result of the more complex data structure.

AMS subject classifications: 76M28, 68P10, 76D17

Key words: Smoothed particle hydrodynamics, linked-list, quadtree, neighbor finding, variable
resolution.

1 Introduction

The particle-based method known as Smoothed Particle Hydrodynamics (SPH) [1] has
seen a major increase in its range of applications along the past two decades [2,3]. Briefly,
this method typically uses an isotropic smoothing function to calculate field values, and

∗Corresponding author. Email addresses: shahab.khorasanizade@tecnico.ulisboa.pt (Sh. Khorasanizade),
msousa@tecnico.ulisboa.pt (J. M. M. Sousa)

http://www.global-sci.com/ 57 c©2019 Global-Science Press



58 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

particles carry media and flow data as these evolve according to Lagrangian governing
equations. As a rule, the larger number of calculating particles required by more accurate
simulations leads to increased computational cost. In the case of SPH, the number of par-
ticles demanded to achieve a desired quality of the solution may be reduced by using a
variable-mass distribution of particles [4–6]. This strategy becomes especially important
when considering engineering problems with truncated boundaries, where different spa-
tial resolutions must be employed to deal with complex and/or moving geometries, such
as in the cases of fluid flow through porous media [7] and fluid-structure interaction [8].
Whether uniformly distributed or not, and irrespectively of the criterion chosen for par-
ticle splitting or merging (dynamic or regional), a list of neighboring particles must be
created for each field particle, to be used in the calculation of the various terms in the
equations to be solved. The three main Nearest Neighboring Particle Search (NNPS) al-
gorithms used for that purpose are as follows: all-pair (direct), linked-list (uniform grid)
and tree (quadtree in 2D or octree in 3D) [1].

The all-pair search is the simplest but also the most inefficient NNPS algorithm. For a
given particle i (i=1,··· ,N), where N is the total number of particles in the domain, the
distance to all other j (j=1,··· ,N) particles is firstly inspected and only those falling inside
a prescribed cut-off radius (the kernel compact support of SPH) will be considered in the
next steps for interaction calculations. It is easy to show that the computational effort in
this method is of order O(N2), thus exposing the ineffectiveness of the algorithm.

In the uniform grid (linked-list) search, the domain is divided into an equally spaced
mesh, which has the width of the kernel support in SPH. Subsequently, particles inside
each mesh cell are found and, by arranging the particle array based on cell number, NNPS
is performed. In this algorithm the search is only performed over the 3, 9 or 27 cells (in
1D, 2D or 3D, respectively) surrounding the target particle cell [1, 9]. The computational
effort is therefore reduced to the order O(N), which represents a significant improvement
with respect to the method previously described. However, the same performance can-
not be obtained using this method in SPH simulations containing particles with variable
kernel smoothing lengths (i.e., non-uniform or adaptive SPH). As the level of adaptivity
increases, the corresponding computational cost becomes exceedingly high. Hence, aim-
ing to optimize this method for adaptive resolution simulations, an improved algorithm
for linked-list neighbor search in single-CPU calculations has been implemented in the
latest version of HAdynaSPH [4, 10, 11], as will be described in this paper.

Hierarchical data structures are particularly useful for the intended purpose because
of their ability to focus on the interesting subsets of the data. Quadtree (in 2D and octree
in 3D) is a hierarchical data structure based on the principle of recursive decomposition
[12,13]. It has been used for the representation of data used for applications in image pro-
cessing, computer graphics, geographic information systems, and robotics. In the field of
Computational Fluid Dynamics (CFD), such structures are specially suitable to deal with
adaptive resolution techniques [14–17]. The advantage in the use of the quadtree grids
lies in the fact that those grids can be generated automatically, and managed dynamically



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 59

based on certain criteria, without requiring complex algorithms [14–16,18]. For example,
quadtree grids have been exploited in Lattice-Boltzmann simulations to achieve maxi-
mum accuracy for a given CPU time, as well as to optimize memory usage in adaptive
resolution algorithms [17, 19, 20]. In all these studies, the division of calculation cells is
performed by setting a local criterion, either flow- or spatially-based.

Tree search methods have shown to work well in simulations with particles of vari-
able size. The computational effort involved in this NNPS method is of order O(N logN),
which is nevertheless higher than that for uniform grid (linked-list) schemes. Xia and
Liang [21] have tested quadtree algorithms aiming to speed up SPH calculations of the
shallow water equations employing GPUs. In this investigation it has been shown that,
compared to the commonly used uniform grid search method, quadtree neighbor search-
ing may allow significant reductions in redundant computations when searching for
neighbor particles. However, in some of the studied test cases no improvement was ob-
tained. Awile et al. [22] proposed a NNPS algorithm for general adaptive particle meth-
ods, where particles are sorted based on smoothing length and spatial position. Their
method showed advantages over conventional schemes (e.g., linked-list) for wide range
of adaptive resolutions, as long as coupled with Verlet lists [23]. The computational effort
involved without the use of Verlet lists has shown to be higher than that required by both
tree and uniform grid search algorithms.

In the present work, a new variant of NNPS is introduced for use in adaptive SPH
by retaining some of the features of both uniform grid (linked-list) and tree search al-
gorithms. The proposed methodology reduces to the uniform grid algorithm in simu-
lations with uniform particle resolution, whereas in variable particle mass calculations
it allows for remarkable improvements in computational efficiency. These studies have
been performed employing the Incompressible SPH (ISPH) method with dynamic adap-
tivity of HAdynaSPH [4, 6, 10]. The performance of NNPS when various levels of parti-
cle mass coexist in SPH is analyzed, comparing the computational cost required by the
use of the uniform grid (linked-list) algorithm versus the Quadtree Cells Grid (QCG)
method proposed here. This improved algorithm is aimed solely at reducing the com-
putational effort of linked-lists, as it was specially designed to retrieve a cost of order
O(N) in NNPS of adaptive SPH simulations on single-CPU calculations without chang-
ing the physical modeling of the problem. Hence, as long as the same spatial resolution
is employed, no changes on the flow solution are observed, as shown in this study for
incompressible flows past a circular cylinder and a plunging NACA0012 airfoil placed
in a free stream. For discussions on stability, consistency, conservation and convergence
characteristics [24] of the numerical scheme for the physical modeling employed in HA-
dynaSPH the reader is referred to previous work [4, 6, 25, 26]. All the results reported
herein have been obtained on a desktop machine equipped with an Intel Core i7-2600K
@ 3.4 GHz quad-core CPU. The HAdynaSPH package has been developed in FORTRAN

for double precision calculations and compiled with Intel Fortran Composer XE v12.1 for
Linux on a single core.



60 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

2 NNPS algorithms

In the case of CFD, the Lagrangian Navier-Stokes equations are solved for each SPH
particle representing a parcel of fluid [1]. Such particles are thus moving entities, carry-
ing fluid and flow information, which is obtained at each time instant from discretized
volume integration summations over the particles inside their compact support. The ra-
dius of this subdomain depends on a weighting function, often referred to in SPH as
the kernel function. As particles generally move independently of each other within
the flow domain, their neighbor particles change from one time iteration to the other.
Hence, an efficient NNPS algorithm is crucial in high-resolution SPH calculations. Some
researchers [27,28] have suggested that the neighbor list may be kept unchanged for sev-
eral time steps of the simulations by simply using a larger subdomain volume. However,
this procedure also requires the allocation of larger arrays to store the information, and
it leads to calculation errors in rapidly changing flows when variable resolution is em-
ployed.

