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Abstract. In this paper, we introduce an extension of a splitting method for singularly
perturbed equations, the so-called RS-IMEX splitting [Kaiser et al., Journal of Scientific
Computing, 70(3), 1390-1407], to deal with the fully compressible Euler equations. The
straightforward application of the splitting yields sub-equations that are, due to the
occurrence of complex eigenvalues, not hyperbolic. A modification, slightly changing
the convective flux, is introduced that overcomes this issue. It is shown that the split-
ting gives rise to a discretization that respects the low-Mach number limit of the Euler
equations; numerical results using finite volume and discontinuous Galerkin schemes
show the potential of the discretization.
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1 Introduction

The modeling of many processes in fluid dynamics requires the solution of the com-
pressible Euler equations. This hyperbolic set of equations contains propagation waves
at different speeds. At low Mach numbers, the propagation speeds of the waves differ by
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several orders of magnitude leading to a stiff behavior of the equation system. Classical
explicit time integration schemes would require the resolution of all waves for stability
reasons, even though the contribution of the fast waves on the solution can be negligible
for many applications. Fully implicit schemes can overcome this stability issue, but they
require specially designed numerical fluxes and need the solution of large nonlinear sys-
tems, see e.g. [3,35]. One way to obtain a stable and efficient numerical method is to split
the equations into a stiff and a non-stiff part and handle those parts implicitly and ex-
plicitly, respectively. Such a procedure leads to IMEX schemes, see, e.g., [2,6,18] and the
references therein. This approach is particularly advantageous in cases where the time re-
solved resolution of the slow waves is of interest. The choice of the splitting is important.
It determines such crucial properties as stability, accuracy and efficiency. It is therefore
not surprising that many people have worked on identifying suitable splittings for var-
ious types of the Euler equations, starting from the groundbreaking work of Klein [26].
To name a few — this list is by no means exhaustive — we refer to [4,8-11,13,15,22,29,34].
The present splittings have different drawbacks such as the need for solving an elliptic
equation or large nonlinear systems, requiring staggered meshes, being limited to low
order discretization or not being able to be applied to the full Euler equations. Recently,
a new splitting for the isentropic Euler equations based on the solution of the incom-
pressible Euler equations has been introduced, see [21-23,36,37]. This splitting can be
combined with a high order discretization in space and time and remains linear in the
implicit part which significantly simplifies the solution of the associated system. Apply-
ing it in a straightforward manner to the full Euler equations of gas dynamics results in
a scheme where the explicit part is no longer hyperbolic. This is of course an unwanted
feature, as the method can become instable, which will be discussed in this work.

The purpose of this paper is to propose a modification of the splitting to overcome
this issue, thereby obtaining a stable and accurate scheme for the Euler equations at low
Mach numbers. The final splitting is combined with an IMEX Runge-Kutta method and is
shown to be asymptotically consistent. Then, spatial discretization is achieved via either
a finite volume [33] approach or a discontinuous Galerkin approach [17,27]. In future
it would be interesting to investigate how our methodology can be generalized for fur-
ther non-standard space approximations of the Euler equations known in the literature,
such as the ALE-multi-moment finite volume scheme [19] or high-resolution Lagrangian
methods [30].

The paper is structured as follows: In Section 2 we introduce the RS-IMEX splitting for
the Euler equations and describe how it can be modified in order to obtain a hyperbolic
explicit and implicit system. Following, Section 3 introduces the numerical discretiza-
tion of the novel splitting. Here, the asymptotic consistency of the semi discrete scheme
is proven in Section 3.2 and the spatial discretization is introduced in Section 3.3. The
limitations of the splitting are discussed in the subsequent section (Section 4). Following,
the low Mach number capabilities of the scheme are illustrated with suitable testcases in
Section 5. Finally, the paper is closed with a conclusion and outlook (Section 6).
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2 A novel splitting for the Euler equations

2.1 Governing equations

In order to analyze the behavior of the numerical scheme at low Mach numbers, we write
the compressible Euler equations in non-dimensional form as

Y pu

o | pu | +V- | puu+5Id | =0, V(x,t) eQxRY, (2.1)
E u(E+p)
= = (w)

where p denotes density, u velocity, E energy density and the pressure is computed via
the equation of state for a perfect gas

2
ploomE)i=(r-1)(E-Solul?), 22

with 7 being the isentropic expansion coefficient and () C RY de {1,2,3},is a given do-
main. The equations are equipped with initial conditions

w(x,0)=w’(x), xeQ.

