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Abstract. In this paper, we develop the residual based a posteriori error estimates
and the corresponding adaptive mesh refinement algorithm for atomistic/continuum
(a/c) coupling with finite range interactions in two dimensions. We have systemat-
ically derived a new explicitly computable stress tensor formula for finite range in-
teractions. In particular, we use the geometric reconstruction based consistent atom-
istic/continuum (GRAC) coupling scheme, which is quasi-optimal if the continuum
model is discretized by P1 finite elements. The numerical results of the adaptive mesh
refinement algorithm is consistent with the quasi-optimal a priori error estimates.
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1 Introduction

Atomistic/continuum (a/c) coupling methods are a class of computational multiscale
methods for crystalline solids with defects that aim to optimally balance the accuracy of
the atomistic model and the efficiency of the continuum model [12, 19, 36]. The construc-
tion and analysis of different a/c coupling methods have attracted considerable atten-
tion in the research community in recent years. Rigorous a prior analysis and systematic
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benchmark has been done in, for example, [13–15,23,29,30]. We refer readers to [16,18] for
a review. The study of a/c coupling methods has not only provided an analytical frame-
work for the prototypical problems [9], but also opened avenue for coupling schemes in
more complicated physical situations [3, 4, 10].

Like many multiscale methods dealing with defects or singularities, adaptivity is the
key for the efficient implementation of a/c coupling methods. In contrast to the a priori
analysis, the development of a posteriori analysis for a/c coupling methods are still lag-
ging behind. Although heuristic methods have been proposed in the engineering litera-
ture [33,36,40]. Previous mathematical justifications are largely limited to one dimension
cases [1,2,33]. In particular, the residual based a posteriori error bounds for a/c coupling
schemes are first derived in [20, 25, 27] by Ortner et al. in one dimension.

In [41], we carried out a rigorous a posteriori analysis of the residual, the stability con-
stant, and the error bound, for a consistent atomistic/continuum coupling method [28]
with nearest neighbor interactions in two dimensions. Corresponding adaptive mesh
refinement algorithm was designed and implemented based on the a posteriori error
estimates, and the convergence rate with respect to degrees of freedom is the same as
quasi-optimal a priori error estimates. This is the first rigorous a posteriori analysis for
a/c coupling method in two dimensions. With the a posteriori error estimates and the
adaptive algorithm, we can not only automatically move the a/c interface and adjust the
discretization of the continuum region, but also change the size of the computational do-
main. We have also introduced the so-called “stress tensor correction” technique, which
distinguish the essential difference of high dimensional results compared with previous
one dimensional results.

In this paper, we treat the more general case of a/c coupling with finite range in-
teractions, which is physically more relevant and algorithmically more involved. The a
priori analysis of GRAC scheme has been extended from nearest neighbor case in [28]
to finite range interactions in [29]. ℓ1-minimization is introduced to resolve the issue of
non-uniqueness of reconstruction parameters, and a stabilisation mechanism is proposed
in [24] to reduce the stability gap between the a/c coupling scheme and the original atom-
istic model.

The analytical framework for both a priori analysis and a posteriori analysis of a/c
coupling methods strongly relies on the stress based formulation. In [21, 26], an explicit
formulation of stress tensor is proposed based on a mollified version of line measure sup-
ported on the interaction bonds, thence one can obtain an integral representation of finite
differences to further derive an integral representation of the first variation of the interac-
tion energy. This representation greatly simplifies the expression of the stress tensor and
plays a significant role in the a priori analysis. However, the obtained stress tensor is a
function of the continuous space variable, therefore it is difficult to compute in practice,
and not suitable for the a posteriori estimates and adaptive computation.

In this paper, we derive a novel expression of the stress tensor for finite range interac-
tions, which is new to the best of our knowledge. The stress tensor is piecewise constant
and only depends on a local neighborhood, therefore it is computable and the assembly
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cost is linear with respect to the number of bonds. This stress formulation allows for the
convenient derivation of a posterior error estimates and efficient implementation of the
adaptive algorithms.

The paper is organized as follows. We set up the atomistic to continuum (a/c) cou-
pling models for point defects in Section 2, and introduce the general GRAC formulation
in Section 3. In Section 4, we present the stress formulation and the stress tensor assem-
bly algorithm for finite range interactions. In Section 5 the rigorous a posteriori error
estimates based adaptive algorithm is deduced and complemented by numerical experi-
ments. We draw conclusions and make suggestions for future research in Section 6. Some
auxiliary results are given in the Appendix Section A.

2 Model formulation

In this section, We setup an atomistic model for crystal defects in an infinite lattice in
the spirit of [9] in Section 2.1 and then introduce the Cauchy-Born continuum model in
Section 2.2. We give a generic form of a/c coupling schemes in Section 2.3.

2.1 Atomistic model

2.1.1 Atomistic lattice and defects

Given d ∈ {2,3}, A∈R
d×d non-singular, Λhom :=AZ

d is the homogeneous reference lattice
which represents a perfect single lattice crystal formed by identical atoms. Λ⊂R

d is the
reference lattice with some local defects. The mismatch between Λ and Λhom represents
possible defects Λdef, which are contained in some localized defect cores Ddef such that the
atoms in Λ\Ddef do not interact with defects Λdef. Vacancy, interstitial and impurity are
different types of possible point defects.

2.1.2 Lattice function and lattice function space

Given m∈{1,2,3}, denote the set of vector-valued lattice functions by

U :={v : Λ→R
m}.

A deformed configuration is a lattice function y ∈ U . Let x be the identity map, the
displacement u∈U is defined by u(ℓ)=y(ℓ)−x(ℓ)=y(ℓ)−ℓ for any ℓ∈Λ.

For each ℓ∈Λ, we prescribe an interaction neighborhood Nℓ :={ℓ′∈Λ|0< |ℓ′−ℓ|≤rcut}
with some cut-off radius rcut. The interaction range Rℓ :={ℓ′−ℓ|ℓ′∈Nℓ} is defined as the
union of lattice vectors defined by the finite differences between lattice points in Nℓ and
ℓ. Define the “finite difference stencil” Dv(ℓ) :={Dρv(ℓ)}ρ∈Rℓ

:={v(ℓ+ρ)−v(ℓ)}ρ∈Rℓ
.

The homogeneous lattice Λhom=AZ
d naturally induces a simplicial micro-triangulation

T a. In two dimensions, T a = {Aξ+ T̂,Aξ− T̂|ξ ∈ Z
2}, where T̂ = conv{0,e1,e2}. Let

ζ̄ ∈W1,∞(Λhom;R) be the P1 nodal basis function associated with the origin; namely, ζ̄
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is piecewise linear with respect to T a, and ζ̄(0)= 1 and ζ̄(ξ)= 0 for ξ 6= 0 and ξ ∈Λhom.
The nodal interpolant of v∈U can be written as

v̄(x) := ∑
ξ∈Zd

v(ξ)ζ̄(x−ξ).

We can introduce the discrete homogeneous Sobolev spaces

U
1,2 :={u∈U |∇ū∈L2},

with semi-norm ‖∇ū‖L2 .