Each and every particle in the HAdynaSPH package is tagged as either Fluid (F),
Buffer (O, for Open boundaries), Edge (E), Image (B, for solid Boundary particles) or
Solid (S, in two-phase flows). These particles are parts of a linked-list data type, under
their corresponding zone with F, O, E, B or S assignment, as depicted in Fig. 1. Each
zonal and particle data structure carries physical and numerical entities needed during
the simulations, such as mass, density, position. Linked-list information, namely the
particle that comes after and before the current one, is also available there, as seen in Fig. 1.
The underlying cells in the proposed NNPS algorithm have a linked-list of POINTERs to
the particles contained therein. In the following subsections, standard FORTRAN syntax,
wherever applicable, is used to define the variables.

2.1 Uniform grid (linked-list)

When using this search method, a coarse mesh with the cell size equal to the compact
support radius is superimposed to the particle-filled domain. Each particle and grid
cell are given unique index numbers, which do not change during the simulation. For
each row of the particle index array, the cell index is saved and subsequently this array
is sorted by cell number to optimize the neighbor finding search [21, 28]. This sorting
is often addressed via Hashing, but it is not applied here due to the use of a different
arrangement, as will be discussed below. In the HAdynaSPH package, equally spaced
cells are ordered based on z, x and then y directions, as shown in Fig. 2a. This creates
Ngr=Gridx×Gridy×Gridz cells in the domain, where the array Grid contains the number
of cells in each of those directions. The procedure takes advantage of the interaction
symmetry, i.e., if a particle i is found in the vicinity of particle j, vice-versa is also true.
Bearing this in mind, each cell has only 5 neighboring cells in 2D problems, rather than
the classical 9 neighbors (in 3D problems, 14 neighbors would be considered instead of
27). Traditional and presently used neighboring arrangements are illustrated in Fig. 2b-c,



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 61

Figure 1: Illustration of zone and particle data structure for a linked-list in a generic Zone(1).

by choosing cell #16 as an example.

The neighbor list of cells is created following Algorithm 1. This is carried out only
once, in the beginning of the simulation, as the number of cells and arrangement of the
grid do not change during the calculation. Based on the ordering directions defined
earlier, a unique spatial record of each cell with index g is saved in dim. The various
properties of particles and cells are hereinafter addressed using the standard FORTRAN



62 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 2: Grid and cell neighbor arrangement: a) general placement of cells in a 3D domain; b) traditional
arrangement of neighboring cells [21,28]; c) neighboring cells used in HAdynaSPH [4,10].

convention symbol % for derived data types. For example, for g= 16 in the example of
Fig. 2b-c, we have g%dim=(1,3,4).

Algorithm 1. Grid cell neighbor finding.
Do g=1,Ngr

Do g1= g,Ngr

dg= g%dim− g1%dim

If all the values in dg are either −1, 0 or 1

Add g1 to the neighbor list of g

Subsequently, the position vector of each particle is divided by the size of the cell in
each direction. Eq. (2.1) is used to calculate the index of the containing cell, as follows:

{

dg= particlepos /cellsize,

g=Gridy

{

dg(1)−1+
[

dg(3)−1
]

Gridx

}

+dg(2),
(2.1)

where particlepos and cellsize denote arrays containing the spatial position of the particle
and the cell dimensions, respectively. The target particles are added at the end of the
linked-list created for each cell and specific type of particle (F, O, E, B or S, as referenced
earlier). This data structure is shown in Fig. 3. Each linked-list contains connections to the
first, next and the final entry of the list, which are used to traverse it. For each structure,
a NULL first record signifies the inexistence of that particle type in the specific cell. These
chain-like data types are created to simplify the process of adding and removing entities
from the linked-list [29].

Solid wall boundary treatments are carried out in HAdynaSPH employing the SBA
algorithm [10]. The procedure initially involves finding the closest E particle to each of
the F/O particles. In general, the ratio of the number of F/O particles to the number



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 63

Figure 3: Grid data structure created in HAdynaSPH.

of E particles is high, thus finding the closest edge particle becomes computationally
expensive. This search has been optimized by placing F/O and E particles inside the
cells using Eq. (2.1). Once the grid information is compiled by filling the POINTERs of
% f par, %O par and %E par, a linked-list of cells is constructed by pointing to grid nodes
encircling fluid particles and a neighboring cell with Edge attribute. Considering Fig. 2,
if at least one F/O particle exists in cell #23 and one E particle exists in cell #29, the
data structure depicted in Fig. 4 produces an entry to the Edge finding list as follows:
list E%i => #23, list E%j => #29, list E%next => NULL(). By traversing this list one
may find the Fluid/Open boundary particles in vicinity of an edge. Following these
initial steps, B particles are created [10], and these are added to their corresponding cells
using Eq. (2.1) and the scheme described earlier.

In SPH calculations, particle interactions must be found for F-F, F-O and F-B (and also
for F-S in the case of two-way coupling in multiphase flow). The underlying optimization



64 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 4: Cell type listing data structure and the interaction finding steps in the linked-list algorithm.

concept is similar to that of edge particle finding. Also based on the interaction type, a
linked-list of F-containing cells, which includes a POINTER to the neighbor cell encircling
any of the aforementioned types of particles, is made. This linked-list is looped over
the cells, with an inner loop over the particles contained in each cell, thus inspecting the



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 65

particles in the pointed cell to find all the interactions. The specific interaction cell list and
overall particle interaction finding steps are shown in Fig. 4. Step 1 consists in placing
each particle at the end of the respective linked-list type in the containing cell. This is
followed by Step 2, where the interaction finding is firstly optimized by sorting the cells
and their neighbors based on the particles they contain. Particle interaction are found
and saved at each iteration by looping inside the list linked-lists, as described in Step
3. Traversing the linked-list throughout HAdynaSPH is done using standard FORTRAN

implementations [29].

Nevertheless, even after all these improvements, this method proved not to be ad-
equate for variable-resolution SPH simulations due to the excessive computational cost
of the NNPS. Hence, a new procedure retaining some of the features of uniform grid
(linked-list), but making extensive use of tree search algorithms, is proposed next.

2.2 Quadtree Cells Grid (QCG)

Uniform grid algorithms are known to be a suboptimal strategy for handling the re-
quirements of variable resolution, and their application to SPH does not make an ex-
ception. This is illustrated here based on Fig. 5, where the particle arrangement around
a NACA0012 airfoil is shown. For example, using a quintic kernel and setting the ra-
tio of the kernel smoothing length to the initial particle spacing to the (usual) value of
1.3, one may expect approximately 16 uniformly-distributed particles (of masslevel =1) in
each cell (Fig. 5a). However, as each of the original particles is split into 4 smaller ones
in a regional refinement procedure [4], one would find approximately 64 particles of the
next mass level (masslevel =2) in the same cell. Further, if these particles themselves split
into a higher level following the same scheme, approximately 256 calculating nodes (of
masslevel = 3) would result in that region, and so on. This splitting pattern is shown in
Fig. 5b, where the largest axis of the airfoil chord C is used as length scale. As the num-
ber of particle mass levels increases, the uniform grid (linked-list) NNPS diverges from
being optimal.