The parameter ¢>0 is a reference Mach number. In this work, we consider flows at rather
low Mach numbers, so ¢ < 1.

It is apparent that for ¢ finite but small, this is a singularly perturbed system of equa-
tions which renders both the analysis and the numerical treatment of the equations diffi-
cult. Expanding w in terms of ¢, i.e. assuming a representation of w as

W =w ) +Ewq) +SZZU(2) +O(€3)

reveals that under certain conditions, see e.g. [26], the solution w converges to the solu-
tion of the incompressible Euler equations with variable density winc:=(p(0), (0%) (0),P(2)) ",

Vi1z
(o) (ou) o)
or | (pu) o) |+ V| Poyt0)@t(0)+P2)1d | =0, (2.3)
0 u
(0)
=:8(Winc)
with

Po):=(7r—1)E()=const and pa):=(r—1)En)=const.
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Note that also the hydrodynamic pressure p(;) can be represented in terms of the other
quantities via

1
poy=(r-1) <E<z) — 5P llno) II%> : (2.4)

For more details, we refer to [25,26,29,32]. Note that the representation of w as a Hilbert
expansion is used throughout the whole paper.

2.2 Stiff/nonstiff splitting

As seen before, the Euler equations at low Mach number constitute a system of singularly
perturbed differential equations, therefore, they consist of stiff and non-stiff parts. Iden-
tifying these correctly can yield very robust and efficient time-stepping procedures. So,
assume that f(w) = f(w)+ f(w), with f(w) being the stiff, and f(w) being the non-stiff
contribution, one can treat the first one implicitly and the second one explicitly in time.
For Euler’s time integration procedure, this would amount to the IMEX scheme

n+1__
At

n

w w

+V- (7(w”+1)+?(w”)) —0. 2.5)

In this section, we discuss the extension of the so-called RS-IMEX splitting, previously
introduced for the isentropic Euler equations, to the equations at hand. A very important
ingredient is a reference solution (RS), i.e., a function wyef := (Oref, (01 )ref, Eref) such that

P—pret=0(),  pu—(pu)wes=0(¢) and  E—E=0(e). (2.6)

Typically, this could be a solution to the limit equations (2.3), or an approximation thereof.
This latter approach is pursued in this work, for a discussion on other choices, con-
sult [23]. It is straightforward to apply this splitting also in the context of the full Euler
equations:

Definition 2.1 (RS-IMEX splitting). Let a reference solution w.s be given, then the RS-
IMEX splitting is given by

f(w) ::f(wref)"’_vwf(wref) (w_wref) and f(w) :f(w) —f(ZU)

f and f are of course well-defined. However, the explicit part does not necessarily
give rise to a hyperbolic system as for the isentropic Euler equations:

Lemma 2.1. Consider d =2 and n € R* with unit length. Then, the eigenvalues of Vef n are
given by

~ ~ ~ 1
A1 =0, Ay ="y (u—1uyy)n, A3,4:<2—%> (u—u,ef)-niix/ﬁ,
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with
2
D:= (4_4’)’) Hu_uresz_'_'Yz ((u_uref) '1’1) .

For v>1, D can become negative if

2
|4_4’)’| ||u_uref||2 >,)/2 ((u_uref)'n) .

Of course this can pose severe problems when applying straightforward solvers de-
signed for hyperbolic problems. In the following, we first discuss some stability-related
issues, and then propose a modification of the splitting which avoids complex eigenval-
ues.

