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Abstract. A parametric reduced order model based on proper orthogonal decomposi-
tion with Galerkin projection has been developed and applied for the modeling of heat
transport in T-junction pipes which are widely found in nuclear power reactor cooling
systems. Thermal mixing of different temperature coolants in T-junction pipes leads to
temperature fluctuations and this could potentially cause thermal fatigue in the pipe
walls. The novelty of this paper is the development of a parametric ROM consider-
ing the three dimensional, incompressible, unsteady Navier-Stokes equations coupled
with the heat transport equation in a finite volume regime. Two different paramet-
ric cases are presented in this paper: parametrization of the inlet temperatures and
parametrization of the kinematic viscosity. Different training spaces are considered
and the results are compared against the full order model. The first test case results to
a computational speed-up factor of 374 while the second test case to one of 211.
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1 Introduction

Partial differential equations (PDEs) describe a variety of physical systems occurring in
nature and in engineering. PDEs are complex and generally nonlinear and their nu-
merical solution requires considerable computational effort. For example, fluid flow,
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a phenomenon very common in many engineering fields, is governed by the Navier-
Stokes equations and accurate numerical solutions provide vital insight into complex
physical processes. Analytical solution of these equations is impossible in almost all cir-
cumstances. For this reason, computational fluid dynamics (CFD) has seen progressive
development since the 1970s and is now capable of solving many practical problems in
fluid flow and heat transfer. With the continued development of improved algorithms
and increasing computational power, CFD is now used in various engineering fields such
as aerospace, nuclear, civil, mechanical as well as non-engineering fields such as neuro-
science and meteorology etc.

Despite its popularity and applicability, the computational burden for simulating re-
alistic large scale and many query systems is still very high, even with the use of super-
computers. A good example of the challenges involved can be found in nuclear applica-
tions, where turbulence, multiphase flow and heat transfer phenomena occur in complex
geometries; a fairly accurate CFD simulation of a single instance of an accident case sce-
nario could take months or more to be performed. To address these challenges, Systems
Codes (SC), such as RELAP, CATHARE, etc and sub-channel codes (COBRA, etc), consti-
tute phenomenological reduced order methods based on considerable limiting physical
assumptions. These codes, that were developed in the 1950s, rely on major physical and
geometrical simplifications, such as averaging over the flow cross section leading to es-
sentially 1D simulations. These simplifications can save great amounts of computational
time. However, the compromise is that they rely exclusively on experimental and phe-
nomenological correlations to take account of heat transfer and turbulence and the like.
In particular, these assumptions are particularly inadequate for 3D flows. In the recent
years although these codes have been improved allowing some limited 3D capability,
the accuracy is still inadequate and their application is very limited. The same applies
in the field of neutronics for the study of reactor dynamics. Geometrical and physical
simplifications are made to the governing equations in order to obtain a computation-
ally affordable model. These simplifications include 1D geometries, homogenous core
dynamics, uniform axial fluxes, etc. The challenge then, is to bridge the considerable
gap between high fidelity full-order models (eg CFD and its variants) and these over-
simplistic reduced order models (systems and sub-channel codes).

Modern reduced order models (ROMs) [1–3] have been proposed as an alternative
way of approximating full-order systems (such as those arising in conventional CFD)
in a more sophisticated and reliable way. Unlike phenomenological methods, modern
ROMs potentially retain the high fidelity of the full order model (FOM) while exhibiting
performance akin to phenomenological methods. Reduced order modeling is a highly
promising area, which is currently flourishing in the science and engineering community.

An essential tool in the development of ROMs is the Proper orthogonal decomposi-
tion (POD) or Karhunen-Loève decomposition. Originally conceived as a data analysis
method for finding an optimal lower-dimensional orthonormal basis in a least-squares
sense, POD can be used as a model order reduction method for multidimensional dy-
namical systems, using data from high fidelity simulations (in this case CFD) or from ex-
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periments. POD can be seen as a modal decomposition technique, which provides modes
ranked according to their energy. In fluid dynamics, POD has been successfully applied
in two main areas: Firstly in the search for an optimal basis in a lower dimensional space
and secondly in the identification of hidden patterns (in terms of size, shape, location) in
complex datasets. Amongst other related methods, POD is usually considered the most
efficient method for capturing the dominant structures of large scale systems. Lumley [4]
was the first to apply POD in the study of turbulent flow, using spatial velocity corre-
lations. Classical statistical methods which rely on averaging quantities consider turbu-
lence as a complex chaotic phenomenon with little or no underlying structure. On the
contrary, coherent structures exist and turbulent flow is composed of organised motions
and it is the superposition of these that presents the apparent complexity. To identify
large eddy structures, Bakewell and Lumley [5] applied POD to experimental data taken
in the study of the boundary layer of homogeneous turbulent pipe flow. The authors
came to an important conclusion regarding the formation of shear turbulent flow, that it
is created and sustained not only in the wall region but also in the viscous sub-layer. They
also showed that in the wall region, the creation and evolution of counter-rotating eddy
pairs is governed by the non-linear mechanism of vortex stretching. Payne and Lum-
ley [6] studied cylinder wake flows using POD. As the dominant mode, they observed
a counter-rotating eddy pair, although they mentioned that for more accurate results,
more data and grid points are needed. A detailed review on identification of coherent
structures in turbulent flows can be found in [7]. The theory of Lumley had proven very
successful but the necessary processing of large datasets of experimental and numerical
data became a limitation. To overcome this, Sirovich [8] introduced the snapshot POD
(as opposed to the direct POD) method as an efficient way of identifying the dominant
modes of large scale systems, when the spatial dimension is larger than the temporal
dimension. Snapshots are instantaneous solutions obtained by a high-fidelity solver (eg
CFD) or from experimental data on which POD is performed for the calculation of the
reduced basis. Rempfer and Fasel in [9], performed simulations on a flat plate boundary
layer to prove that, in the case of flow fields which present symmetry along a coordinate,
POD can describe spatially evolving structures. Baltzer et al. [10] used snapshot POD
for identification of coherent structures in a turbulent boundary layer, where the evolu-
tion of large-scale motions appears. Bernero and Fiedler [11] applied snapshot POD to
Particle Image Velocimetry (PIV) data obtained from a jet in a counterflow, to show that
even in such chaotic structures, a combination of PIV and snapshot POD could reveal a
few dominant patterns. A related application of POD methods is in data reconstruction:
Thanh et al. in [12], showed that POD is an efficient method for reconstructing flow fields
in aerodynamics when data is missing.