One of the possible ways to optimize the NNPS in variable-resolution calculations is
via tree-search algorithms [1], in particular using quadtree (2D) or octree (3D) data struc-
tures. In these, particles are firstly sorted in a hierarchical tree. This tree is constructed
with the whole computational domain forming its main root. The root is divided into 4
daughter cells in 2D problems (or by 8, in 3D problems), which may contain more than
one particle. This division process is carried out, and repeated for all the cells encom-
passing more than one particle until each one contains no more than one particle. In
other words, the branch splitting is performed until the leaves on the tree correspond to
individual particles. The result of such process for a typical particle field is depicted in
Fig. 6. Unlike the uniform grid searching method, particles in tree methods are sorted by
space-filling curves or z-indexing. This way, particles spatially near each other are also
placed close to each other in memory [21]. After building a tree, such as the one shown in
Fig. 6b, the neighbors are found by traversing the tree through desired paths. These paths



66 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 5: Particles in cell arrangement for: a) uniform resolution C/40; b) variable resolution with regional
refinement and coarsest resolution C/40. The number of coexisting masslevel shown in (b) is 4.

Figure 6: Original quadtree NNPS: a) particle arrangement and grid creation; b) tree structure.

are chosen by verifying if the cells are overlapping with a square enclosing the target par-
ticle (shaded area around particle #8 in Fig. 6a). The aforementioned condition must be
met until the search reaches the leaf of the tree containing a single particle, so that it may
be considered as a neighbor of the target particle. For additional details on this search
algorithm the readers are referred to the work of Xia and Liang [21]. One should empha-
size that the computational effort of this method is of order O(N logN), and even in the
implementation of Awile et al. [22] it is of order O(maxlevel N logN), where maxlevel de-
notes the maximum number of coexisting masslevel . Hence, retrieving the computational
cost of linked-list in uniform grids, i.e., O(N), is increasingly beneficial as the number of
particles (or calculation nodes) grows.



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 67

In the variable-resolution method implemented in the HAdynaSPH package, a quad-
tree is created for the foregoing grid instead of building a tree based on the particles.
This has been done with the specific objective of achieving a computational effort of order
O(N) in the NNPS. Hence, one should not misunderstand the proposed procedure with a
tree search method, as the underlying concepts of the proposed algorithm are still linked-
list alike. During the process of particle placement in the cells, the mass levels of particles
and the cells are compared. If the particle masslevel is larger than that of the target cell, that
cell is tagged for splitting and it will be added to the end of split grid list to be divided
in the next flow calculation iteration. This linked-list contains POINTERs to those cells that
need to be split at the end of current time step. The physical domain, which encompasses
also the boundaries and extended regions in case of free-surface flows, is firstly divided
into an initial uniform grid (as shown in Fig. 5) with the value of masslevel =1 assigned to
each one of its cells. After a prescribed number of iterations (every 10 time steps in the
present study), the code loops over split grid list to split the tagged cells (g in Algorithm
2). In the 2D problem illustrated in Algorithm 2, each parent cell is divided into four
daughter cells with their unique spatial index (%dim) for the new masslevel . As these
smaller cells contain smaller particles, their mass level is increased by one unity and their
splitting condition is set to FALSE.

Algorithm 2. Grid cell splitting using QCG. For the sake of simplicity only a 2D prob-
lem is illustrated, but the same concept applies to 3D problems as well. Note also that
the standard FORTRAN symbol => indicates that a POINTER variable is used to store the
memory location of another variable.

Do g= split grid list (1 to end)

Allocate g%Daughter(2,2) (a two-by-two cell array for the number of daughter cells)

Do i=1,2

Do j=1,2

g1 => g%Daughter(i, j)

g1%dim(1)=(g%dim(1)1)×2+i

g1%dim(2)=(g%dim(2)1)×2+ j

g1%split= FALSE

g1%parent => g

g1%masslevel= g%masslevel+1

After the completion of Algorithm 2, the neighbor list of the new (smaller) daughter
cells must be assigned. It must be noted that contrary to the uniform grid algorithm
described in the previous subsection, and for reasons that will be discussed later, each
cell in the initial uniform grid has again 9 neighbor cells (Fig. 2b) instead of 5. The steps
on how the daughter cell neighbor list is created and updated are illustrated in Algorithm
3. The search is limited to the neighbors of its parent cell, as the daughters neighbor cells
cannot lay beyond those cells. This algorithm has been assembled in two main sections:
Part 1 assigns the neighbor list for the recently created daughter cells (g1); Part 2 updates



68 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

the neighbor list of daughter cells (g3) holding a masslevel equal to that of g1. These cells
have been split in previous time steps and are children of the cells in the neighborhood
of cell g (the parent of g1).

Algorithm 3. Daughter cell neighbor list creation and update using QCG.

Do g= split grid list (1 to end) ↓ Part 1

Do i=1,2

Do j=1,2

g1 => g%Daughter(i, j)

Do g2 => g%ng (traversing the linked-list)

If g%masslevel = g2%masslevel

If g2 has Daughters

Do m=1,2 Part 1.1
Do n=1,2

g3 => g2%Daughter(m,n)
dg= g1%dim–g3%dim
If all the values in dg are either -1, 0 or 1

Add g3 to the end of neighbor list of g1(g1%ng)

Else

Status = TRUE Part 1.2
Do m=1,2

If Status is TRUE
Do n=1,2

If Status is TRUE
Fake dim(1)=

[

g2%dim(1)–1
]

×2+m

Fake dim(2)=
[

g2%dim(2)–1
]

×2+n
dg= g1%dim–Fake dim
If all the values in dg are either −1, 0 or 1

Add g2 to the end of neighbor list of g1(g1%ng)
Status = FALSE

Do g2 => g%ng (traversing the linked-list) ↓ Part 2

If g2 has Daughters AND not being split

Do m=1,2

Do n=1,2

g3 => g2%Daughter(m,n)

k=0

Do g4 => g3%ng (traversing the linked-list)

If g4= g

Do i=1,2

Do j=1,2

g1 => g%Daughter(i, j)



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 69

dg= g1%dim–g3%dim

If all the values in dg are either −1, 0 or 1

Add g1 to the end of neighbor list of g3(g3%ng)

k= k+1

If k > 1

Remove g from the neighbor list of g3(g3%ng)