2.1.3 Interaction potential

We consider the general multibody interaction potential of the generic pair functional form
[39], which includes the widely used potentials such as EAM (Embedded Atom Method)
potential [5] and Finnis-Sinclair model [11]. Namely, the potential is a function of the
distances between atoms within interaction range and has no angular dependence. For
example, for each ℓ∈ Λ, let Vℓ(y) denote the site energy associated with the lattice site
ℓ∈Λ, the EAM potential reads

Vℓ(y) := ∑
ℓ′∈Nℓ

Φ(|y(ℓ)−y(ℓ′)|)+F
(

∑ℓ′∈Nℓ
ψ(|y(ℓ)−y(ℓ′)|)

)

= ∑
ρ∈Rℓ

Φ
(

|Dρy(ℓ)|
)

+F
(

∑ρ∈Rℓ
ψ
(

|Dρy(ℓ)|
)

)

, (2.1)

with the pair potential Φ, the electron density function ψ and the embedding function F.
We assume that the potential Vℓ(y)∈Ck((Rd)Rℓ),k≥ 2. We also assume that Vℓ(y) is

homogeneous outside the defect region Ddef, namely, Vℓ=V and Rℓ=R for ℓ∈Λ\Ddef. Fur-
thermore, V and R have the following point symmetry: R=−R, and V({−g−ρ}ρ∈R)=
V(g).

For an infinite lattice, assume the macroscopic applied strain is B∈R
d×d, we redefine

the potential Vℓ(y) as the difference Vℓ(y)−Vℓ(yB). We denote the energy functional E (y)
as the infinite sum of the redefined potential over Λ, which is well-defined for y−yB ∈
U 1,2 [9],

E (y)= ∑
ℓ∈Λ

Vℓ(y). (2.2)

Under the above conditions, the goal of the atomistic problem is to find a strongly
stable equilibrium y, such that

y∈argmin
{

E (y)
∣

∣y−yB ∈U
1,2
}

. (2.3)

y is strongly stable if there exists c0>0 such that

〈δ2
E (y)v,v〉≥ c0‖∇v‖2

L2 , ∀v∈U
1,2.
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2.2 Continuum model

From the atomistic model, a continuum model can be derived by coarse graining, and
computationally it allows for the reduction of degrees of freedom when the deformation
is smooth. A typical choice in the multi-scale context is the Cauchy-Born continuum
model [8, 26]. Let W : R

d×d → R be a strain energy density function, the Cauchy-Born
energy density W is defined by

W(F) :=detA−1V(F·R).

2.3 Generic formulation of energy based atomistic/continuum coupling

We give a generic formulation of the a/c coupling method and employ concepts and no-
tation from various earlier works, such as [17,19,29,36,37], and we adapt the formulation
to the settings in this paper.

The computational domain ΩR =Ωa
R

⋃

Ωc
R⊂R

d is a simply connected, polygonal and
closed set, consists of the atomistic region Ωa

R and the continuum partition Ωc
R, where R

is the radius of ΩR. Given the reference lattice Λ with some local defects, we decompose
the set Λa,i :=Λ

⋂

Ωa
R=Λa⋃Λi into a core atomistic set Λa and an interfacial atomistic set

Λi such that Λ
⋂

Ddef ⊂Λa, where Ddef represents the defect core. Let T a
h,R (respectively

T i
h,R) be the canonical triangulation induced by Λa (respectively Λi), and T c

h,R be a shape-

regular simplicial partition of the continuum region. We denote Th,R=T c
h,R

⋃T i
h,R

⋃T a
h,R as

the triangulation of the a/c coupling configuration. Please see Fig. 1 for an illustration of
the computational mesh.

Figure 1: Illustration of computational mesh. The computational domain is ΩR, and the corresponding triangu-
lation is Th,R. ◦ in the DimGrey region are atoms of Λa. For the next nearest neighbor interaction, Λi contains
• in the LightGrey interface region. � are continuum degrees of freedom.
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The space of coarse-grained displacements is

Uh,R :=
{

uh : Ωh,R→R
m
∣

∣ uh is continuous and p.w. affine w.r.t. Th,R,

uh=0 on ∂ΩR

}

.

The subscript R in the above definitions can be dropped if there is no confusion, for
example, we can replace Th,R by Th.

Let vor(ℓ) represents the voronoi cell associated with ℓ of the homogeneous reference
lattice Λhom :=AZ

d, for some given non-singular A∈R
d×d. We have |vor(ℓ)|=detA, for

each ℓ∈Λhom. For each ℓ∈Λ denote its effective cell as νℓ (see [28]), let ωℓ := |νℓ|
|vor(ℓ)| be

the effective volume associated with ℓ. For each element T ∈Th we define the effective
volume of T by

ωT :=
∣

∣

∣T\
(
⋃

ℓ∈Λa

vor(ℓ)
)

\
(
⋃

ℓ∈Λi

νi
ℓ

)

∣

∣

∣.

We note that ωT = 0 if T ∈T a
h \T i

h , ωT = |T| if T ∈T c
h \T i

h , and 0≤ωT < |T| if T ∈T i
h ,

depends on how we defining νi
ℓ
, the effective cell of ℓ∈ Λi. The choices of νℓ and ωT

satisfy ∑ℓ∈Λa,i νℓ+∑T∈Th
ωT = |Ωh,R|.

Now we are ready to define the generic a/c coupling energy functional E h,

E
h(yh) := ∑

ℓ∈Λa

Vℓ(yh)+ ∑
ℓ∈Λi

ωℓV
i
ℓ
(yh)+ ∑

T∈Th

ωTW(∇yh|T), (2.4)

where Vi
ℓ

is a modified interface site potential.
The goal of a/c coupling is to find

yh,R ∈argmin
{

E
h(yh)

∣

∣yh−yB ∈Uh,R

}

. (2.5)

The subscript R in yh,R and Uh,R can be omitted if there is no confusion.
The first variation of the a/c coupling variational problem (2.5) is to find yh−yB∈Uh,R

such that
〈δE h(yh),vh〉=0, ∀vh ∈Uh,R. (2.6)

Spurious artificial force could occur at the interface for energy based coupling even
for homogeneous deformation [36], and was dubbed ”ghost force”. The issue of ”ghost
force removal” has received considerable attention in the recent years, and consistent
a/c coupling methods without ghost force were developed by [7, 37] in one dimension
and [28, 34] in two dimensions. We will introduce the consistent GRAC formulation in
Section 3.

3 General GRAC formulation

In this section, we describe the construction of the geometric reconstruction based consis-
tent atomistic/continuum (GRAC) coupling enersec:gracgy for multibody potentials with
general interaction range and arbitrary interfaces.
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Given the homogeneous site potential V
(

Dy(ℓ)
)

, we can represent the interface po-
tential Vi

ℓ
in (2.4) in terms of V. For each ℓ∈Λi,ρ,ς∈Rℓ , let Cℓ;ρ,ς be free parameters, and

define
Vi
ℓ(y) :=V

(

(

∑ς∈Rℓ
Cℓ;ρ,ςDςy(ℓ)

)

ρ∈Rℓ

)

. (3.1)

A convenient short-hand notation is

Vi
ℓ
(y)=V(Cℓ ·Dy(ℓ)), where

{

Cℓ :=(Cℓ;ρ,ς)ρ,ς∈Rℓ
,

Cℓ ·Dy :=
(

∑ς∈Rℓ
Cℓ;ρ,ςDςy

)

ρ∈Rℓ

.