The use of POD in the construction of reduced order models is a more recent de-
velopment. Hall et al. [13], applied snapshot POD in transonic and subsonic unsteady
aerodynamic flows, in a study of an isolated airfoil and a cascade of flat plate airfoils.
The authors obtained accurate ROMs with meaningful results, and suggested that ROMs
could be suitable in active control applications. So-called POD-Galerkin ROMs have been
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widely used in optimal control problems, design optimisation, data reconstruction and
many query systems. Ravindran [14], developed a POD-Galerkin ROM for optimal con-
trol of fluid flows in a channel flow problem. The results showed accurate short-time
ROM behaviour and high computational savings. These two characteristics are essential
for real-time control applications. Bourguet and Braza [15]used a POD-Gelerkin ROM
in the study of 2D transonic, compressible, unsteady flows around a NACA0012 airfoil,
where two dominant flow structures were identified: the von Karman instability and
buffeting. The resulting ROM is in an excellent agreement with the dynamics of the
high fidelity model. An observation from this work is that the non-linear terms arising
in the calculation of the ROM are (relatively) computationally expensive. Examples of
very effective reduced order models based on finite volume FOMs of the Navier-Stokes
equations are demonstrated in the pioneering work of [16–18]. Regarding parametric
PDEs, which are the main interest of this study, in [19] Ballarin et al. proposed a mono-
lithic model order reduction approach based on POD-Galerkin for parametrized fluid-
structure interaction problems. Also in [20], stable POD-Galerkin for the parametrized,
incompressible, steady Navier-Stokes equations is presented. Stabile et al. in [16] pre-
sented a POD-Galerkin ROM for the parametrized, incompressible, unsteady Navier-
Stokes equations. POD-Galerkin model reduction for parametric PDEs can be also found
in the study of haemodynamics, in the work of Ballarin et al. [21].

In regard to non-isothermal problems, a first attempt to develop a POD-Galerkin
ROM for modeling the temperature field in a rapid thermal processing chamber is de-
scribed in [22], where the authors considered a 2D steady state problem. In [23], Alonso
et al. presented a ROM for studying heat transfer in a backwards facing step flow, using a
combination of POD and a genetic algorithm. A heat transfer POD-Galerkin ROM is pre-
sented in [24], where the 1D conduction heat equation has been used. A POD study for
the heat conduction equation is also presented in [25] and in [26]. The problem of natural
circulation is studied in [27] where a FOM of the coupled Navier-Stokes and energy equa-
tions are used to develop a ROM. However, the resulting POD-Galerkin ROM only con-
siders perturbations of the (two-dimensional) temperature field, and assumes the flow
field remains fixed. These restrict the study to small perturbation temperature control
applications. A POD-Galerkin methodology for groundwater flow problems driven by
spatially distributed stochastic forcing terms is presented in [28] where the authors con-
sidered collecting the POD snapshots in the probability space. Their proposed method
results in a reduced order Monte Carlo framework (ROMC). Another reduced order mod-
eling technique, other than the POD-Galerkin, can be found in the study of uncertainty
propagation in porous media [29] where the authors applied the Karhunen-Loève (KL)
decomposition (or POD) and polynomial chaos with sparse Smolyak quadrature for the
flow problem. In [30], the POD method has been applied to 2D solute transport problems.
In [31], the authors proposed a POD-Galerkin ROM for the Navier-Stokes weakly cou-
pled heat transport equations based on a hybrid finite element – finite volume method.

In the work presented in this article, a POD-Galerkin method is developed for the
parametric 3D unsteady Navier-Stokes equations minimally coupled with the heat trans-
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port equation. The parametrization is applied on two test cases: first on the boundary
conditions, considering the temperature inlets, and in the second case, on a physical pa-
rameter, considering the kinematic viscosity. The open-source finite volume solver Open-
FOAM [32] is used to generate the FOM solutions which are then used as a training space
for the ROM. In this paper, the work of [16] is extended, taking into account the heat
transport equation. To the best of the authors knowledge, a parametric POD-Galerkin
ROM for modeling problems which are governed by the full set of the parametric 3D
Navier-Stokes equations and the heat transport equation, including transient, diffusive
and convective terms is introduced in this paper for the first time.

The work is organised as follows: in Section 2 the mathematical formulation is pre-
sented and in Section 3 the reduced order methodology is introduced and discussed.
In Section 4 the proposed ROM is used to model thermal-mixing in a T-junction pipe,
applied to two different parametric cases: the inlet temperatures and the kinematic vis-
cosity. Finally in Section 5 conclusions and perspectives are drawn, highlighting the di-
rectives for future improvements and developments.

2 Mathematical framework for the full order model

The full order model (FOM) is governed by the incompressible, transient parametrized
Navier-Stokes equations along with the parametrized heat transport equation. In a Eule-
rian framework and domain Q=Ω×[0,Ts]⊂R

d×R
+ with d=2,3, these equations can be

expressed as follows:







































































∂u
∂t +∇·(u⊗u)−∇·2ν(µ)∇su=−∇p in Q,

∇·u=0 in Q,
∂θ
∂t +∇·(uθ)−αdi f ∆θ=0 in Q,

u(x,µ,t)= f (x) on ΓIn×[0,Ts],

θ(x,µ,t)= g(x,µ) on ΓIn×[0,Ts],

u(x,µ,t)=0 on Γw×[0,Ts],

(ν(µ))∇u−pI)n=0 on Γo×[0,Ts],

u(0,x)=k(x) in θs0 ,

θ(0,x)= l(x) in θs0 ,

(2.1)

where u is the fluid velocity, p the normalized pressure, θ is the fluid temperature, αdi f

is the thermal diffusivity, ν(µ) is the kinematic viscosity and µ is the vector of parame-
ters. Ts represents the time of the simulation, Γ= ΓIn∪Γw∪Γo is the boundary of Ω and
it consists of three different parts ΓIn, Γo and Γw that indicate, respectively, inlet, outlet
and physical wall boundaries. The functions f (x,µ) and g(x,µ) represent the boundary
conditions for the non-homogeneous boundaries. k(x) and l(x) denote the initial condi-
tions for the velocity and the temperature at t= 0. Time independence of the boundary
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conditions f and g is also assumed. In this work, the parametric dependency of interest
is on the temperature inlet boundary conditions as well as on the kinematic viscosity. A
nomenclature with all the symbols can be found at the end of this paper (see Appendix
A).