Fig. 7a shows a schematic of the grid where the split cells are marked using dashed
lines. In turn, Fig. 7b illustrates the tree structures for the split cells in Fig. 7a. As men-
tioned in Section 2.1, the array Grid contains the number of cells in each of the x, y or z
directions. In the proposed QCG algorithm, and contrasting to its uniform grid counter-
part, the Grid array is defined per each mass

l evel, thus producing the cell indices shown in
Fig. 7b as explained next. This Gridmass level contains the maximum possible of cells that
may exist for a specified masslevel . Each masslevel has its corresponding Gridmass level with
values given by the dimension of its previous level in each direction multiplied by two,
as each parent cell breaks into a 2-by-2 grid in 2D problems. Taking the example in Fig. 7,
Grid(1) (e.g., for masslevel=1) takes the values (4,4), whereas Grid(2) takes the values (8,8),
despite the fact that at the instant shown in the figure not all of those smaller cells exist.
In a general adaptive simulation one might never reach that number of cells for a known
masslevel , and these values only denote the upper limits. After making available the array
Gridmass level, Eq. (2.2) is used to determine the cell index, as follows:

INDEX=Gridmass level
y

{

g%dim(1)−1+
[

g%dim(3)−1
]

Gridmass level
x

}

+g%dim(2), (2.2)

where INDEX is the cell number shown in Fig. 7b. Taking again the 2D problem illus-
trated in Fig. 7, for masslevel =1 and g%dim=(3,2) the value of INDEX is 10, whereas for
masslevel =3 and g%dim=(7,6) it takes the value of 102. Contrary to tree search schemes
previously used in SPH [21], where only one particle is placed per leaf of the tree, the
cells in this improved linked-list method (the present QCG algorithm) contain more than
one particle, as the branches are in fact constructed to reduce the search area for the pair-
finding. It must be noted that the arrangement in Fig. 7 is independent of the particle
arrangement itself, as far as small particles exist in smaller cells. In addition, the spatial
index of each cell starts from 1 for each masslevel and it is indeed unique within a specific
mass level, but the same cell index may eventually exist within the whole domain for
a different masslevel . Hence, each cell is identified by both the masslevel and its unique
spatial index within that masslevel . Hereinafter, a particular cell g will be referred to as
#INDEXmass level.

As mentioned earlier, the first part of Algorithm 3 is assigning the neighbor list of
daughter cells (g1) created from any cell g. Initially, the neighbor cells of g are looped
over to check whether the masslevel of such cells is equal to that of g. This part of the
algorithm was designed to ensure that the cells find their neighbors characterized by
a size equal or one level above that of themselves. Upon passing this check, there are
two sub-sections where the neighbor list of g1 is created. If g2 (i.e., the neighbor of g)



70 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 7: Example of application of the QCG algorithm: a) grid structure with dashed lines representing recently
split cells; b) tree representation of the grid, where only the cells that have daughters are shown.

has daughters, it must be verified whether such cells are the neighbors of g1, following
Part 1.1 of the algorithm. Once more as illustrated in Fig. 7, for g1=#442 under g=#101,
Algorithm 3 (Part 1.1) goes through g2=#111, and assigns g3=#372 and #452 as neighbors
of g1 = #442. Also, for g2 = #141, daughter cells of g3 = #512 and #522 are considered
as neighbors of g1 = #442. On the other hand, Part 1.2 of the algorithm checks for the
neighbors of g, namely g2, that do not have any daughters. Let us assume that g2 has
been split and each of these imaginary daughters has dimensions calculated as Fake dim.
If any of these fake daughters could be considered as neighbors of g1, then g2 would
be added to the neighbor list of g1. For instance, for g1= #442 in Fig. 4, g2= #151 with
g%dim=(4,3) would be in the neighbor list.

The neighbors of recently split cells are assigned using, again, Part 1 of the algorithm.
However, the neighbor list of the daughter cells that have been split in the previous itera-
tions of the flow calculations needs to be updated for the new daughters to be considered.
This is carried out using Part 2 of Algorithm 3, and the procedure is explained for the pre-
viously split cell g2=#111, as sketched in solid lines in Fig. 7a. Prior to this, some of the
daughters of g2, for example g3=#452 with m=2 and n=1 in Algorithm 3, would have
g=#101 in their neighbor list (g4). However, as g had been split in the current iteration of
the flow calculations, the neighbor list of g3 must be updated to contain the g%Daughter
instead of g. By looping over the neighbors of g that have not been split at the current
time-step (g2), one finds the daughters (g3) of such cells that have g as their neighbor.
Once those cells have been found, it must be checked whether g%Daughter are in the
vicinity of g3. Then, these new cells are added and g is removed from the neighbor list of
g3. Hence, following the steps above in Part 2 of Algorithm 3, g1=#362 and #442 (i.e. the
daughters of g= #101) would be added, while their parent g= #101 would be removed
from the list of g3=#452.



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 71

It was also mentioned earlier that cells in linked-list are split after being tagged dur-
ing the particle placement in the cells. However, the particle arrangement becomes much
more complicated once dealing with variable resolution and, therefore, particle place-
ment in the cells could not be done by simply using Eq. (2.1). Hence, in the present
method, the particles are placed in the cells following Algorithm 4.

Algorithm 4. Particle placement in cells using QCG. Here only F particles are considered
as an example. The same algorithm is applied to other types of particles. The fluid
containing property in the present example is saved in f sel f for each cell.

Do F=Zone(1)%par (traversing the fluid particles linked-list)

Use Eq. (2.1) to find the cell index for masslevel=1,g

Aux g= g

Do while Aux g has Daughters

Aux g% f sel f = TRUE

EXIT this loop If Aux g%masslevel=F%masslevel

dg=Fpos/cellsize (corresponding to the current mass level)

daughterd =dg (Auxg 1)×2

Auxg => Auxg%daughterd

Add F to Auxg particle list (Auxg%F par)

If Aux g%masslevel 6=F%masslevel, Auxg%split = TRUE and add to the end of split grid list

In Section 2.1 it was explained that linked lists of cells are constructed for each and
every type of SPH particle interactions. Subsequently, these structures are used to find
all the interactions. Based on Algorithm 4, particles are placed in the cells of the same
masslevel . So, if by traversing down the quadtree of the cells one reaches a cell that has a
lower masslevel than the target particle, this cell is tagged to be split at the end of this itera-
tion. Here, interactions between particles of various masslevel need also to be considered,
as even a cell without daughters may have particles with a higher masslevel . Generally,
the particle placed in a cell goes through the NNPS for all the particles placed in the
neighbor cell and all its subsequent daughters. Using again Fig. 7, cell #101 sees cell #61

and both of them are characterized by masslevel =1. Note that the cell #62, as a Daughter
of cell #31, is different from the cell used in the current example and is not seen by cell
#101. For this situation, the large particles in cell #101 must check all the particles placed
in cell #61 and the smaller cells created from it, i.e., dead-end cells such as #202, #282 and
smaller ones such as #1013, #1183, among others. The same concept applies also when
dealing with cell #352. This cell is a neighbor of cell #272, which has the same size, and
apart from checking for the particles of this masslevel , the algorithm must check for the
particles placed in higher masslevel cells created from cell #272 as well. Another example
can be given using cell #202, which has cell #132 as a neighbor. Particles in cell #202 must
check all the particles in cell #132 and all the levels below it, no matter the depth. Hence,
each cell has a linked-list of neighbor cells even if particles do not exist inside those cells,
and particles in each cell must loop over those neighbor cells to check if the particles that
may be inside these are contained within their computational compact support.