We call the parameters Cℓ;ρ,ς as the reconstruction parameters.
To construct consistent a/c coupling energy, we need to enforce the so-called patch

tests for the energy functional E h, namely, energy patch test (3.2) and force patch test
(3.4). Those patch tests in turn prescribe conditions (3.3) and (3.6) for the reconstruction
parameters C. In general, the reconstruction parameters satisfying patch tests are not
unique, an ℓ1-minimization technique can be introduced to choose the ”optimal” param-
eters [29]. Also, a stabilisation mechanism can be applied to improve the stability of the
GRAC coupling scheme [24].

3.1 Energy patch test

To guarantee that E h approximates the atomistic energy E =∑ℓ∈ΛVℓ(y), it is reasonable
to require that the interface potentials satisfy an energy patch test

Vi
ℓ
(yF)=V(yF), ∀ℓ∈Λi, F∈R

m×d, (3.2)

namely, the interface potential coincides with the atomistic potential for uniform defor-
mations.

For the GRAC coupling scheme, a sufficient and necessary condition for the energy
patch test is that F·R(ℓ)=Cℓ ·(F·R) for all F∈R

m×d and ℓ∈Λi. This is equivalent to

ρ= ∑
ς∈R(ℓ)

Cℓ;ρ,ςς, ∀ℓ∈Λi, ρ∈R(ℓ). (3.3)

3.2 Force patch test

We call the following condition the force patch test, namely, for Λ=Λhom and Φℓ=Φ,

〈δE h(yF),vh〉=0 ∀vh ∈Uh, F∈R
m×d, (3.4)

where F is some uniform deformation gradient. This is saying that there is no artificial
”ghost force” for uniform deformations.

From the general GRAC formulation (2.4), we can decompose the first variation of
the a/c coupling energy into three parts,

〈δE h(yF),vh〉= 〈δE a(yF),vh〉+〈δE i(yF),vh〉+〈δE c(yF),vh〉, ∀vh ∈Uh. (3.5)
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To simplify the notation, we drop the yF dependence from the following expressions
in this section, for example, we write E a instead of E a(yF), ∇ρV instead of ∇ρV(DyF),
and so forth. Here, ∇ρV denotes the partial derivative of V with respect to the Dρy com-
ponent. Since ∇ρV =−∇−ρV, we only consider half of the directions in the interaction
range: fix R+⊂R such that R+∪(−R+)=R and R+∩(−R+)=∅.

As proposed in [29], a necessary and sufficient condition on the reconstruction pa-
rameters Cℓ to satisfy the force patch test (3.4) for all V∈C∞((Rd)R) is

ca
ρ(ℓ)+ci

ρ(ℓ)+cc
ρ(ℓ)=0, (3.6)

for ℓ∈Λi+R, and ρ∈R+. The coefficients ca
ρ(ℓ), ci

ρ(ℓ) and cc
ρ(ℓ) are geometric parameters

with respect to the underlying lattice and the interface geometry, formulated by collecting
all the coefficients for the terms ∇ρV· of the first variations of a/c coupling energy as
in the following equations (3.7). The interface coefficients ci

ρ(ℓ) depend linearly on the
unknown reconstruction parameters Cℓ;ρ,ς. Then, by (3.5), we have

〈δE a,vh〉= ∑
ℓ∈Λa+R

∑
ρ∈R+

ca
ρ(ℓ)

[

∇ρV ·vh(ℓ)
]

= ∑
ρ∈R+

ℓ∈Λa−ρ

[

∇ρV ·vh(ℓ)
]

− ∑
ρ∈R+

ℓ∈Λa+ρ

[

∇ρV ·vh(ℓ)
]

,

〈δE i,vh〉= ∑
ℓ∈Λi+R

∑
ρ∈R+

ci
ρ(ℓ)

[∇ρV ·vh(ℓ)
]

= ∑
ς∈R

ℓ∈Λi+ς

ωi
ℓ−ς ∑

ρ∈R+

(Cℓ−ς;ρ,ς−Cℓ−ς;−ρ,ς)
[

∇ρV ·vh(ℓ)
]

− ∑
ℓ∈Λi

ωi
ℓ ∑

ρ∈R+
∑

ς∈R
(Cℓ;ρ,ς−Cℓ;−ρ,ς)

[∇ρV ·vh(ℓ)
]

,

〈δE c,vh〉=∑
T

∑
ρ∈R+

3

∑
i=1

2
ωT

detA
∇TφT

i ·ρ
[

∇ρV ·vT
h,i

]

,

=∑
T

∑
ρ∈R+

3

∑
i=1

2
ωT

detA
∇TφT

i ·ρ
[∇ρV ·vT

h,i

]

,

(3.7)

where the nodes ℓT
i are the three corners of the triangle T, vT

h,i=v(ℓT
i ) and φT

i are the three

nodal linear bases corresponding to vT
h,i, i=1,2,3.

The force patch test is automatically satisfied for the atomistic model and the Cauchy-
Born continuum model.Therefore, we only need to consider the force consistency for
those sites with the extended interface region Λi+R:={ℓ∈Λ|∃ℓ′∈Λi,∃ρ∈R, such that ℓ=
ℓ′+ρ}. Therefore (3.6) for ℓ∈Λi+R together with (3.3) for ℓ∈Λi form a linear system for
the unknown parameters Cℓ;ρ,ς.
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Figure 2: Effective Voronoi cells for the interface nodes (filled circles) are the shaded area in the above figure.

ωi
ℓ
<1 for the outmost interface atoms which are adjacent to the continuum region.

Remark 3.1. In [28, 29], we choose ωi
ℓ
=vor(ℓ),∀ℓ∈Λi. To reduce the degrees of freedom

of the reconstruction parameters and also the number of constraint equations, we can
use a variation of the local reflection method in [29]. Namely, we choose ωi

ℓ
=vor(ℓ)∩Ωa,

and enforce that Cℓ;ρ,ς=0 for ℓ∈Λi and ℓ+ς∈Ωc, then we only need to impose the force

balance equation for (Λi+R)∩Λa. It has been shown that in [29], the linear system for
the reconstruction parameters is underdetermined, and up to numerical accuracy, the
solution exists and therefore it is not unique.

3.3 Consistency and optimisation of reconstruction parameters

Due to the non-uniqueness of the reconstruction parameters Cℓ,ρ,ς, we need to choose the
”optimal” parameters. A naive idea is to use a least-squares approach to minimize ‖C‖ℓ2 ,

minimize ∑
ℓ∈Λi

∑
ρ,ς∈R(ℓ)

|Cℓ;ρ,ς|2 subject to (3.3) and (3.6). (3.8)

However, the resulting parameters do not give a convergent method.
It is shown in [21, Thm. 6.1], under the assumptions that d=2 and that the atomistic

region Ωa is connected, any a/c coupling scheme of the type (2.4) satisfying the energy
and force patch tests (3.2), (3.4) is first-order consistent: if y= yB in Λ\ΩR and if ỹ is an
H2

loc-conforming interpolant of y, then

〈

δE (y)−δE h(Ihy),vh

〉≤C1‖h∇2ỹ‖L2(Ω̃c)‖∇vh‖L2 , (3.9)

where C1 is independent of y. The dependence of C1 on the reconstruction parameters Cℓ

is analyzed in [29],

C1≤C′
1(1+width(Λi)) ∑

ρ,ς∈R
|ρ||ς|Mρ,ς+C′′

1 , (3.10)

where Mρ,ς=max
ℓ∈Λi

∑
τ,τ′∈R(ℓ)

|Vτ,τ′(Cℓ ·Dy(ℓ))||Cℓ;τ,ρ||Cℓ;τ′,ς|.
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C′
1 is a generic constant and C′′