2.1 Full order approximation via finite volume

The full order system which is represented by the partial differential equations (2.1), is
transformed into a system of discrete algebraic equations which can be then solved with
any iterative or direct numerical method. The system is discretized in a finite volume
regime using the open source C++ library OpenFOAM [33]. These transport equations
include temporal derivatives as well as convective and diffusive terms and each of these
terms is treated in a different way. The first step towards discretization of the spatial
terms, is the division of the computational domain into arbitrarily small control volumes
(cells) such the one depicted in Fig. 1. The transient term is discretized in time by split-
ting the total time interval of the simulation into a number of time steps. In the finite
volume regime, the integral form of the equations is discretized over a control volume
and therefore the quantities of interest are conserved (mass, momentum etc.).

Figure 1: Example of a polyhedral control volume, VP, around a control volume centroid P with volume V. The
picture is taken from [34]

Considering a general transported quantity φ, the transport equation can be written
as:

ˆ

VP

∂φ

∂t
dV+

ˆ

VP

∇·(uφ)dV−
ˆ

VP

∇·(Γφ∇φ)dV=0, (2.2)

where the source term Sφ has been set to zero. Therefore we are not considering any
external sources. The first term in Eq. (2.2) represents the temporal term, the second is the
convective and the third the diffusive term. Using Gauss theorem the volume integrals
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in Eq. (2.2) are transformed into surface integrals:

∂

∂t

ˆ

Vp

φdV+

‹

∂VP

dS·(uφ)−
‹

∂VP

dS·(Γφ∇φ)=0, (2.3)

where ∂VP represents a closed surface which bounds the control volume VP and ndS=dS.
Since the known quantities are in the centre of the cell, interpolation of the cell centred
values to the cell faces is needed. Taking each term in Eq. (2.3) separately and starting
with the convective term:

‹

∂VP

dS·(uφ)=∑
f

ˆ

f
dS·(uφ) f ≈∑

f

S f ·(uφ) f , (2.4)

where the integral has been approximated with a second order accurate midpoint rule.
Similarly, the diffusive term reads:

‹

∂VP

dS·(Γφ∇φ)=∑
f

ˆ

f
dS·(Γφ∇φ)≈∑

f

S f ·(Γφ∇φ) f . (2.5)

Replacing the terms in Eq. (2.3) with the approximated ones, (2.4) and (2.5), we obtain
the following equation:

∂

∂t

ˆ

Vp

φdV+∑
f

S f ·(uφ) f −∑
f

S f ·(Γφ∇φ) f =0, (2.6)

where the second and third terms correspond to the convective and diffusive fluxes, re-
spectively. The convective fluxes can be interpolated using linear interpolation or, in
some cases, upwind or second order linear upwind schemes. The diffusive terms are
usually discretized by a central difference scheme which is second order accurate. For
non-orthogonal meshes, the interpolation of the diffusive fluxes takes also into account
a non-orthogonal correction. The temporal discretization can be performed using any
temporal discretization scheme such as the Euler implicit, Crank-Nicolson, backward
differencing, forward Euler etc. For more information the reader could refer to [32].

3 Reduced order model framework

The main idea of reduced order modeling is to find a spatial basis φ(x), which spans
a subspace S , to express the full order state vector (velocity, pressure, temperature etc)

as u(x,µ,t)≈us =∑
Ns

u
i=1αi(t,µ)φi(x), where us denotes the reduced field, αi(t,µ) are some

temporal coefficients which depend on the parameter vector µ and Ns
u is the cardinality

of the POD space for the velocity. The same principle is applied for temperature and
pressure. The basis can be generated using a plethora of methods, for example POD, Re-
duced Basis with a greedy approach, Proper Generalized Decomposition (PGD) etc. In
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this work, the reduced basis is calculated using the snapshot POD method. For the as-
sembly of the snapshot matrix, an equispaced grid (Cartesian grid) both in the time and
in the parameter space has been utilized. This method results to a global snapshot matrix
which combines together snapshots for every time-step and for every parametric value.
This method has given satisfactory results for the scope of our paper, given that cases in
the laminar region have been considered. For parametrized problems, other sampling
techniques include the greedy-POD method [35], the goal-oriented POD-greedy sam-
pling [36] or a two-field greedy sampling strategy [37, 38]. For more details about the
Reduced Basis and PGD methods, the reader could refer to [1, 39–43].

3.1 Proper orthogonal decomposition

In the snapshot POD, state vector solutions are gathered using a high fidelity solver. Con-
sidering, for example, the velocity snapshots, us, are then placed into an Nh

u ×Ns
u snap-

shot matrix, U, where Nh
u is the number of degrees of freedom (grid points× number of

components) and Ns
u is the number of snapshots. Since we are dealing with paramet-

ric model order reduction, the total number of snapshots is not equal to the number of
time instances only. The size of the parameter space should also be taken into account.
The FOM is solved for each µk ∈K= {µ1,··· ,µNµ}⊂P where K is a finite dimensional
training set of samples chosen inside the parameter space P and for each time instance
tk ∈{t1,··· ,tNt}⊂ [0,T]. Therefore, the total number of snapshots, Ns

u, is equal to Nµ ·Nt.
One of the attributes of the POD basis is the minimization of the error between the ve-
locity snapshots and their projection onto the POD basis. In the L2-norm, this statement
leads to the following least-squares problem:

V=arg min
1

Ns
u

Ns
u

∑
i=1

||ui(x,µ,t)−
Ns

u

∑
i=1

(ui(x,µ,t),φi(x))φi(x)||2L2 . (3.1)

Using the property ||Ax−b||2
L2=(Ax−b)T(Ax−b), the above problem (3.1) can be written

as:
CW =Wλ, (3.2)

where C∈R
Ns

u×Ns
u is the correlation matrix, W∈R

Ns
u×Ns

u a matrix for the eigenvectors and
λ ∈ R

Ns
u×Ns

u is a diagonal matrix which contains the eigenvalues. Since the correlation
matrix is positive and semi-definite, it can be written as follows:

Cij= 〈ui,uj〉L2(Ω) for i, j=1,··· ,Ns
u. (3.3)

To take into advantage the L2-norm optimality of the POD method, the ’most-energetic’
modes should be retained. Thus, the original spatial POD basis, V=span[φ1,φ2,··· ,φNs

u
],

is truncated using the following energy retained criterion:

ENr
u
=

∑
Nr

u
i=1λi

∑
Ns

u
j=1 λj

, (3.4)
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where λi are the eigenvalues and Nr
u is the number of the most energetic modes which

are retained. Therefore, the truncated POD space, V̂=span[φ1,φ2,··· ,φNr
u
]⊂V , has a new

cardinality Nr
u.