72 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

3 Implementation results

Fluid flow simulations were conducted here with the sole objective of assessing the per-
formance of the proposed implementation for NNPS in adaptive SPH, rather than to im-
prove any flow solution, as the numerical accuracy and convergence of the SPH method
used has been demonstrated elsewhere [4, 6, 10, 11]. All the simulations described herein
were carried out using HADynaSPH [4, 11], applying a Wendland C6 kernel [30] with
a ratio of the smoothing length to the initial particle spacing of 1.95, thus making the
compact support 3.9 times larger than the particle spacing. This combination results, on
average, in 44 particles inside the compact support.

3.1 Steady flow around a circular cylinder

The QCG algorithm was tested in the steady flow over a circular cylinder placed in a
free-stream [31–34], at a Reynolds number Re= 20. The cylinder is placed at the center
of a 20D×20D domain, where the characteristic length D is the diameter of the solid
body. Flow simulation data have been nondimensionalized using the diameter D and
the free-stream velocity U∞. Aiming to illustrate the advantages of the use of the QCG
algorithm, adaptive particle refinement has been applied in ISPH to place the calculated
values of (total) drag coefficient Cd and angle of separation θs within the limits given
by previous numerical [31, 32] and experimental [33] investigations. By considering a
computational domain as large as the one used here, a uniform distribution of particles
corresponding to a relatively high resolution D/80 would create more than 2.5 million
particles. This simulation would be computationally very expensive and, clearly, such a
high spatial resolution is not required in the far-field. The characteristics of the present
test simulations and the resolutions employed, in both uniform and adaptive particle
arrangements, are shown in Table 1.

The initial number of particles in the computational domain is indicated in Table 1
for each case. As the flow has open boundaries all around in order to simulate the free-
stream, the number of particles in the domain varies only slightly during a simulation
due to small imbalances in the instantaneous flow rate, even when using the uniform
particle arrangement. Concerning the adaptive procedure, splitting the particles as these
enter prescribed regions of the flow produces a large rise in the number of particles. The
benchmark flow data for the present test case are listed in Table 2 for various studies, both
experimental and numerical. The results of the present simulations reported in Table 1
confirm the convergence of Cd to the range of values given in Table 2 as the particle
resolution is increased. It must also be mentioned that the aforementioned parameter
was calculated at the simulation time Tsim = 5, for which all the SPH simulations had
converged.

The data presented in Table 1 demonstrated the independency of the drag coefficient
for the simulations with particle resolutions finer than D/20. The convergence to an
accurate flow solution can be observed in a detailed data comparison made against the



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 73

Table 1: Characteristics of test simulations and resulting (total) drag coefficient Cd.

Case
Particle
arrange.

NNPS
algorithm

Spatial
resolution

Mass
levels

No. of particles, N
Cd

Initial 1000 it. Tsim=5

A

Uniform Linked-list

D/5 1 9976 10140 10028 1.93

B D/10 1 39920 40298 40125 2.05

C D/20 1 159668 160068 160066 2.13

D

Adaptive

Linked-list
D/5→D/5 1 9976 10002 9964 1.98

I QCG

E Linked-list
D/5→D/10 2 10937 12109 11466 2.08

J QCG

F Linked-list
D/5→D/20 3 13916 15957 15747 2.13

K QCG

G Linked-list
D/5→D/40 4 18028 19196 22616 2.13

L QCG

H Linked-list
D/5→D/80 5 33156 33930 45107 2.13

M QCG

Table 2: Benchmark values of the angle of separation θs and the (total) drag coefficient Cd for steady flow past
a circular cylinder placed in a free-stream at Re=20.

Referenced work θs (deg) Cd

Coutanceau and Bouard [33] 1 42.3 −

Tritton [34] 1 − 2.22

Taira and Colonius [32] 43.3 2.06

Calhoun [31] 45.5 2.19

Marrone et al. [35] 2 43.0 2.20

Sen et al. [36] 2 43.5 2.02
1 Experimental study.
2 Results in a confined domain.

numerical simulations of Sen et al. [36], who investigated the flow past a circular cylinder
at various blockage ratios and Reynolds numbers. These authors have not provided data
for Re= 20 concerning the pressure distribution, hence a comparison with the pressure
coefficient Cp published for the bounding values of Re = 15 and 30 is made instead in
Fig. 8a. A direct data comparison at Re=20 was nevertheless possible regarding nondi-
mensional vorticity ω in Fig. 8b. Minor discrepancies found at some values of the angle θ

defining the position along the edge of the circular cylinder may be attributed to a small
effect of blockage, despite the choice of the lowest available value in the data set [36].

In all the simulations performed here employing the adaptive arrangement, the base
resolution (i.e., the particle resolution far from the object) was D/5. This coarse resolution
was then increased using regional criteria. Such regions were defined as ellipses in the



74 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 8: Comparison of present results with data published by Sen et al. [36] along the edge of the circular
cylinder: a) distributions of Cp at Re=20 compared to the bounding values at Re=15 and 30; b) distributions
of nondimensional vorticity at Re=20.

present simulations and finer resolutions were naturally employed near the object. Fig. 9
portrays the initial particle arrangement for the whole computational domain, as well as
in vicinity of the circular cylinder (inset), for the simulation cases H and M.

The QCG algorithm has been introduced to improve the computational cost of the
SPH simulations employing variable-mass particle distributions. The total CPU-time (in-
cluding all operations) required for the test cases in Table 1 to achieve 1000 time iterations
is shown in Fig. 10a. Looking only at the low-resolution simulations (test cases D and I,
or E and J), it can be seen that the use of the QCG algorithm leads to a slightly higher
computational cost than the linked-list due to the extra operations, as detailed in Section
2.2. However, as the number of coexisting masslevel increases (leading also to a larger
number of particles), the superiority of the QCG algorithm becomes evident. Namely, for
the adaptive simulations employing the finest particle resolution (test cases H and M),
the use of the QCG algorithm in NNPS reduces the total CPU-time by a factor of 2.73
with respect to the use of the linked-list.

The values of total CPU-time (including all operations) corresponding to the refer-
ence flow time Tsim =5 are shown in Fig. 10b also for the test cases in Table 1. However,
depending on the particle resolution, the number of iterations it took the simulations to
reach Tsim=5 differs. For example, those with the finest resolution up to D/20 only (cases



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 75

Figure 9: Initial particle arrangement in the computational domain and in vicinity of the circular cylinder (inset).
The solid-line square represents the free-stream boundaries. Particles outside these boundaries are the so-called
buffer particles employed in the open boundary treatment [11].

C, F and K) reached the foregoing time instant in less than 1000 iterations, but even for
this moderate resolution the advantage of using the QCG algorithm for the adaptive par-
ticle arrangements is already noticeable. Drastic increases in such benefits are neverthe-
less obtained for the finest resolutions up to D/40 and D/80 (cases G and L, and H and
M, respectively), though the simulation time grows significantly in those simulations, as
expected due to (mainly) the larger number of particle interactions.