1 does not depend on the reconstruction parameters.
Intuitively one may think of

M(ℓ) :=∑
ρ,ς

|ρ||ς|∑
τ,τ′

∣

∣Vτ,τ′(Cℓ ·Dy(ℓ))
∣

∣ |Cℓ;τ,ρ||Cℓ;τ′,ς|

to be a realistic (ℓ-dependent) pre-factor. With generic structural assumption |Vτ,τ′(Cℓ ·
Dy(ℓ))|.ω(|τ|)ω(|τ′ |), where ω has some decay that is determined by the specific in-
teraction potential, see the discussion for an EAM type potential in Appendix B.2 [26].
We obtain that

M(ℓ).∑
ρ,ς

|ρ||ς|∑
τ,τ′

ω(|τ|)ω(|τ′|)|Cℓ;τ,ρ||Cℓ;τ′,ς|

=
(

∑
ρ,τ

|ρ|ω(|τ|)|Cℓ;τ,ρ|
)(

∑
ς,τ′

|ς|ω(|τ′ |)|Cℓ;τ′,ς|
)

=
(

∑
ρ,τ

|ρ|ω(|τ|)|Cℓ;τ,ρ|
)2

.

This indicates that, instead of ‖C‖ℓ2 , we should minimize maxℓ∈Λi ∑ρ,τ |ρ|ω(|τ|)|Cℓ;τ,ρ|.
Since we do not in general know the generic weights ω, we simply drop them, and in-
stead minimize ∑ρ,τ |Cℓ;τ,ρ|. Further, taking the maximum of ℓ∈Λi leads to a difficult and
computationally expensive multi-objective optimisation problem. Instead, we propose
to minimize the ℓ1-norm of all the coefficients:

minimise ∑
ℓ∈Λi

∑
ρ,ς∈R(ℓ)

|Cℓ;ρ,ς| subject to (3.3) and (3.6). (3.11)

We remark that with the simplifications, the reconstruction parameters only de-
pend on the interaction range, not the particular form of interaction potentials, also, ℓ1-
minimization tends to generate “sparse” reconstruction parameters which may present
some gain in computational cost in the energy and force assembly routines for E ac.

3.4 Stability and stabilisation

The stability of a/c coupling method is of great importance for numerical analysis and the
issue of critical stability is essential for practitioners. The issue of stability and (in)stability
of a/c coupling scheme is discussed in detail in [24], in particular, a stabilization mecha-
nism is proposed to reduce the stability gap between the a/c coupling methods and the
corresponding atomistic model (ground truth). We sketch those results in this subsection.

We expect a/c coupling method has the following stability estimate of the form

〈δ2
E

h(Ihy)vh,vh〉≥ c0‖∇vh‖2
L2 , (3.12)

together with consistency and other technical assumptions, we can prove the conver-
gence of the a/c coupling method with inverse function theorem with the form ‖u−uh‖.
consistency error/c0.
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Also, we have the observation that for any uniform deformation, the stability con-
stant of a/c coupling method is less or equal to the stability constant of the correspond-
ing atomistic model. This motivate the introduction of the following stabilization of the
interface potential

Vi
ℓ
(yh) :=V

(

Cℓ ·Dyh(ℓ)
)

+κ|D2
nnyh(ℓ)|2, (3.13)

where κ≥0 is a stabilisation parameter, and |D2
nnyh(ℓ)|2 is defined as follows: we choose

m≥d linearly independent “nearest-neighbor” directions a1,··· ,am in the lattice, and de-
note

∣

∣D2
nnyh(ℓ)

∣

∣

2
:=

m

∑
j=1

∣

∣yh(ℓ+aj)−2yh(ℓ)+yh(ℓ−aj)
∣

∣

2
.

If κ is O(1) constant, the stabilization term does not affect consistency, the reconstruc-
tion parameters Cℓ are still determined by (3.11). However, the stabilisation will affect the
computation of the stress tensor in the interface region, which we will introduce in the
following section. In [24], we have theoretically proved for some symmetric configura-
tion and numerical justified for prototypical examples that such stabilization can reduce
the stability gap and suppress spurious critical mode for the a/c coupling methods.

4 Stress formulation

The stress formulation plays a significant role in the analysis of a/c coupling methods.
For a general energy functional E (y) defined on the deformed configuration y−yB∈U 1,2,
we can define σ(y) in the following, which is an analogue of the first Piola-Kirchhoff
stress

〈δE (y),v〉=
∫

Rd
σ(y) :∇vdx,

for any v∈U 1,2.
In particular, from the first variation of the a/c energy functional (3.5) and (3.7), we

expect to generalize the above stress formulation to atomistic, continuum and the a/c
energy functionals, namely, for any vh ∈Uh,

〈δE h(yh),vh〉=〈δE a,vh〉+〈δE i,vh〉+〈δE c,vh〉
=
∫

Ωa
σa :∇vh dx+

∫

Ωi
σi :∇vh dx+

∫

Ωc
σc :∇Tvh

=
∫

Ω
σh :∇vh dx.

The expressions of σa, σi and σc are in (4.13) to (4.15).
In this section, we first review the stress tensor formula derived by [26] in Section 4.1

which is essential for the a priori analysis, however, this formula is not suitable for the a
posteriori estimate. In Section 4.2 we introduce a novel computable stress tensor expres-
sion, which is convenient for the purpose of a posterior error estimation and adaptive
algorithm. We discuss the assembly of stress tensor for our model problem in Section A.1.
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4.1 Stress tensor formulation in [26]

We first discuss the formula for σa. For simplicity, consider full atomistic energy E in
(2.2). The ”canonical weak form” of δE is

〈δE (u),v〉= ∑
ℓ∈Λ

∑
ρ∈R

Vℓ,ρ(u)·Dρv(ℓ), for v∈U
1,2. (4.1)

Now we define a modified version of the canonical weak form. Let

v∗ := ζ̄∗v̄. (4.2)

The finite differences Dρv∗(ζ) can be expressed as in [35],

Dρv∗(ℓ)=
∫ 1

s=0
∇ρv∗(ℓ+sρ)ds=

∫

Rd

∫ 1

s=0
ζ̄(ℓ+sρ−x)∇ρ v̄(x)dsdx

=
∫

Rd
χℓ,ρ(x)∇ρv̄(x)dx, (4.3)

where χℓ,ρ is a generic weighting function defined as below, can be understood as a mol-
lified version of the line measure

χℓ,ρ(x) :=
∫ 1

0
ζ̄(ℓ+tρ−x)dt. (4.4)

Now, we replace the test function in (4.1) from v to v∗,

〈δE (y),v∗〉= ∑
ℓ∈Λa

∑
ρ∈R

∂ρVℓ ·
∫

Rd
χℓ,ρ(x)∇ρv̄(x)dx

=
∫

Rd

{

∑
ℓ∈Λa

∑
ρ∈R

[

∂ρVℓ⊗ρ
]

χℓ,ρ(x)

}

:∇v̄dx.