The orthogonal POD basis functions, φ(x), are calculated and normalized as:

φj =
1√

λiNr
u

Nr
u

∑
j=1

ujWij, (3.5)

〈φi,φj〉L2(Ω)=δij ∀ i, j=1,··· ,Nr
u. (3.6)

The same approximation is applied for the pressure and temperature fields. However,
as pressure and temperature are scalar fields, the basis functions which are denoted as

ψ(x) ∈R
Nh

p and χ(x) ∈R
Nθ respectively, are now scalar functions. For each field, different

temporal coefficients are considered, denoted as b(t,µ) and c(t,µ) respectively. Thus, the
POD decomposition of the velocity, pressure and temperature reads:

u(x,µ,t)≈ur =
Nr

u

∑
i=1

αi(µ,t)φi(x), (3.7)

p(x,µ,t)≈ pr =

Nr
p

∑
i=1

bi(µ,t)ψi(x), (3.8)

θ(x,µ,t)≈ θr =
Nr

θ

∑
i=1

ci(µ,t)χi(x), (3.9)

where ur, pr and θr are the reduced fields. For more information about the reconstruction
and stabilization of the pressure field the reader could refer to the equation (3.25).

3.2 Galerkin projection

The reduced order model can be obtained by projection techniques including Galerkin or
Petrov-Galerkin projection of the full order Navier-Stokes/temperature equations (2.1)
onto the POD spatial basis φ(x), ψ(x) and χ(x). The projection leads to an ordinary
differential equation (ODE) for the evolution of the temporal coefficients α(t,µ), b(t,µ)
and c(t,µ) respectively. In this work, Galerkin projection is utilized but the reader could
read [44–46] for more information regarding the Petrov-Galerkin method.

Taking the projection of the Navier-Stokes equations onto the POD bases φ(x) and
ψ(x) and exploiting the orthogonality, we obtain the following ODEs:

Nr
u

∑
j=1

Mij

∂αj

∂t
=

Nr
u

∑
j=1

Nr
u

∑
k=1

Qijkαjαk+ν
Nr

u

∑
i=1

Lijαi−
Nr

p

∑
i=1

Pijbi, (3.10)

Nr
p

∑
j=1

Rijαj =0, (3.11)
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where the reduced quadratic and linear terms, Qijk, Mij, Lij and Kij are represented by
the following matrices:

Mij = 〈φi,φj〉L2(Ω), (3.12)

Qijk = 〈∇·(φi⊗φj),φk〉L2(Ω), (3.13)

Lij = 〈ν∆φi,φj〉L2(Ω), (3.14)

Pij = 〈∇ψi,φj〉L2(Ω), (3.15)

Rij = 〈∇·φi,ψj〉L2(Ω). (3.16)

For computational efficiency reasons, the non-linear convective term which is repre-
sented by a third order tensor Qijk evaluated as (Q(α)α)=αT Qi••α.

The projected initial conditions read:

αi(0)=(u(x,µ,0),φi). (3.17)

For the projection of the heat transport equation, we follow the same procedure, consid-
ering now the projection of the heat equation onto the POD bases χ(x) which, after some
manipulation of the terms becomes as follow:

Nr
θ

∑
j=1

Kij

∂cj

∂t
=

Nr
u

∑
j=1

Nr
θ

∑
k=1

Gijkαjck+αdi f

Nr
θ

∑
j=1

Nijcj, (3.18)

where the reduced quadratic and linear terms, Gijk, Kij and Nij are defined as:

Kij = 〈χi,χj〉L2(Ω), (3.19)

Gijk = 〈∇·(φiχj),χk〉L2(Ω), (3.20)

Nij = 〈αdi f ∆χi,χj〉L2(Ω). (3.21)

The initial conditions for the temperature are also projected onto the POD basis as ci(0)=
(θ(x,µ,0),χi).

To summarize all the above, the reduced order model is governed by the following set
of ODEs, which are then discretized in time using any temporal discretization scheme.











Mα̇=αTQα+νLα−Pb,

Kċ=αTGc+αdi f Nc,

OTα=0,

(3.22)

where Oij=〈∇·φi,φj〉L2(Ω) is the reduced matrix associated with the continuity equation
∇·u=0.
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3.3 Pressure field reconstruction and stabilization using the supremizer
enrichment method

The projection of the pressure gradient, (∇p), onto the POD basis can be derived using
Green’s theorem as follows:

〈φ,∇p〉L2(Ω)=

ˆ

Ω

φ·∇pdΩ=−
ˆ

Ω

∇·φpdΩ+

ˆ

∂Ω

pφ·ndS=

ˆ

∂Ω

pφ·ndS. (3.23)

In ROMs, the contribution of the pressure field is not always taken into account. The
volume integral term is taken equal to zero since, for incompressible flows, the velocity
basis functions are computed using divergence free snapshots. Therefore, the pressure
term depends only on the boundary Γ. In the case where enclosed flows (φ·n = 0 on
∂Ω) or flows with inlet-outlet conditions with the outlet being far away from the obstacle
are considered, the pressure term vanishes completely [47, 48]. However, as indicated
in [49], the pressure term can not always be neglected, especially when unstable shear
layers are considered or when pressure drop calculations are important, such as pressure
drop in pipes. To solve this issue, many different solutions have been proposed. In [50]
a method of taking the divergence of the Navier-Stokes momentum equation to obtain
a Poisson equation for pressure which is projected onto a POD basis is proposed. In
[51], the Poisson equation method is adapted to a finite volume context. Bergmann et al.
in [52], suggested a global POD basis for both the pressure and the velocity fields and
decomposed the fields using the same temporal coefficients. In [16] in a finite volume
and in [20, 53] in a finite element context, a supremizer enrichment method has been
proposed. This approach is also followed on this paper for modeling the pressure field
in the ROM.