It was demonstrated that significant reductions in the total computational time re-
quired by adaptive SPH simulations may be achieved with the use of the QCG algorithm.
However, it must be emphasized that most of the computational effort in ISPH simula-
tions is on account of the iterative solver. Often, the calculation time for these solvers
does not scale up linearly, thus biasing the analysis of the results in Fig. 10 concerning
the mere performance of the NNPS algorithms. This issue may be assessed in detail in
Fig. 11a, which shows the average calculation time per iteration to reach the first 1000
iterations for the various operations involved in the ISPH method, namely: a predictor
step, in which particles are advanced to an intermediate position, and a velocity (u∗) is
calculated based on the governing equations; the solution of a Pressure Poisson Equa-
tion (PPE), using the foregoing velocity field to compute the pressure field; a corrector
step, using the pressure filed to determine the final velocity of the particles (un+1); and,
apart from the already mentioned NNPS, a fifth contribution denoted here by others,
corresponding to memory allocation and deallocation, matrix manipulation, and particle
shifting.



76 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 10: Total CPU-time for the test cases in Table 1: a) first 1000 iterations; b) required to reach Tsim=5.

The comparison in Fig. 11a reveals the dominant cost of the PPE up to a moderate
number of particles. However, as the amount of coexisting mass levels increases in the
simulations (depicted in Fig. 11b), the cost of the NNPS grows dramatically, and only the
use of the QCG algorithm avoids that this contribution becomes eventually the largest
one in the set. The proposed algorithm ensures that the relative computational cost of
NNPS with respect to components other than the PPE remains approximately constant,
thus yielding that its use may be even more beneficial in fully explicit Lagrangian meth-
ods that are not limited by the computational cost of an implicit solver.



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 77

Figure 11: Computational statistics of the method and simulations. a) averaged calculation time for each
component of the ISPH method for the first 1000 iterations; b) number of particles in the flow field at Tsim=5,
sorted by mass level (e.g., 1st represents the first split level with respect to the uniform far-field resolution, and
so on).



78 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 12: Averaged computational data per iteration for various implementations during the first 1000 iterations
for the initial number of particles shown in Table 1. a) NNPS calculation time. Slopes of order O(N) and

O(N2) are also shown in dashed lines for reference. b) Memory in use vs. number of particles.

The performance of the QCG algorithm in adaptive SPH is compared with that of
linked-list in adaptive and uniform SPH in Fig. 12. In Fig. 12a, slopes of order O(N) and
O(N2) are also shown in this figure for reference. It can be concluded that the goal of
retrieving a computational effort of the NNPS of order O(N) with the QCG algorithm,
similarly to that of linked-list in uniform resolution simulations, has been fully achieved.
In the case of adaptive simulations using the classical linked-list algorithm, the compu-
tational effort corresponding to NNPS diverges sharply from O(N), thus making these
calculations highly costly as the number of particles increase via the increment of masslevel

(up to 25.4 times more expensive with five coexisting mass levels, i.e. maxlevel =5). Con-
trasting with this improvement in computational cost, and due to the POINTER structures
used in QCG implementation, the average memory in use per iteration more than dou-
bled, as shown in Fig. 12b. Advancing from uniform to an adaptive implementation, the
required storage would naturally increase to accommodate the extra variables required
in the calculations, as the linked-list results demonstrate in Fig. 12b.

On the other hand, much less computational time was required by the QCG algorithm
in an adaptive SPH simulation producing the same value of Cd as a uniform simulation
using the classical linked-list algorithm, due to the ten-fold reduction in the number of
particles employed (see Table 1). These savings allow for higher particle refinement to
be used in the vicinity of the object, as local features of the flow field around the circular
cylinder such as the flow separation angle θ = θs are very sensitive to spatial resolution.
This is illustrated in Fig. 13, where the flow patterns for cases A, B, C (uniform SPH) and
I, J, K, L, M (adaptive SPH) are portrayed. The shaded sector inside the cylinder section
provides a graphical representation of the maximum and minimum values reported in
the literature for the angle of separation, as listed earlier in Table 2. It can be seen that



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 79

Figure 13: Effect of particle resolution on the converged velocity vector pattern around a circular cylinder placed
in a free-stream at Re=20. The shaded sector within the cylinder section represents the maximum and minimum
values reported in the literature for the angle of separation, as listed in Table 2.

reasonable values for θs may be computed already using the uniform particle arrange-
ment with a resolution of D/20 (case C), but the associated uncertainty is high. Increased
accuracy may be obtained by employing the adaptive particle arrangement with higher
resolutions (cases L and M), together with the QCG algorithm, for a small fraction of the
computational effort that would be required by comparable uniform simulations.

3.2 Plunging NACA0012 airfoil

The steady state study is complemented here by an investigation of unsteady flow around
a NACA0012 airfoil plunging vertically in a free-stream at Re=252 [26, 37]. Examples of
the application of SPH to the analysis of streamlined bodies can be found in the work
of Shadloo et al. [38]. In their comprehensive investigation, the flow over a stationary
airfoil at various angles of attack and Reynolds numbers was studied, eventually giving



80 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

rise to the establishment of self-sustained oscillations characterized by a Strouhal num-
ber. Conversely, in the case of the plunging airfoil considered here, the streamlined body
is heaving at a specified frequency rather than remaining stationary. A Strouhal number
characterizing this motion, which in turn controls the dynamics of the flow, can also be
formed. However, as the foregoing parameter is associated to prescribed oscillations, it
bears no direct relation with its counterpart describing naturally-occurring flow oscilla-
tions.

Whereas the previous flow problem allowed a detailed comparison between the per-
formance of the linked-list method and that of the presently proposed algorithm, this
additional flow problem is aimed at a sensitivity analysis of QCG algorithm to the com-
plexity of the particle arrangement in the presence of a moving body. The airfoil is
placed horizontally at a location 10C downstream from the inflow of a computational
domain of size 30C×20C. The free-stream (inlet) velocity U∞ has been selected to ob-
tain the intended value of the Reynolds number for an airfoil of chord length C. The
two-dimensional symmetric NACA0012 airfoil plunges vertically around the mid-plane
of the domain and its motion is described in time t by the following expression:

y(t)=h sin(kt+π/2), (3.1)

where the y-direction is perpendicular to the undisturbed stream, k stands for the re-
duced frequency, and h denotes the amplitude of the plunging motion. In Eq. (3.1)
all quantities have been made nondimensional using C and U∞ as length and velocity
scales, respectively. The amplitude of the plunging motion has been kept fixed as h=0.12,
whereas two distinct values of the reduced frequency, namely k=4 and 8, were chosen to
generate the shedding of vortical structures exhibiting different characteristics. For ad-
ditional information regarding this flow problem, the reader is invited to numerical and
experimental studies published in the literature [26, 37, 39, 40].

In the previous section, the superiority of the QCG algorithm with respect to classic
linked-list was demonstrated, for calculations employing a moderate number of parti-
cles. Here, the focus is on the assessment of the performance of QCG for a complex flow
problem involving a moving body. Details of the test cases considered, and the corre-
sponding average number of particles present in the computational domain, are given
in Table 3. The local refinement used for each of these cases is similar to that used in
the flow problem previously considered, though enlarged to better capture vortex shed-
ding phenomena from the body. In case Q only, this refinement scheme is coupled to
a dynamic, vorticity-based splitting. Following the adaptive scheme described by Kho-
rasanizade and Sousa [4], particles with absolute non-dimensional vorticity value above
25 are broken into four daughter particles. This would increase the resolution for the
regions attached to the surface as well as at the center of the vortices.