Thus, we have shown that for y−yB∈U 1,2 and v∈U with compact support,

〈δE (y),v∗〉=
∫

Rd
Σa(y;x) :∇v̄dx,

with
Σa(y;x) := ∑

ℓ∈Λa
∑

ρ∈R

[

∂ρVℓ⊗ρ
]

χℓ,ρ(x). (4.5)

Through an analogy to the analysis above, 〈δE i(y),v∗〉 could be written as

〈δE i(y),v∗〉=
∫

Rd
Σi(y;x) :∇v̄dx,

where
Σi(y;x) := ∑

ℓ∈Λi

∑
ρ∈R

[

ωi
ℓ
∂ρVi

ℓ
⊗ρ
]

χℓ,ρ(x). (4.6)
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Finally, the first Piola-Kirchhoff stress of the Cauchy-Born model gives

Σc(y;x)=∂W(∇y(x)). (4.7)

By proper regularity assumptions on V and y, it was shown in [26, Theorem 4.3] that
Σc(y;x) is second order consistent to Σa(y;x).

The stress tensor expression introduced in this section is important for the a priori
analysis of Caucy-Born continuum model in [26] and blended a/c coupling method [13].
However, since Σa(y;x) and Σi(y;x) depend on x through χℓ,ρ(x), it is relatively difficult
to calculate the value of them, which is crucial for the a posteriori error estimates and
adaptive algorithm. In the next section, we will introduce a computable expression of
stress tensor.

4.2 A computable stress tensor formulation

For the nearest neighbor interactions [41], we use the canonical expressions of δE (δE h)
to define σa (σh). In that case, σa (σh) is piecewise constant over the triangulation Ta (Th).
In this section, we will extend this formulation to general finite range interactions.

Consider the canonical weak form of δE in (4.1), instead of replacing v with v∗, we
distribute Dρv to relevant triangles in order to transfer the sum with respect to atoms to
the sum over elements in the micro-triangulation Ta induced by the reference lattice Λ.
We express Dρv as

Dρv(ℓ)= ∑
T∈T ρ

ℓ

ω
ρ
ℓ
(T)∇Tv·ρ, (4.8)

where T ρ
ℓ

:={T∈Ta|length(T∩(ℓ,ℓ+ρ))>0} is the set which contains the elements that

form the compact support of bond (ℓ,ℓ+ρ), ω
ρ
ℓ
(T) is an appropriate weight function. The

implementation details for two dimensional triangular lattice will be discussed in detail
in Section A.1.

For any y−yB∈U 1,2, v∈U 1,2,

〈δE (y),v〉= ∑
ℓ∈Λ

∑
ρ∈Rℓ

∂ρVℓ ·Dρv

= ∑
ℓ∈Λ

∑
ρ∈Rℓ

∂ρVℓ ·


ωρ



 ∑
b=(ℓ,ℓ+ρ)∩T 6=∅

∇Tv



·ρ




= ∑
ℓ∈Λ

∑
ρ∈Rℓ

2|T|
detA

∂ρVℓ⊗ρ :



ωρ ∑
b=(ℓ,ℓ+ρ)∩T 6=∅

∇Tv





= |T| ∑
T∈Ta

∑
ρ∈Rℓ

1

detA ∑
b=(ℓ,ℓ+ρ)∩T 6=∅

2ωρ∂ρVℓ⊗ρ : (∇Tv), ∀v∈U , (4.9)
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where ω
ρ
ℓ
(T) represents the contribution of the value of ∂ρV(∇Tyh)⊗ρ from element T,

which depends on the specific type of ρ∈R.
Recall from (2.4) and (3.1), the GRAC a/c coupling energy functional is of the form

E
h(yh) := ∑

ℓ∈Λa

Vℓ(yh)+ ∑
ℓ∈Λi

ωℓV
i
ℓ
(yh)+ ∑

T∈Th

ωTW(∇yh|T),

with
Vi
ℓ
(y) :=Vℓ

(

(

∑
ς∈Rℓ

Cℓ;ρ,ςDςy(ℓ)
)

ρ∈Rℓ

)

.

With the decomposition of the first variation of GRAC in (3.5), the first variation of
the interface energy E i has the following form

〈δ ∑
ℓ∈Λi

ωℓV
i
ℓ(yh),vh〉= 〈δ ∑

ℓ∈Λi

ωℓVℓ

(

(

∑
ς∈Rℓ

Cℓ;ρ,ςDςyh

)

ρ∈Rℓ

)

,vh〉

= ∑
ℓ∈Λi

ωℓ ∑
ρ∈Rℓ

∂ρVℓ ·
(

∑
ς∈Rℓ

Cℓ;ρ,ςDςvh(ℓ)

)

= ∑
ℓ∈Λi

ωℓ ∑
ρ∈Rℓ

∑
ς∈Rℓ

∂ρVℓCℓ;ρ,ς ·
(

ως

(

∑
b=(ℓ,ℓ+ς)∩T 6=∅

∇Tvh

)

·ς
)

= ∑
ℓ∈Λi

2ωℓ|T|
detA ∑

ς∈Rℓ

(

∑
ρ∈Rℓ

Cℓ;ρ,ς∂ρVℓ⊗ς

)

:

(

ως ∑
b=(ℓ,ℓ+ς)∩T 6=∅

∇Tvh

)

= ∑
T∈T i

h

|T|
detA ∑

ς∈Rℓ

∑
b=(ℓ,ℓ+ς)∩T 6=∅

2ωℓ

(

∑
ρ∈Rℓ

Cℓ;ρ,ςως∂ρVℓ⊗ς

)

: (∇Tvh).

(4.10)

Consider the continuum model, for any yh−yB∈Uh,vh ∈Uh, we have

〈δE c(yh),vh〉= ∑
T∈Th

|T|∂W(∇Tyh)

= ∑
T∈Th

|T| ∑
ρ∈R

∂ρV(∇Tyh)⊗ρ :∇Tvh. (4.11)

Adding the stabilization term as in (3.13), we are ready to obtain the first variation of
the (stabilized) GRAC coupling method

〈δE h(yh),vh〉= ∑
T∈T a

h ∪T i
h

|T|
detA ∑

ρ∈Rℓ

∑
b=(ℓ,ℓ+ρ)∩T 6=∅

2ωℓω
ρ
ℓ
(T)∂ρVh

ℓ
⊗ρ : (∇Tvh)

+ ∑
T∈Th

ωT

detA ∑
ρ∈R

∂ρV(∇Tyh)⊗ρ :∇Tvh,

+Cstab ∑
T ′∈T i

h

∑
ζ∈Rnn

∑
b′=(ℓ,ℓ+ζ)∩T ′ 6=∅

2ω
ζ
ℓ
(T)d3

nn(ℓ,ζ)⊗ζ :∇T ′vh ∈Uh, (4.12)
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where

∂ρVh
ℓ

:=

{

∂ρVℓ, ℓ∈Λa,

∑ς∈Rℓ
Cℓ;ς,ρ∂ςVℓ, ℓ∈Λi,

d3
nn(ℓ,ζ)=−yh(ℓ+2ζ)+3yh(ℓ+ζ)−3yh(ℓ)+yh(ℓ−ζ),

and Cstab is a constant equal to 1 if stabilisation is applied, and 0 otherwise.
We can define the atomistic stress tensor σa (with respect to micro-triangulation Ta), the

continuum stress tensor σc, and the a/c stress tensor σh by the following first variations of
different models

〈δE a(y),v〉= ∑
T∈Ta

|T|σa(y;T) :∇Tv, ∀v∈U , (4.13)

〈δE c(yh),vh〉= ∑
T∈Th

|T|σc(yh;T) :∇Tvh, ∀vh ∈Uh, (4.14)