The idea is that the velocity POD space is enriched with velocity supremizer snap-
shots where these additional basis functions are chosen in a way to satisfy the inf-sup
(Ladyzhenskaya-Brezzi-Babuska) condition [54, 55]:

inf
qh∈Q

sup
vh∈V

〈∇·vh,qh〉
‖∇vh‖‖qh‖

≥β>0. (3.24)

where β is a constant which does not depend on the discretization parameter h. The size

of the enriched velocity POD spaces is now a subset of R
Nh

u×(Ns
u+Ns

sup) where Ns
sup is the

size of the supremizer basis functions. The supremizer enrichment is given by solving
the following equations for each pressure basis function:

{

∆si =−∇pi in Ω,

si =0 on ∂Ω,
(3.25)

where si denotes the supremizer solution. For a more detailed description of the above
method, the reader could see [16, 20].
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3.4 Boundary conditions and snapshot homogenization

One of the key aspects of the present work is the development of reduced order methods
with parametrized boundary conditions. For this reason particular attention is devoted
to this aspect. To enforce Dirichlet boundary conditions in the reduced order model we
employ a similar approach as the one employed in [16]. This method was firstly proposed
in [56] for boundary conditions that can be parametrized by a single multiplicative coef-
ficient, as in the present case, and generalized for every type of function in [57].

A lifting function is used to homogenize the snapshots so that they become indepen-
dent of the boundary conditions. At the reduced order level, it is possible to specify the
new boundary values and these values are then added back. The homogenized velocity
value is written as:

u′(x,µ,t)=u(x,µ,t)−
NBC

∑
j=1

uDj
(µ,t)φcj

, (3.26)

where φck
are divergence free control functions which are equal to the number of the

parametrized boundaries, and NBC is the number of parametrized boundary conditions.
The coefficients uDj

are determined is such a way to make the snapshots homogeneous
after the subtraction of the chosen control function multiplied by the coefficient itself.
Since we chose to have a number of control functions which is equal to the number of
parametrized boundaries and that each control function assumes a uniform and unitary
value at the boundary to which it refers and uniform null values on the other parametrized
boundaries, the coefficient uDj

will assume the value that the snapshots have at the
boundary. This process is described in Algorithm 1.

The POD is applied to the homogeneous snapshots and the boundary value is added
back so that:

u(x,µ,t)=
NBC

∑
j=1

uDj
(µ,t)φcj

+
Ns

u

∑
i=1

αi(t,µ)φi(x). (3.27)

The values of the lifting functions are obtained by dividing the Dirichlet boundary in

different parts ΓD =
⋃NBC

i=1 ΓDi
, one for each parametrized boundary condition. Then a full

order problem is solved for each boundary condition following Algorithm 2. In the case
of a problem with a non-linear dependency with respect to the boundary conditions, the
full order problem should be solved with values of the boundaries as close as possible
to those that one would like to test during the online stage. Also, in case of a non-zero
forcing term, the forcing term should also be considered in the evaluation of the lifting
functions.

For the heat transport equation a similar approach is followed. Unlike with the veloc-
ity case, where a ’no-slip’ condition is specified on the walls, in heat transfer problems, a
homogeneous Neumann boundary condition is usually assigned (adiabatic walls). Usu-
ally, together with the boundary conditions, an initial condition for the internal field (IF)
is also prescribed. A modification of Algorithm 2 is proposed here where also the ini-
tial value of the internal field is removed from the snapshots. In this way, one could
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Algorithm 1 The algorithm for the generation of the velocity lifting functions

Input: NBC, ΓD =
⋃NBC

i=1 ΓDi
, Ns

u=Total number of snapshots

Output: {φci
}NBC

i=1

1: for i=1 to NBC do

2: for j=1 to NBC do

3: if i= j then u|ΓDj
=1; else u|ΓDj

=0

4: end for

5: for l=1 to Ns
u do

6: Solve the full order problem and store the solution →uil

7: end for
8: φci

= 1
Ns

u
∑

Ns
u

l=1uil

9: end for

parametrize the internal field initial condition as well. Therefore, apart from the lifting
functions that are obtained for every Dirichlet boundary condition, the domain is now

divided into NBC+1 different parts ΩR =
⋃NBC

i=1 ΓDi

⋃

ΘIF where the extra lifting function
accounts for the initial internal field. Algorithm 2 is modified as follows:

Algorithm 2 The algorithm for the generation of the temperature lifting functions

Input: NBC+1, ΩR =
⋃NBC

i=1 ΓDi

⋃

ΘIF, Ns
θ= Total number of snapshots

Output: {χci
}NBC+1

i=1

1: for i=1 to NBC+1 do

2: for j=1 to NBC+1 do

3: if i= j then θ|ΓRj
=1; else θ|ΓRj

=0

4: end for

5: for l=1 to Ns
θ do

6: Solve the full order problem and store the solution → θil

7: end for

8: χci
= 1

Ns
θ
∑

Ns
θ

l=1θil

9: end for

During the calculation of the lifting functions, the adiabatic walls and the outlet still
have homogeneous Neumann conditions as in the FOM.

The boundary condition independent temperature is written as:

θ′(x,µ,t)= θ(x,µ,t)−
NBC+1

∑
j=1

θRj
(µ,t)χcj

(x). (3.28)

The POD is then applied to the temperature snapshots and, at the reduced order level,
the boundary values, as well as the internal field initial value, are added back to the
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temperature equation:

θ(x,µ,t)=
NBC+1

∑
j=1

θRk
(x,µ,t)χcj

(x)+
Ns

θ

∑
i=1

ci(t,µ)χi(x). (3.29)

4 Numerical experiments

In this section the proposed method is applied to a test case which consists of the well-
studied non-isothermal mixing in a T-junction pipe. Two parametric cases are considered
here: parametrization of the inlet temperature boundary conditions and parametrization
of the kinematic viscosity.

4.1 Non-isothermal mixing in T-junction – Parametrization of the tempera-
ture inlet boundary conditions

The test case consists of a 3D T-junction shaped pipe with main pipe hydraulic diameter
Dm=140mm and branch pipe hydraulic diameter Db=80mm and lengths of Lm=3m and
Lb=0.44m respectively. The branch pipe is placed at the position of 0.33∗Lm. Streams of
cold and hot water enter the system from the horizontal and the branch pipe and mix to-
gether in the T-junction region. The thermal diffusivity is taken as 0.160×10−6m/s2 under
atmospheric pressure. A summary of the physical parameters is shown on Table 1. The
computational domain which consists of 34490 elements, is divided into three boundary
parts plus one part for the initial condition of the internal field, ΩR = Γm

⋃

Γb
⋃

Γo
⋃

ΘIF,
as shown in Fig. 2. The initial conditions are as shown in Table 2. The FOM simulation
is performed in OpenFOAM using a modified IcoFoam solver, which accounts also for
the temperature transport equation. IcoFoam [32] is a transient solver which uses the
PISO algorithm [58] to solve the incompressible Navier-Stokes equations. The spatial
discretization of the convective terms is achieved using a combination of a second or-
der central-differencing and upwind schemes. The diffusive terms are discretized using
second order central-differencing corrected schemes. For more information about Open-
FOAM numerical schemes, the reader could refer to [32]. For the temporal discretization,
a first order Euler backward implicit scheme is used. The simulation is performed for
T=45s with timestep ∆T=5×10−3s and the snapshots are collected every 0.2s using an
equispaced grid method in time. Therefore, the dimension of the correlation matrix is

Figure 2: Sketch of the T-junction 3D mesh.
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Table 1: Summary of the physical parameters.