2.3 Stability considerations

The explicit flux function of the RS-IMEX scheme is such that it gives rise to a non-
hyperbolic system of equations via the complex eigenvalues. In this part, we shortly
investigate this influence based on the very simple prototype equation

w+aw,+iew, =0, (x,t)€(0,1)xRT,

with a € R and a>> e € R. We assume that square-integrable initial conditions are given,
and that periodic boundary conditions in space are used.

It is our intention to mimic the behavior of an IMEX scheme in the most simple setting.
To this end, we assume that the complex convection part, iewy, is discretized with an
explicit method, the real convection part, aw,, with an implicit method. Discretization is
achieved via a first-order finite volume method using the Rusanov flux with numerical
viscosities @ and «, respectively. We assume that a time-space grid is given by

1
T= {(x]-,t”) | x;j:= <j+§>Ax, j=0,---,N, t":=nAt, nEIN}

for constant values Ax(=N"1) and At. w} denotes an approximation to w(x;,"). Ulti-
mately, this yields the method

n+l__.n__ alt n+1__ _.n+1 aAt ( n+1 n+1__ n) _ ieAt ( no_ _.n )
wi T =wy o (wj+1 Wiy ) +—2Ax Wiy Twiy 2w; Ax \Wjr1~ Wi )
Note that we have set @ to zero for a clearer exposition; qualitatively, this does not influ-
ence the results.

The discrete initial conditions can be written as

LN/2] )

wQ — Z Ck ekaxj

k=—[N/2|
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for some given discrete Fourier coefficients c;. Performing a von-Neumann analysis re-
veals that the method would be stable if

|1+ 8L sin(27kAx) |

. { <1, V—N/2<k<N/2.
‘1+ 2t gin(27tkAx) + 58 (1—cos(27kAx)) ‘

There does not exist a finite CFL number such that this is fulfilled for all meshes. How-
ever, for a given and fixed grid, one can, at least in theory, always choose ¢ in such a
way that this requirement is fulfilled. Still, computing is always done with a fixed e on a
fixed grid, and so there is certainly need for a modification of the splitting, which will be
presented in the next section.

2.4 Modified RS-IMEX splitting

Following the ideas of Bispen et al., see [5], we modify the explicit part of the RS-IMEX
splitting in such a way that the eigenvalues of the non-stiff part remain real. To this end,
we drop the explicit contribution of pressure. Thereby, we introduce a small (in terms of
¢) modeling error.

Remark 2.1. Written out explicitly, the 7(w) given in Definition 2.1 is given as

0
f(w) pp— p(u—uref)®(u—uref)+gl2ﬁ1d ’
(u_uref)w—i_@
with
pi=— (’7—1)59“”@_”“

and
— _ P
up.—('y 1)(“ uref) <E Eref>
Oref

2
€
+(’)’_1)Ep [(HurefH%_ HuH%)(u_uref) - Hu_urefH%uref] .

For w being the exact solution, there holds
p=0(e") and  ap=0(e)+0(e*).
Thus, dropping the O(e*) terms should lead to an error in O(¢?), since p is multiplied

with e72. This will yield a hyperbolic non-stiff contribution, at the price of a modeling
erTor.
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Definition 2.2 (RS-IMEX splitting (modified)). Let a reference solution w;.¢ be given, then
the modified RS-IMEX splitting for the Euler equations is defined by

?(w) ::f(wref) +wa(wref) (w_wref)
0

and fmod(w) = p(u_uref)®(u_uref)

re! EiEre
’)’(u _uref) (pfprffp)

Lemma 2.2. Consider d =2 and n € R? with unit length. Then, the eigenvalues of Vw?mod ‘n
are given by

A1=0, 7\2:2(u—uref)-n, ng(u—uref)-n and 7\4:7(u—uref)-n,
and are real.

Remark 2.2. The eigenvalues of the explicit part are similar to the eigenvalues of the ex-
plicit part of the RS-IMEX splitting applied to the isentropic Euler equations, see e.g. [22].