〈δE h(yh),vh〉= ∑
T∈Th

|T|σh(yh;T) :∇Tvh, ∀vh ∈Uh. (4.15)

From the above discussions, we have the following ”canonical” choices for σa, σc and
σh

σa(y;T) :=
1

detA ∑
ρ∈Rℓ

∑
b=(ℓ,ℓ+ρ)∩T 6=∅

2ω
ρ
ℓ
(T)∂ρVℓ⊗ρ, (4.16)

σc(yh;T) :=
1

detA ∑
ρ∈R

∂ρV(∇Tyh)⊗ρ, (4.17)

σh(yh;T) :=
1

detA



 ∑
ρ∈Rℓ

∑
b=(ℓ,ℓ+ρ)∩T 6=∅

2ωℓω
ρ
ℓ
(T)∂ρVh

ℓ
⊗ρ+

ωT

|T|σ
c(yh;T)

+Cstab ∑
ζ∈Rnn

∑
b′=(ℓ,ℓ+ζ)∩T ′6=∅

T ′∈T i

2ω
ζ
ℓ
(T′)d3

nn(ℓ,ζ)⊗ζ









. (4.18)

Remark 4.1. Notice that the proposed stress tensor formulation is the same as that in [21,
Proposition 13] which is used for the a priori analysis and not for the actual computation.
In this paper, we use the formulation to construct a computable stress tensor and compute
the a posteriori error estimators. The bond density lemma in [21, 34] might be useful to
simplify the computation of the stress tensor.

However, the stress tensors defined through (4.13)-(4.15) are not unique due to the
following results.

Definition 4.1. We call piecewise constant tensor field σ∈P0(T )2×2 divergence free if

∑
T∈T

|T|σ(T) :∇Tv≡0,∀v∈ (P1(T ))2.
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Corollary 4.1. By definitions (4.15), it is easy to know that the force patch test condition (3.4) is
equivalent to that σh(yF) is divergence free for any constant deformation gradient F.

The discrete divergence free tensor fields over the triangulation T can be charac-
terized by the non-conforming Crouzeix-Raviart finite elements [21, 28]. The Crouzeix-
Raviart finite element space over T is defined as

N1(T )=

{

c :
⋃

T∈T
int(T)→R

∣

∣ c is piecewise affine w.r.t. T , and

continuous in edge midpoints q f , ∀ f ∈F
}

.

The following lemma in [28] characterizes the discrete divergence-free tensor field.

Lemma 4.1. A tensor field σ∈P0(T )2×2 is divergence free if and only if there exists a constant
σ0∈R

2×2 and a function c∈N1(T )2 such that

σ=σ0+∇cJ, where J=

[

0 −1
1 0

]

∈SO(2).

The following corollary provides a representation of the stress tensors defined in
(4.13)-(4.15).

Corollary 4.2. The stress tensors in the definitions (4.13)-(4.15) are not unique. Given any stress
tensor σ∈P0(T )2×2 satisfies one of the definitions (4.13)-(4.15), where T is the corresponding
triangulation. Define the admissible set as Adm(σ) := {σ+∇cJ,c ∈ N1(T )2}, then any σ′ ∈
Adm(σ) satisfies the definition of stress tensor.

5 Adaptive algorithms and numerical experiments

We have derived the following a posteriori estimate in [41, Theorem 3.1]: let yh be the a/c
solution, for any v∈U 1,2, the residual R[v]= 〈δE (Iayh),v〉 is bounded by the sum of the
following estimators

〈δE (Iayh),v〉≤
(

ηT(yh)+ηM(yh)+ηC(yh)
)

‖∇v‖L2 , (5.1)

where ηT is the truncation error estimator (the L2 norm of the atomistic stress tensor close
to the outer boundary), ηM is the modelling error estimator (the difference of a/c stress
tensor and atomistic stress tensor), and ηC is the coarsening error (jump of a/c stress
tensor across interior edges). They are given by

ηT(yh) :=C1‖σa(Iayh)−σB‖L2(ΩR\BR/2)
, (5.2)
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where σB= 1
detA ∑ρ∈Rℓ

∂ρV(Ba)⊗ρ.

ηM(yh) :=C2

{

∑
T∈Ta

|T|
[

σa(Iayh,T)− ∑
T ′∈Th,T ′⋂T 6=∅

|T′⋂T|
|T| σh(yh,T′)

]2
}

1
2

, (5.3)

ηC(uh) :=C3

(

∑
f∈Fh

(h f JσhK)2
)

1
2
, (5.4)

where C1, C2, and C3 are independent of R and uh, actually C3 =
√

3CC′
Th

depends only
on the shape regularity of Th.

In this section, we will propose an adaptive mesh refinement algorithm for finite
range interactions based on the a posteriori error estimates (5.1). Numerical experiments
show that our algorithm achieves a quasi-optimal convergence rate in terms of accuracy
vs. the degrees of freedom, which is also consistent with the optimal a priori error esti-
mates.

5.1 Adaptive mesh refinement algorithm

We will develop the adaptive mesh refinement algorithm for GRAC method with finite
range interactions. In [41], we have designed the adaptive algorithm for GRAC with
nearest neighbor interaction. In the nearest neighbor case, there exists a special set of
reconstruction parameters [28]. However, with finite range interactions, we have to apply
ℓ1-minimization to solve the reconstruction parameters from (3.3) and (3.6). Furthermore,
we need to stabilize the coupling scheme by adding a stabilization term at the interface
region, which will effectively add a second order term to the interface stress tensor. We
will compare the effects of ℓ1 minimization and stabilization in numerical experiments.

5.1.1 Stress tensor correction

By (4.16)-(4.18), the error estimators ηT, ηM, and ηC depend on the stress tensors σh and
σa, which are unique up to divergence free tensor fields by Lemma 4.1. In principle, we
need to minimize η(yh) := η̃(σa(Iayh),σ

h(yh))= ηT(yh)+ηM(yh)+ηC(yh) with respect to
all the admissible stress tensors

〈δE (Iayh),v〉≤ min
ca∈N1(Ta)2,ch∈N1(Th)2

η̃(σa(Iayh)+∇caJ,σh(yh)+∇chJ)‖∇v‖L2 . (5.5)

To save computational power, we can choose a ”good” a/c stress tensor instead of
the ”optimal” one. A ”good” a/c stress tensor should satisfy the following natural con-
ditions:

• Equal to the atomistic stress tensor in the atomistic domain.

• Equal to the continuum stress tensor for uniform deformation.
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Figure 3: Effect of approximate stress tensor correction. Divacancy example. Fig. 3(a): H1 error vs. DoF;
Fig. 3(b): ηM+ηC vs. DoF.

Then, we choose ca≡0 and ch(q f )=0 in (5.5), where q f is the midpoint of f∈Fh, f∩Λi=
∅. Also, since ηT and ηC are higher order contributions to the estimator, we only need to
minimize the modeling error ηM with respect to the degrees of freedom of σh adjacent to
the interface.

We propose the following Algorithm 1 for approximate stress tensor correction:

Algorithm 1 Approximate stress tensor correction

1. Take σa(Iayh) and σh(yh) as the canonical forms in (4.16) and (4.18) respectively.

2. Denote q f as the midpoint of f ∈Fh, f ∩Λi 6=∅. ch minimizes the following sum

∑
T∈T i

|T|
[

σa(Iayh,T)−
(

σh(Iayh,T)+∇chJ
)

]2
(5.6)

subject to the constraint that ch(q f )=0, for f
⋂

Λi=∅.