Main Pipe Branch Pipe

u (m/s) 0.01 0.02

T (◦C) 50 70

D (mm) 140 80

Re 140 240

Table 2: Table with the boundary conditions where Γm refers to the main pipe inlet, Γb to the branch pipe and
Γ0 is the outlet.

Γm Γb Γw Γo ΘIF

u (0.01,0,0) (0,0,−0.02) ∇·u=0 ∇u·n=0 (0,0,0)

p ∇p ·n=0 ∇p ·n=0 ∇p ·n=0 0 0

θ 50 70 ∇θ ·n=0 ∇θ ·n=0 50

225×225 and Ns
u = Ns

θ = Ns
p = 225. A convergence test as the number of snapshots in-

creases has been performed. The frequency with which the snapshots are collected has
been doubled, thus the snapshots are collected every 0.1s. The dimension of the corre-
lation matrix is now 450×450 and Ns

u = Ns
θ = Ns

p = 450. Fig. 3 shows the comparison
between the two different sampling frequencies, showing that the relative error between
the FOM and the ROM converges slightly better as the number of snapshots increases.
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Figure 3: ǫL2(t) error (ǫL2(t)=
||XFOM(t)−XROM(t)||

L2(Ω)

||XFOM(t)||L2(Ω)
) for two sampling frequencies for the snapshot collection,

per 0.2s where Ns
u = Ns

θ = Ns
p = 225 and per 0.1s where Ns

u = Ns
θ = Ns

p = 450s. The ROM is run on θm = 50◦C
and θb =70◦C.
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Table 3: Relative ǫL2(t) error (ǫL2 (t)=
||XFOM(t)−XROM(t)||

L2(Ω)

||XFOM(t)||L2(Ω)
) for velocity, temperature and pressure fields for

two snapshot sampling frequencies, per 0.2s where Ns
u=Ns

θ=Ns
p=225 and per 0.1s where Ns

u=Ns
θ=Ns

p=450s.

u per 0.2s θ per 0.2s p per 0.2s u per 0.1s θ per 0.1s p per 0.2s

Minimum ǫL2(t) 0.023 0.004 0.013 0.019 0.021 0.010

Maximum ǫL2(t) 0.089 0.035 0.096 0.088 0.034 0.038

Average ǫL2(t) 0.031 0.021 0.040 0.027 0.020 0.034
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Figure 4: Cumulative energy of the eigenvalues for temperature, velocity, pressure and supremizer fields for the
training case with temperature inlet boundary conditions θm =50◦C and θb =70◦C.

However, since the differences in the convergence are very small, for computational sav-
ing reasons, the first sampling frequency (per 0.2s) will be used for the generation of the
results. Table 3 shows the minimum, maximum and average ǫL2 error for each sampling
frequency. Fig. 4 shows the cumulative energy of the eigenvalues for velocity, tempera-
ture, pressure and supremizer fields. In order to retain the 99.9% of the system’s energy, 5
modes for velocity, 5 for temperature and 3 for the pressure and supremizer are selected.
This truncation reduces the original POD space from Ns

u =
s
p= Ns

θ = Ns
sup = 225 to Nr

u = 5,
Nr

θ =5, Nr
p=3 and Nr

sup=3. Fig. 7 shows the first 4 POD modes and it is clear from Fig. 4)
that the first mode captures most of the energy of the system.

The ROM computations are performed in the ITHACA-FV C++ library [59] to simu-
late a ROM with the same conditions as the FOM. To provide some quantitative results,
the ǫL2 error is calculated as

ǫL2(t)=
||XFOM(t)−XROM(t)||L2(Ω)

||XFOM(t)||L2(Ω)
%, (4.1)
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Figure 5: ǫL2(t) error (ǫL2 (t)=
||XFOM(t)−XROM(t)||

L2(Ω)

||XFOM(t)||L2(Ω)
) plots for temperature, velocity and pressure fields ob-

tained on the test case for temperature inlet boundary conditions θm =60◦C and θb =80◦C.

Table 4: Relative ǫL2(t) error (ǫL2(t)=
||XFOM(t)−XROM(t)||L2(Ω)

||XFOM(t)||L2(Ω)
) for the temperature field for five different sets

of temperature inlet boundary conditions. The sets are 50,60◦C, 40,60◦C, 60,80◦C, 20,40◦C and 55,75◦C.

θ, 50,60◦C θ, 40,60◦C θ, 60,80◦C θ, 20,40◦C θ, 55,75◦C

Minimum ǫL2(t) 0.004 0.006 0.004 0.012 0.004

Maximum ǫL2(t) 0.033 0.029 0.030 0.085 0.033

Average ǫL2(t) 0.022 0.022 0.020 0.057 0.022

where XFOM is the value of a particular field in the FOM model and XROM the one that is
calculated using the ROM.

The resulting velocity, temperature and pressure fields are reconstructed with ǫL2 er-
ror as shown in Fig. 5 and the minimum, maximum and average ǫL2 errors are available
in the first three columns of Table 3. The error seems to be larger for velocity during
the first timesteps and this could happen because of the highly transient nature of the
flow. This error could be reduced by including more snapshots taken during the first
timesteps. Perhaps, to enhance the results, one could also consider using a weighted-
POD method [60], or a combination of a POD method in time and a greedy method in
parameter [61]. As in this case the temperature inlets are parametrized, the ROM, which
is trained only on inlets θm =50◦C and θb =70◦C, has been used to simulate a set of other
temperature inlets. For each case, the ǫL2 error between the FOM and the ROM is plotted
and shown in Fig. 6 and the minimum, maximum and average relative errors are sum-
marized in Table 4. Due to the linearity of the temperature equation, ∂θ