Table 3 demonstrates the ability of SPH to predict the averaged drag coefficient with
fair accuracy, and minor discrepancies may be due to the long transients reported by
Yucel et al. [37]. A negative value of the drag coefficient indicates generation of thrust.



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 81

Table 3: Characteristics of the cases considered for the flow past a plunging NACA0012 airfoil in a free-stream
at Re=252.

Case h k Spatial resolution 1 No. of particles Present Cd Cd [37]

N

0.12

4
C/5→C/80 55×103 0.158

0.189
O C/5→C/160 76×103 0.162

P

8

C/5→C/160 78×103 −0.182

−0.147Q C/5→C/160+C/320 94×103 −0.175

R C/5→C/320 136×103 −0.172
1 Regional (local) + dynamic particle refinement [4] where applicable.

Figure 14: Effect of particle resolution in the vicinity of the plunging airfoil for h= 0.12, k= 8 and Re= 252.
Note: τ is the period of plunging calculated from k. a) LCS of case Q in a full cycle of plunging; b) LCS of
case P in a full cycle of plunging. Corresponding particle distributions are shown at the bottom.

As expected, increasing the particle resolution around the moving airfoil improved nu-
merical accuracy. Particle distribution and the effect of resolution on the flow structures
are depicted in Fig. 14. Lagrangian Coherent Structures (LCS) have been calculated for
the adaptive particle arrangement using the method introduced by Khorasanizade and
Sousa [26]. It can be seen that, by increasing the particle resolution from C/160 to C/320



82 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Figure 15: Average NNPS time and memory in use for each iteration vs. the number of particles for the flow
cases shown in Table 3. Results of the circular cylinder are taken from Figure 12. For each test case, the solid
lines indicate time, whereas the dotted lines depict the amount of memory used by the process at each iteration.

employing the dynamic refinement procedure, a better definition of the edges of the LCS
is achieved, which is in-line with the data presented in Table 3.

The complexity of the particle arrangement, yielding larger ratios between the various
masslevel , increases the load on NNPS algorithms. The average time required to conduct
a NNPS and the amount of memory in use per iteration for the test cases of Table 3 are
plotted in Fig. 15. For a better understanding, the results presented earlier in Fig. 12
are shown again. The amount of memory required for the test cases encompassing a
plunging airfoil increases with the number of particles without a defined trend. The
large ratio between the number of particles existing in each masslevel is responsible for
the sudden change observed between Q and R, despite maxlevel = 7 remaining the same
in both cases. In addition, the average time for case N (plunging airfoil) is almost one
order of magnitude larger than that of case M (circular cylinder). This is mainly due
to the use of larger splitting zones (as mentioned earlier), so that the vortical structures
shed from the moving body could be resolved with a higher accuracy. Naturally, this
implies an additional load on any neighbor search procedure. As QCG is also a NNPS
algorithm, one can only expect that its performance depends on the particle splitting
strategy. However, once a strategy for that purpose has been selected, the computational
cost still scales linearly with the total number of particles, as illustrated in Fig. 15 for both
the circular cylinder and the plunging airfoil problems.

4 Conclusions

An improved and optimized linked-list based NNPS algorithm coined Quadtree Cells
Grid (QCG) has been introduced for use in adaptive SPH simulations. This algorithm



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 83

couples the simplicity and efficiency of linked-list search with a hierarchical structure of
cells akin to quadtrees in 2D problems. SPH particles are placed in each cell based on
their mass level and the corresponding level that each cell may contain. The mass of the
coarsest particle is used as a reference to define the mass levels. As the SPH particles
are split into smaller ones, their associated mass level is increased and cells are tagged
to be split as well if they contain a particle characterized by a higher mass level. Subse-
quently, these marked entities produce smaller daughter cells containing those smaller
particles, and the linked-list grid structure is updated. The neighbor cells list of each cell
is constructed based on the cells in the vicinity of their parent, as the cells are split in de-
sired regions. This algorithm has been tested on various solutions of a fluid flow problem
employing multiple levels of particle mass.

The first problem chosen to illustrate the capabilities of the QCG algorithm was the
two-dimensional flow over a circular obstacle of diameter D placed in a free-stream at
Re = 20. Several SPH simulations were carried out in a computational domain of size
20D×20D. Owing to the high computational cost, uniform resolution calculations using
the classical linked-list algorithm have been conducted up to a particle spacing of D/20
only. The advantages of using the QCG algorithm were demonstrated in adaptive SPH
simulations with a base resolution of D/5 and a finest particle resolution of D/80 in
the vicinity of the body. Convergence of integral and local flow results to benchmark
data was verified. It was concluded that the proposed algorithm reaches the peak of
its performance as the number of mass levels increases. In the most refined adaptive
simulation considered, corresponding to 5 coexisting mass levels, the QCG algorithm
allowed for a reduction in total computational cost by a factor of 2.73, when compared to
the traditional linked-list algorithm. However, if only the computational effort required
by the NNPS is accounted for, speedups up to 25.4 were obtained as the goal of retrieving
the order O(N) with the proposed algorithm was achieved.

A second problem, described by the flow generated by a vertically plunging
NACA0012 airfoil in a freestream with Re=252 was studied as well. A larger domain of
30C×20C was chosen to reduce the effect of the boundaries on the results. The plunging
motion of the studied airfoil was characterized by a non-dimensional amplitude h=0.12
and reduced frequencies k=4 and 8. A total number of particles as large as 136,000 was
used in the most refined case, with a maximum number of coexisting mass levels of 7.
Due to the complexity of the flow and particle arrangement, the neighbor finding for
this flow problem required significantly higher computational times. However, the order
O(N) of the QCG algorithm was again achieved.

Altogether these results provided firm support to the conclusion that the QCG al-
gorithm is computationally efficient. One should emphasize that, due to the necessary
POINTERs and structures used in the implementation, the QCG algorithm shows higher
values of memory use with respect to the traditional linked-list. Finally, it must be noted
that although the present test simulations were two-dimensional only, the algorithm has
been designed irrespectively of the dimensions of the system.



84 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

Acknowledgments

This work has been supported by Fundação para a Ciência e a Tecnologia (FCT), through
IDMEC, under LAETA, project UID/EMS/50022/2013. The financial support via FCT
grant SFRH/BSAB/114588/2016 is also acknowledged.

References

[1] G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method,
World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.

[2] H. Gotoh and A. Khayyer, Current achievements and future perspectives for projection-
based particle methods with applications in ocean engineering, J. Ocean Eng. Mar. Energy,
2 (2016), 251278.

[3] M. S. Shadloo, G. Oger and D. Le Touzé, Smoothed particle hydrodynamics method for fluid
flows, towards industrial applications: Motivations, current state, and challenges, Comput.
Fluids, 136 (2016), 1134.

[4] Sh. Khorasanizade and J. M. M. Sousa, Dynamic flow-based particle splitting in smoothed
particle hydrodynamics, Int. J. Numer. Methods Eng., 106 (2016), 397410.