3. Let σh(yh)=σh(yh)+∇ch
J, compute ηM, ηT and ηC with σa(Iayh) and σh(yh).

The effect of the approximate stress tensor correction is demonstrated in Fig. 3. We
can see in Fig. 3(a) that the convergence rate is suboptimal if the stress tensor correction
is not applied. Fig. 3(b) shows that without correction, the error estimator η may even
increase with respect to the degree of freedom.
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5.1.2 Local error estimator

We can evaluate the global estimator η by computing its three components individually.
These components correspond to different operations in the adaptive algorithm. The
value of truncation error ηT is determined by the domain size. As the size of the compu-
tational domain becomes larger, we have smaller ηT. Hence, we regard ηT as a criterion
to control the domain size. Values of the modelling error ηM and the coarsening error
ηC indicate local error contributions, and we need to assign ηM and ηC to local elements
properly.

We define

ηM(T,Ta) := |Ta
⋂

T|
[

σa(Iayh,Ta)− ∑
T ′∈Th,T ′⋂Ta 6=∅

|T′⋂Ta|
|Ta| (σh(yh,T′))

]2

. (5.7)

Note that ηM(T,Ta) 6=0 only if Ta∩∂T 6=∅.

For Ta∈Ta, then let

ηM(T)= ∑
Ta∈Ta,Ta

⋂

T 6=∅

ηM(T,Ta), for T∈Th,

ηC(T)=
√

3CTrC′
Th ∑

f∈Fh
⋂

T∈Th

1

2
(h f JσhK f )

2.

Once all the local estimators are assigned, we are ready to define the indicator ρT:

ρT =(CTr)2 ηM(T)

ηM
+(

√
3CTrC′

Th
)2 ηC(T)

ηC
. (5.8)

Notice that the sum of local estimators ρT together with truncation error ηT is equal
to the global estimator η. The constants CTr, C′

Th
in (5.8) are not known a prior, instead,

we use their empirical estimates in the numerical implementation.

Here is the main Algorithm 2, where the Dörfler adaptive strategy [6] is adopted.

5.2 Numerical experiments

We present the numerical experiments with the following model problem. We consider
the two dimensional triangular lattice Λhom :=AZ

2 with

A=

[

1 cos(π/3)
0 sin(π/3)

]

. (5.10)

Let a1=(1,0)T, then aj=A
j−1
6 a1, j=1,··· ,6, are the nearest neighbor directions in Λhom,

where A6 is the rotation matrix corresponding to a π/3 clockwise planar rotation. Let
N={ai}6

i=1 denote the set of nearest neighbor interacting bonds. Given the cut-off radius
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Algorithm 2 A posteriori mesh refinement with size control.

Step 0 Set ΩR0
, Th, Nmax, ρtol, τ1, τ3 and Rmax.

Step 1 Solve: Solve the a/c solution yh,R of (2.5) on the current mesh Th,R.

Step 2 Estimate: Carry out the stress tensor correction step in Algorithm 1, and compute
the error indicator ρT for each T∈Th, including the contribution from truncation er-
ror ηT . Set ρT=0 for T∈Ta

⋂Th. Compute the degrees of freedom N, error estimator
ρT and ρ=∑T ρT . Stop if N>Nmax or ρ<ρtol or R>Rmax.

Step 3 Mark:

Step 3.1: Choose a minimal subset M⊂Th such that

∑
T∈M

ρT ≥
1

2 ∑
T∈Th

ρT .

Step 3.2: We can find the interface elements which are within k layers of atomistic dis-
tance, Mk

i := {T ∈M⋂T c
h : dist(T,Λi)≤ k}. Choose K≥ 1, find the first k≤K

such that

∑
T∈Mk

i

ρT ≥τ1 ∑
T∈M

ρT , (5.9)

with tolerance 0< τ1 < 1. If such a k can be found, let M=M\Mk
i . Then in

step 3, expand interface Λi outward by k layers.

Step 4 Refine: If (5.9) is true, expand interface Λi outward by one layer. If ηT ≥τ3ρ, enlarge
the computational domain. Bisect all elements T∈M. Stop if

ηT

ηM+ηC
≥τ2, otherwise,

go to Step 1.

rcut, then each interaction direction ρ∈R can be uniquely represented as ρ=αai+βai+1,
where α≥0,β≥0,α+β≤ rcut and ai ∈N .

Recall the EAM potential defined in (2.1). Let

φ(r)=exp(−2a(r−1))−2exp(−a(r−1)), ψ(r)=exp(−br),

F(ρ̃)=C
[

(ρ̃− ρ̃0)
2+(ρ̃− ρ̃0)

4
]

,

with parameters a=4.4, b=3, c=5 and ρ̃0=6exp(−b), which is the same as the numerical
experiments in the a priori analysis of GRAC method [29].

To generate a defect, we remove k atoms from Λhom,

Λdef
k :={−(k/2)e1,··· ,(k/2−1)e1)}, if k is even,

Λdef
k :={−(k−1)/2e1,··· ,(k−1)/2e1)}, if k is odd,
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and Λ=Λhom\Λdef
k .

For ℓ∈Λ, consider the next nearest neighbor interaction, Nℓ :={ℓ′∈Λ|0< |ℓ′−ℓ|≤2},
and interaction range Rℓ :={ℓ′−ℓ|ℓ′∈Nℓ}⊆{aj, j=1,··· ,18}. The defect core Ddef can be

defined by Ddef={x :dist(x,Λdef
k )≤2}, Λ

⋂

Ddef is the first layer of atoms around Λdef
k .

5.2.1 Di-vacancy

In this section, we numerically justify the performance of the proposed adaptive mesh
refinement algorithm. We take the same di-vacancy example in [29], namely, setting k=2
for Λdef

k . We apply isotropic stretch S and shear γI I by setting

B=

(

1+S γI I

0 1+S

)

·F0,

where F0 ∝ I minimizing the Cauchy-Born energy density W, S=γI I =0.03.

5.2.2 Micro-crack

In the microcrack experiment, we remove a longer segment of atoms, Λdef
11 =

{−5e1,··· ,5e1} from the computational domain. The body is then loaded in mixed mode
I & II, by setting

B :=

(

1 γII

0 1+γI

)

·F0,

where F0 ∝ I minimizes W, and γI=γII=0.03 (3% shear and 3% tensile stretch).

We take τ3=0.7 in the numerical implementation of Algorithm 2. We compare results
with and without stabilisation and also with different optimisation approaches to obtain
the reconstruction parameters.

From the numerical results in Figs. 4-7, we can see that the least square method for
the reconstruction parameters does not converge at all. For the ℓ1-minimization approach
without stabilization, there exist large errors in the pre-asymptotic regime, though the
solutions tend to converge with increasing degree of freedom. For ℓ1-minimization com-
bined with stabilisation, we are able to obtain the quasi-optimal convergence rate that
consistent with the a priori result.