∂t +(u·∇)θ−αdi f ∆θ,
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Figure 6: ǫL2(t) error (ǫL2 (t)=
||XFOM(t)−XROM(t)||L2(Ω)

||XFOM(t)||
L2(Ω)

) for different temperature inlet conditions. The ROM is

trained on θm=50◦C and θb=70◦C and then is used to predict the temperature, velocity and pressure fields on
four different test cases with sets of temperature inlets.

for temperature inlet values that belong to a range close to the trained value, the ROM
can reproduce the fields with good accuracy, as shown in Fig. 6, without having to sam-
ple and enrich the POD space with additional points. To compare the FOM and ROM
results, a run for temperature inlet values of θm=60◦C and θb=80◦C has been performed
and the results are shown in Fig. 8. One could observe that the biggest error is found in
the area of the branch pipe, Fig. 9. This error could be caused by the fact that the length
of the branch pipe is not long enough, so the flow is not fully developed by the time it
reaches the mixing region. Therefore, this region is characterized by large gradients. A
comparison also for the case with the biggest ǫL2 error is shown in Fig. 10, where the ROM
is run for temperature inlets θm = 20◦C and θb = 40◦C. Even in this case, where the inlet
values are relatively far away from the ones that they were used to train the ROM, the
reduced model is capable of reproducing the main flow with a good accuracy. The max-
imum ǫL2 for the reconstructed temperature is less than 9% (Table 4). The velocity and
pressure fields are omitted in Fig. 10, as the change in temperature boundary conditions
does not affect the velocity and the pressure fields. Thus, they remain as in Fig. 8. The
CPU time of the FOM is 856.71s whereas, for the ROM, is only 2.29s. This corresponds to
a computational speed-up factor of ≈374.

4.2 Non-isothermal mixing in T-junction – Parametrization of the kinematic
viscosity

The second case aims to parametrize the kinematic viscosity in the unsteady Navier-
Stokes equations. Due to the non-linearity of the convective term, this case needs en-
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Figure 7: First four basis functions for velocity (first two rows),temperature (rows three and four) and pressure
(last two rows) corresponding to θm =60◦C and θb =80◦C.

richment of the POD space with additional snapshots which are solutions of a particu-
lar range of values of the parametrized quantity. For this purpose, the same model as
described in Section 4.1 is used and the POD space is enriched with additional sam-
pling points for the parameter of interest. Two sampling cases were considered. In
the first case, 10 sampling points for the kinematic viscosity, corresponding to ν= [1e−
06,2.55e−06,4.11e−06,5.66e−06,7.22e−06,8.77e−06,1.03e−05,1.18e−05,1.34e−05,1.5e−
05] and a second one with 5 sampling points corresponding to ν= [5e−06,7.5e−06,1e−
05,1.25e−05,1.5e−05]. A convergence comparison between the two sampling spaces
and the FOM is shown in Fig. 11 where one could observe that the differences between
the two spaces are minimal. Therefore, for computational efficiency reasons, the test
case will be performed on the space with the 5 sampling points. These sampling val-
ues correspond to Reynolds numbers Rem = [280,187,140,112,93] for the main pipe and
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Figure 8: Comparison of the velocity field for the full order (first row) and reduced order model (second row) as
well as temperature full order (third row) and temperature reduced order model (4th row) and pressure full order
(5th row) with pressure reduced order model (6th row). The temperature inlets are θm = 60◦C and θb = 80◦C
The fields are depicted for different time instances equal to t=3s,10s and 45s and increasing from left to right.
With a dotted black line we report the area zoomed in Fig. 9.

Figure 9: Zoom of the area with the biggest relative error between the FOM (left) and the ROM (right) for
temperature field. The temperature inlets are θm =60◦C and θb =80◦C.
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Figure 10: Comparison of the full order field (top row) and temperature reduced order model (bottom row)
for the case of temperature inlets θm =20◦C and θb =40◦C. The fields are depicted for different time instances
equal to t=3s,10s and 45s and increasing from left to right.
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Figure 11: ǫL2 (t) error (ǫL2(t)=
||XFOM(t)−XROM(t)||L2(Ω)

||XFOM(t)||
L2(Ω)

) for two sampling spaces for the parameter (kinematic

viscosity). These correspond to one with 5 sampling points for viscosity, where Ns
u = Ns

θ = Ns
p = 2250 and one

with 10 sampling points where, Ns
u =Ns

θ =Ns
p =4500s. The ROM is run for ν=1.1e−05.

Reb = [320,213,160,128,107] for the branch. Thus, the flow remains laminar in the total
pipe length.

The FOM simulation is run for each value of the kinematic viscosity in the above
range, for 45s with timestep of ∆T = 5×10−3s. Snapshots are collected using the en-
hanced temporal sampling frequency according to the convergence study from the test
case 1, Fig. 3. Therefore the snapshots are acquired every 0.1s, using an equispace grid
method in time and parameter, which gives a total number of 2250 snapshots (450/case).
A new value of the kinematic viscosity in which the ROM has not been trained but which
belongs to the range of the training space, ν= 1.1e−05 (Rem=127, Reb = 160), is used to
evaluate the capabilities of the parametrized ROM. To retain more than 99.9% of the sys-
tem’s energy, as shown in Fig. 12, 10 modes for velocity, 5 for temperature, 2 for pressure
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Figure 12: Cumulative energy of the eigenvalues for temperature, velocity, pressure and supremizer fields
respectively.
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Figure 13: ǫL2 (t) error (ǫL2(t)=
||XFOM(t)−XROM(t)||L2(Ω)

||XFOM(t)||L2(Ω)
) for temperature, velocity and pressure fields for the test

case with kinematic viscosity ν=1.1e−05.

and 3 for the supremizer are kept The ǫL2 error between the FOM and ROM is plotted in
Fig. 13 which indicates that the ROM is capable of reproducing the main characteristics of
the flow. Error statistics are summarized in Table 5. The first four POD modes for veloc-
ity, temperature and pressure fields are shown in Fig. 14, in which the first mode captures
most of the energy, as observed in Fig. 12. A comparison between the flow of the FOM
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Table 5: Relative ǫL2 (t) error (ǫL2(t)=
||XFOM(t)−XROM(t)||L2(Ω)

||XFOM(t)||
L2(Ω)

) for velocity, temperature and pressure fields for

snapshot collection per 0.2s.