[5] J. Feldman and J. Bonet, Dynamic refinement and boundary contact forces in SPH with ap-
plications in fluid flow problems, Int. J. Numer. Methods Eng., 72 (2007), 295324.

[6] Sh. Khorasanizade and J. M. M. Sousa, An adaptive fully-Lagrangian meshless method for
incompressible laminar flow airfoil studies, Aerosp. Sci. Technol., 64 (2017), 161170.

[7] A. Khayyer, H. Gotoh, Y. Shimizu, K. Gotoh, H. Falahaty and S. Shao, Development of
a projection-based SPH method for numerical wave flume with porous media of variable
porosity, Coast. Eng., 140 (2018), 122.

[8] A. Khayyer, H. Gotoh, H. Falahaty and Y. Shimizu, An enhanced ISPHSPH coupled method
for simulation of incompressible fluidelastic structure interactions, Comput. Phys. Com-
mun., 232 (2018), 139164.

[9] J. M. Domı́nguez, A. J. C. Crespo and M. Gómez-Gesteira, Optimization strategies for CPU
and GPU implementations of a smoothed particle hydrodynamics method, Comput. Phys.
Commun., 184 (2013), 617627.

[10] Sh. Khorasanizade and J. M. M. Sousa, A two-dimensional Segmented Boundary Algorithm
for complex moving solid boundaries in Smoothed Particle Hydrodynamics, Comput. Phys.
Commun., 200 (2016), 6675.

[11] Sh. Khorasanizade and J. M. M. Sousa, An innovative open boundary treatment for incom-
pressible SPH, Int. J. Numer. Methods Fluids, 80 (2016), 161180.

[12] H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Comput. Surv., 16
(1984), 187260.

[13] A. Klinger and C. R. Dyer, Experiments on picture representation using regular decomposi-
tion, Comput. Graph. Image Process., 5 (1976), 68105.

[14] M. Yerry and M. Shephard, A Modified Quadtree Approach To Finite Element Mesh Gener-
ation, IEEE Comput. Graph. Appl., 3 (1983), 3946.

[15] M. S. Shephard and M. K. Georges, Automatic three-dimensional mesh generation by the
finite octree technique, Int. J. Numer. Methods Eng., 32 (1991), 709749.

[16] P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A. Yerry, Robust, geo-
metrically based, automatic two-dimensional mesh generation, Int. J. Numer. Methods Eng.,



Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86 85

24 (1987), 10431078.
[17] B. Crouse, E. Rank, M. Krafczyk and J. Tölke, A LB-based approach for adaptive flow simu-

lations, Int. J. Mod. Phys B, 17 (2003), 109112.
[18] Z. J. Wang, A Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes

equations, Comput. Fluids, 27 (1998), 529549.
[19] S. Foroughi, S. Jamshidi and M. Masihi, Lattice Boltzmann method on quadtree grids for

simulating fluid flow through porous media: A new automatic algorithm, Physica A, 392
(2013), 47724786.

[20] Y. Chen, Q. Kang, Q. Cai and D. Zhang, Lattice Boltzmann method on quadtree grids, Phys.
Rev. E, 83 (2011), 26707.

[21] X. Xia and Q. Liang, A GPU-accelerated smoothed particle hydrodynamics (SPH) model for
the shallow water equations, Environ. Model. Softw., 75 (2016), 2843.

[22] O. Awile, F. Büyükkeçeci, S. Reboux and I. F. Sbalzarini, Fast neighbor lists for adaptive-
resolution particle simulations, Comput. Phys. Commun., 183 (2012), 10731081.

[23] L. Verlet, Computer ”Experiments” on Classical Fluids. I. Thermodynamical Properties of
Lennard-Jones Molecules, Phys. Rev., 159 1967), 98103.

[24] A. Khayyer, H. Gotoh and Y. Shimizu, Comparative study on accuracy and conservation
properties of two particle regularization schemes and proposal of an optimized particle
shifting scheme in ISPH context, J. Comput. Phys., 332 (2017), 236256.

[25] Sh. Khorasanizade and J. M. M. Sousa, Using a fully-Lagrangian meshless method for the
study of aerosol dispersion and deposition, Aerosol Sci. Technol., 50 (2016), 926936.

[26] J. M. M. Sousa and Sh. Khorasanizade, A Fully Lagrangian Approach to Study the Flow Past
Heaving Airfoils Placed in a Freestream, 56th AIAA Aerosp. Sci. Meet., American Institute
of Aeronautics and Astronautics, Kissimmee, 2018.

[27] S. Shao, Incompressible SPH simulation of water entry of a free-falling object, Int. J. Numer.
Methods Fluids, 59 (2009), 91115.

[28] J. M. Domı́nguez, A. J. C. Crespo, M. Gómez-Gesteira and J. C. Marongiu, Neighbour lists
in smoothed particle hydrodynamics, Int. J. Numer. Methods Eng., 67 (2011), 20262042.

[29] J. C. Adams, W. S. Brainerd, R. A. Hendrickson, R. E. Maine, J. T. Martin and B. T. Smith, The
Fortran 2003 Handbook, Springer-Verlag, London, 2009.

[30] Y. Jiang, L. Fang, X. Jing, X. Sun and F. Leboeuf, A second-order numerical method for
elliptic equations with singular sources using local filter, Chinese J. Aeronaut., 26 (2013),
13981408.

[31] D. Calhoun, A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-
Vorticity Equations in Irregular Regions, J. Comput. Phys., 176 (2002), 231275.

[32] K. Taira and T. Colonius, The immersed boundary method: A projection approach, J. Com-
put. Phys., 225 (2007), 21182137.

[33] M. Coutanceau and R. Bouard, Experimental determination of the main features of the vis-
cous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J.
Fluid Mech., 79 (1977), 231256.

[34] D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J.
Fluid Mech., 6 (1959), 547567.

[35] S. Marrone, A. Colagrossi, M. Antuono, G. Colicchio and G. Graziani, An accurate SPH mod-
eling of viscous flows around bodies at low and moderate Reynolds numbers, J. Comput.
Phys., 245 (2013), 456475.

[36] S. Sen, S. Mittal and G. Biswas, Steady separated flow past a circular cylinder at low
Reynolds numbers, J. Fluid Mech., 620 (2009), 89119.



86 Sh. Khorasanizade and J. M. M. Sousa / Commun. Comput. Phys., 26 (2019), pp. 57-86

[37] S. B. Yucel, M. Sahin and M. F. Unal, Strong transient effects of the flow around a harmoni-
cally plunging NACA0012 airfoil at low Reynolds numbers, Theor. Comput. Fluid Dyn., 29
(2015), 391412.

[38] M. S. Shadloo, A. Zainali, M. Yildiz and A. Suleman, A robust weakly compressible SPH
method and its comparison with an incompressible SPH, Int. J. Numer. Methods Eng., 89
(2012), 939956.

[39] J. C. S. Lai and M. F. Platzer, Jet Characteristics of a Plunging Airfoil, AIAA J., 37 (1999),
15291537.

[40] K. D. Jones, C. M. Dohring and M. F. Platzer, Experimental and computational investigation
of the Knoller-Betz effect, AIAA J., 36 (1998), 12401246.