Fig. 8 shows the computational time for the main components of the algorithm with
respect to degrees of freedom. The current implementation, we strictly stick to the rigor-
ous a posteriori estimate. The dominated cost is to find those triangles Ta ∈Ta such that
Ta⋂∂T 6=∅ for T∈Th in order to compute ηM(T,Ta) in (5.7). We are currently working on
the reduction of this cost. Furthermore, the contribution of ηM is actually second order
away from the interface, in practical computation this part could be neglected. Except
the computational cost for the estimator η, which will be optimized in the future imple-
mentation, the a priori algorithm in [29] and the a posteriori algorithm here have similar
running time.
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Figure 4: Numerical results by Algorithm 2: H1 error vs. N, using a posteriori estimator in H1 norm. In
the legend, l1 means ℓ1-minimization approach while l2 represents a least-squares approach; s1 indicates with
stabilization and s0 without.
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Figure 5: Numerical results by Algorithm 2: Energy error vs. N, using a posteriori estimator in H1 norm. In
the legend, l1 means ℓ1-minimization approach while l2 represents a least-squares approach; s1 indicates with
stabilization and s0 without.

Fig. 9 shows the ratio between the a posteriori error estimator and true error for the
di-vacancy example, which is about 50−100. For practical implementations, the refine-
ment indicator may also be used to control the adaptivity, which will be left for future
investigation.
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Figure 6: Numerical results by Algorithm 2: H1 error vs. N, using a posteriori estimator in H1 norm. In
the legend, l1 means ℓ1-minimization approach while l2 represents a least-squares approach; s1 indicates with
stabilization and s0 without.
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Figure 7: Numerical results by Algorithm 2: Energy error vs. N, using a posteriori estimator in H1 norm. In
the legend, l1 means ℓ1-minimization approach while l2 represents a least-squares approach; s1 indicates with
stabilization and s0 without.

Remark 5.1. The time of the energy minimization depends on the applied iteration
method, iteration loops and tolerance. The two peaks in Fig. 8 takes about ten times
the steps to reach the given tolerance 10−7 by line search. In our numerical experiments,
we could applied trust region method after line search to obtain 10−10 accuracy, but the
time it costs will approach that of σa.
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Figure 8: CPU time of the divacancy example, η: the time to compute the estimator η; σa: the time to compute

the atomistic stress σa on those triangles in Ta which intersect with edges in Th; σh: the time to compute σh;
Cℓ;ρ,ς: the time to compute reconstruction parameters with ℓ1 minimization; uh: the time for the minimization

of the coupling energy; aPriori: the time for the a priori computation of the a/c solution.
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Figure 9: Ratio (in log10 scale) of error estimate and error vs. DoF for divacancy example.

6 Conclusion

In this paper, we construct the adaptive algorithm for a class of consistent (ghost force
free) atomistic/continuum coupling schemes with finite range interactions based on the
rigorous a posteriori error estimates. Different from the localization formula for the stress
tensor in the a priori analysis [21, 22, 26], we develop a computable formulation for the
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stress tensor. Combined with ℓ1-minimization approach for reconstruction parameters
and stabilization, we have shown that the numerical results for the corresponding adap-
tive algorithms are comparable to quasi-optimal a priori analysis.

The extension to three dimensional problems is not trivial, it require an efficient com-
bination of the a/c coupling method and error estimation. Currently, the construction of
the consistent 3D GRAC coupling is in progress. We are also working on the a posteriori
error estimates of the blending method and the BGFC method [30], which would be more
flexible for the extension to 3D. The stress formulation in this paper can be extended to
3D, though it requires to compute the intersection of interaction bonds with elements, it
could be done in 3D but will be complicated. As in [34, 35], we will carefully consider
the application of bond-density-lemma to simplify the computation. Furthermore, the
approximate stress tensor correction can be done locally, similar to the local flux recon-
struction in [31].

More practical problems, for example, the study of dislocation nucleation and dis-
location interaction by a/c coupling methods has attracted considerable attention from
the early stage of a/c coupling methods [32, 38]. The difficulty is to deal with boundary
condition and complicated geometry changes of the interface.

For general atomistic/continuum coupling schemes, such as BQCE, BQCF and BGFC,
the a priori analysis in [13, 15, 30] provide a general analytical framework and the stress
tensor based formulation plays a key role in the analysis. Therefore, the a posteriori
analysis for those coupling schemes can inherit this analytical framework and the stress
tensor formulation. Techniques developed in this paper will be essential for the efficient
implementation of the corresponding adaptive algorithms.
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A Appendix

A.1 Derivation of (4.8) for two dimensional triangular lattice

In this section, for two dimensional triangular lattice introduced in Section 5.2, we derive
(4.8). We first classify interaction bonds into two types according to their intersection to
corresponding elements.

Type I interaction bonds is parallel to one of the nearest neighbor directions. The set
of all Type I bonds is defined by BI = {ρ|∃ai ∈Rnn, such that ρ= |ρ|ai}, as illustrated in
Fig. 10.
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Figure 10: Illustration of corresponding elements (marked gray) to bond ρ∈BI with ρ=2a3.

For each ρ∈BI with start point ℓ∈Λ and v∈U 1,2, we have

Dρv=
|ρ|
∑
k=1

Dai
v(ℓ+(k−1)ai)

=

( |ρ|
∑
k=1

(

1

2
∇T+

k
v+

1

2
∇T−

k
v

)

)

· ρ

|ρ|

=
|ρ|
∑
k=1

1

2|ρ|
(

∇T+
k

v·ρ+∇T−
k

v·ρ
)

, (A.1)

where T+
k and T−

k are the triangles with (ℓ+(k−1)ai ,ℓ+kai) as the common edge, for
k=1,··· ,|ρ|, superscript “+” means the element being located on the left of the bond. In
this case, the contribution in(4.8) is

ω
ρ
ℓ
(T

(±)
k )=

1

2|ρ| .

Type II interaction bonds is not parallel to any of the nearest neighbor directions,
therefore they must cross the intersecting elements. The set of all Type II bonds is defined
by BII={ρ|ρ is not parallel to any ai ∈Rnn}, as illustrated in Fig. 11.

For any Type II interaction bond ρ ∈BII, there exists nearest neighbor directions ai,
ai+1, such that ρ=αai+βai+1, α,β>0. Let (ℓ,ℓ+ρ) consecutively intersect with elements
Tk, k=1,··· ,np, for v∈U 1,2, we have

Dρv=
nρ

∑
k=1

Dρk
v(ℓ+

k

∑
t=1

ρk−1)=

(

nρ

∑
k=1

∇Tk
v

)

·ρk

=

(

nρ

∑
k=1

∇Tk
v

)

· |ρk|
|ρ| ρ=

nρ)

∑
k=1

|ρk|
|ρ| ∇Tk

v·ρ, (A.2)
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Figure 11: Illustration of the intersecting elements (marked gray) with respect to bond ρ∈BII, ρ= a1+2a2.
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Figure 12: Illustration of corresponding elements (marked gray) to bond ρ∈BI with ρ=2a1+2a2.

where the set of vectors {ρk}nρ

k=1 is the unit partition of ρ with ρ = ∑
nρ

k=1ρk, ρ0 = 0 and
ρk

|ρk|=
ρ
|ρ| for k=1,··· ,np. ρk=Tk∩(ℓ,ℓ+ρ). For the two dimensional triangular lattice as in

Section 5.2, we have nρ=2(α+β−1) if α 6=β, and nρ=2α if α=β. In this case,

ω
ρ
ℓ
(Tk)=

|ρk|
|ρ| .

For the Type II bonds with α=β, in the hexagon site geometry, The contribution factor
ωT

ρ is the same for every element related to bond ρ with the value ωT
ρ =

1
2α which can be

see from Fig. 12.
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