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Abstract. Compositional gas flow in a heterogeneous porous medium and in the cou-
pled atmospheric boundary layer above the porous medium surface is of interest in
many applications, which requires reliable numerical tools for modeling of very com-
plex physical processes. But there are still many important effects which are very often
ignored in contemporary models of this flow. One of them is compressibility. So far, no
models of non-isothermal compositional compressible gas flow in a porous medium
and in the coupled atmospheric boundary layer above its surface has been reported
in the literature. Therefore, we propose mathematical and numerical models for the
description of the above scenario. In order to assess the reliability of our numerical
model, we analyze its convergence by quantitative computational studies. We also
present several qualitative computational studies which present the dynamics of the
non-isothermal compositional compressible gas flow in free flow–porous medium flow
interaction.
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Nomenclature

Greek letters

αBJ Beavers-Joseph coefficient [−] (introduced in (2.39), page 355)
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cvut.cz (M. Beneš), radek.fucik@fjfi.cvut.cz (R. Fučı́k), tillanga@mines.edu (T. Illangasekare)

http://www.global-sci.com/ 346 c©2019 Global-Science Press
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αEOC coefficient defined on page 372

Γα
i,j side of Vα

i (defined on page 361)

Γ f ,θ part of ∂Ωpm, where θ∈{Dir, Neu, out} and f ∈{p, Xn, T}
Γ

ff
θ part of ∂Ωff , where θ∈{left, right, top1, top2, side}

Γi, Γb
i parts of ∂Vi (defined on page 357)

Γe
i,j, Γb

i,j parts of ∂Vi (defined on page 357)

Γ
pm
θ part of ∂Ωpm, where θ∈{wall, gap1, gap2, right}

δi,j Kronecker delta

κ ratio of specific heats [−]

λ thermal conductivity [kg·m·s−3 ·K−1]

Λe, Λi sets of indices (defined on page 357)

Λe
i , Λb

i sets of indices (defined on page 357)

Λi,j, Λn
i sets of indices (defined on page 357)

Λb
f ,θ,i set of indices related to function f , where θ∈{Neu, out} (defined on page 357)

µ dynamic viscosity [kg·m−1 ·s−1]

ν output time step [s] (introduced in (4.4), page 372)

ρ density [kg·m−3]

τ time step in the numerical scheme from Section 3.1 [s]

τcou time step for the coupling of the numerical schemes from Section 3 [s]

φ porosity [−]

ϕi basis function associated with node xi of T
Ω spatial domain

Ω̃ff extension of Ωff (defined on page 360)

Latin letters

a longitudinal dispersion coefficient [m]

cp specific heat at constant pressure [m2 ·s−2 ·K−1]

cp,σ specific heat at constant pressure of component σ [m2 ·s−2 ·K−1]

cs specific heat capacity of the solid matrix [m2 ·s−2 ·K−1]

cV specific heat at constant volume [m2 ·s−2 ·K−1]

cV,σ specific heat at constant volume of component σ [m2 ·s−2 ·K−1]

D diffusion coefficient [m2 ·s−1]

Dσ,γ multicomponent diffusion coefficient [m2 ·s−1]

Dn diffusion coefficient of the NAPL vapor [m2 ·s−1]