u per 0.1s θ per 0.1s p per 0.1s

Minimum ǫL2(t) 0.024 0.004 0.013

Maximum ǫL2(t) 0.090 0.025 0.104

Average ǫL2(t) 0.030 0.017 0.022

Figure 14: First four basis functions for velocity (first two rows),temperature (rows three and four) and pressure
(last two rows) corresponding to ν=1.1e−05.
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Figure 15: Comparison of the velocity field for the full order (first row) and reduced order model (second row)
as well as temperature full order (third row) and temperature reduced order model (4th row) and pressure full
order (5th row) with pressure reduced order model (6th row). The fields are depicted for different time instances
equal to t=3s,10s and 45s and increasing from left to right. The viscosity is set to ν=1.1e−05.

and ROM models is illustrated in Fig. 15, which indicates that the ROM is performing
well in the reconstruction of the velocity, temperature and pressure fields. Concerning
the temperature field, the area of the branch pipe, where the biggest differences were
found, has been improved, Fig. 16, compared to the first test case (Fig. 9). The improved
results could be a consequence of the enhanced sampling space which used in this test
case. The error on temperature is growing as the time progresses and the two different
temperature fluids start to mix in the mixing region. Taking more snapshots during the
mixing period could reduce the error. In addition, to enhance the accuracy of the results,
one could perform a denser sampling of the parameter space, as discussed earlier, but
this increases the overall time of the offline phase and, for laminar cases, like this one, the
overall improvement would be minimal (Fig. 11). However, for more complicated cases,
such as those in the turbulent range or in the transition range, enriching the POD space
with additional sampling points of the kinematic viscosity would be essential. The CPU
time of the FOM model is 969.23s and the one of the ROM is 4.23s. This corresponds to a
speed-up of ≈211.
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Figure 16: Zoom of the area with the biggest relative error between the FOM (left) and the ROM (right) for
temperature field, ν=1.1e−05.

5 Conclusions and perspectives

In this work a parametrized ROM using POD-Galerkin method is presented for applica-
tions in the study of thermal mixing in pipes. Apart from the 3D incompressible Navier-
Stokes equations, a third transport equation corresponding to temperature is also con-
sidered which contains both convective and diffusive terms. Our interest is in the recon-
struction of velocity, pressure and temperature fields. The proposed ROM is tested to
simulate thermal mixing in a T-junction pipe, a common set-up found in nuclear power
reactor cooling systems. Two different parametric cases are considering, one where the
parametrization is on the temperature inlets and is considered a linear problem, and,
one where a non-linear parametrization of the kinematic viscosity is concerned. In both
cases, the ROM is capable of reproducing the results when run under the same condi-
tions as in the FOM model, as well as, to predict the results on different parameters
given a suitable training. In both cases a considerable computational speed up has been
achieved, corresponding to a factor of approximately 374 and 211 respectively. As in nu-
clear thermal hydraulics, the thermal mixing is studied usually in the turbulent range
of Reynolds numbers, a parametric turbulent ROM for the Navier-Stokes and the tem-
perature equation is of interest. Considering the methodology developed in the recent
work of Hijazi et al., [62], on modeling the turbulent parametric Navier-Stokes equations
using POD-Galerkin with radial basis functions for the eddy viscosity term, a turbulent
POD-Galerkin model for the unsteady Navier-Stokes and heat transport equation could
be derived [63]. Another future insight will be the construction of a ROM for buoyant
driven flows. These will of course introduce further complexities, such as the need for
additional terms in the ROM, but it will approximate much better real industrial prob-
lems [64]. Another challenging aspect is the computation of a-posteriori error bounds on
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the quantities of interest and the adaptation of the snapshots and/or parameter sampling
accordingly. In regard to the FOM, even though a abundance of a-posteriori error esti-
mates are available in finite element method, in the finite volume regime a few difficulties
arise. These difficulties are mainly a consequence of the integral form of the equations
found in finite volume discretization method. Methods that have been proposed rely
on a-posteriori error estimates which require solutions on meshes with different spac-
ing [65] or on methods that treat the finite volume as a particular case of finite element
and exploit the weak formulation [66]. In regard to the reduced order level, efficient and
reliable a-posteriori error bounds are required. Although a-posteriori error bounds have
been proposed for elliptic PDEs [2], their determination for the weakly coupled Navier-
Stokes and heat transport equations is not trivial and a further study would be of great
interest.
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Appendix A. List of abbreviations and symbols

Abbreviations

ROM Reduced Order Model

POD Proper Orthogonal Decomposition

Symbols

u velocity field

f Dirichlet boundary condition for velocity

g Dirichlet boundary condition for temperature

k initial condition for velocity

l initial condition for temperature

p pressure field

θ temperature field

ν dimensionless kinematic viscosity

αdi f thermal diffusivity
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Nh
u number of unknowns for velocity at full-order level

Nh
p number of unknowns for pressure at full-order level

Nh
sup number of unknowns for supremizer at full-order level

Ns
sup number of unknowns for supremizer at reduced level before the truncation

Nr
sup number of unknowns for supremizer at reduced order level after the truncation

Nh
θ number of unknowns for temperature at full-order level

Ns
u number of unknowns for velocity at reduced level before the truncation

Ns
p number of unknowns for pressure at reduced order level before the truncation

Ns
θ number of unknowns for temperature at reduced order level before the truncation

Nr
u number of unknowns for velocity at reduced order level after the truncation

Nr
p number of unknowns for pressure at reduced order level after the truncation

Nr
θ number of unknowns for temperature at reduced order level after the truncation

C correlation matrix

W eigenvector matrix

Nt number of time instances

Q space-time domain

T final time

P parameter space

K training set space

Ω bounded domain

Γ boundary of Ω

ǫL2 L2 norm error

ΘIF boundary of Ω and initial condition for the temperature internal field

n outward normal vector

ϕi i-th POD basis function for velocity

ηi i-th POD basis function for supremizers

ψi i-th POD basis function for pressure

χi i-th POD basis function for temperature

M ROM mass matrix
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Q(u) ROM convection matrix

L ROM diffusion matrix

K ROM mass matrix for the heat equation

G ROM convection matrix for the heat equation

N ROM diffusion matrix for the heat equation

Nµ number of parameters in the training set K
⊗ tensor product

∇· divergence operator

∇× curl operator

∇ gradient operator

∇s symmetric gradient operator

α reduced vector of unknowns for velocity

b reduced vector of unknowns for pressure

c reduced vector of unknowns for temperature

∆ Laplacian operator

β inf-sup stability constant

‖·‖ norm in L2(Ω)

〈·,·〉 inner product in L2(Ω)

ENr
u,p,θ,sup

Energy of the snapshots
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