Remark 2.3. For the sake of completeness, we also give the explicit expression for the
flux f(w):

u
f(w):= P(”ref®u+u@§uref—uref®uref)
7(ppf(u uref)Eref+urefE>
0
+(7r-1) 3 [E=So(lulE—llu—merl3)] 14
S0 [Nl — 91— st 13) thvet + [ 4rer] 3 (10 — e

Note that the implicit part is linear in w. The associated eigenvalues are those of the
original system, evaluated at reference state.

From now on, we will drop the subscript 'mod” in the modified RS-IMEX flux; the
context will be clear.

3 Numerical discretization

3.1 Semi discrete scheme

We have already in (2.5) shortly touched upon the issue of time integration schemes.
The focus is of course on higher order, and therefore, IMEX Euler is not sufficient. In
this work, we use globally stiffly accurate IMEX Runge-Kutta methods of type CK with
uniform internal timestep vector, see e.g. [2,7,24,28]. Based on the split PDE

9w+ V- | f(w)+F(w)| =
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with splitting as in Definition 2.2 (modified RS-IMEX), we can formulate the schemes as
follows:

Definition 3.1 (IMEX Runge-Kutta method). Let a globally stiffly accurate IMEX Runge-
Kutta method be given by its Butcher tableau. Let the implicit matrix A be a lower tri-
angular matrix with A;; #0 for i > 1, and s denote the number of stages. Then, for every
n=0,---, do the following;:

1. Fori=1,---,s solve at time instance "/ := t" 4+ c/ At"
w' =w"— A"y A V- f(w") =AY A V- f(w™).
j=1 j=1

2. Set w"tl:=w"s.

Remark 3.1. For the numerical results presented in this work, we use the following
schemes:

o IMEX-ARS-222, a second order scheme given in [2];
o IMEX-ARS-443, a third order scheme given in [2];
o IMEX-ARK-4A2, a fourth order scheme given in [28].

Note that in all the numerical results, we work with adaptive time steps At" dictated by
the convective CFL condition, see (3.18).

3.2 Asymptotic consistency of semi discrete scheme

A very important property with respect to singularly perturbed equations is asymptotic
consistency. This property guarantees that the e — 0 limit of the discretization is a consis-
tent discretization of the incompressible Euler equations (2.3). For more details and other
applications, we refer to [20,21,29] and the references therein. In this section, we prove
that the semi-discrete (in time) method from Definition 3.1 is asymptotically consistent if
the modified RS-IMEX splitting is used. The proof is done in two steps:

e First, it is shown that a fully implicit semi-discretization is asymptotically consis-

tent. A fully implicit discretization amounts to taking f(w)= f(w), and f(w)=0
in Definition 3.1.

e Second, it is shown that the limiting equation of the modified RS-IMEX approach
and the fully implicit method have the same solution. This automatically renders
the method asymptotically preserving.
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3.2.1 Fully implicit discretization
Applying an implicit method to the Euler equations yields the definition of the stages

W =" — A" ZAi,jv .f(ﬁ)”r]), (3.1)
j=1

where @ := (p,pu,E)T and f is given by Eq. (2.1). Note that we use the identifier () to
differentiate between the numerical solution obtained by a fully implicit discretization
and the numerical solution obtained by the RS-IMEX splitting.

Lemma 3.1. Assume that @™/ is well-prepared for j<i, i.e., there holds
E™ = const+O(£?) and  V-a"=0(e). (3.2)

Furthermore, let the boundary conditions be such that

/ i ndo =0,
Q)

If @™ has a Hilbert expansion, then also @™ is well-prepared. Furthermore, the ¢ — 0 limit of
scheme (3.1) is a consistent discretization of the incompressible Euler equations.

Proof. We assume that all quantities are given as an asymptotic expansion, i.e.
ﬁ”’izﬁ?’l‘)+sp( \He2p +O(E),
T —u? Z) e Z) —I—szﬁ”l +O(83)

E™ EEZ ’) +€EEZ 1) +82E’” +0(&%),

insert this in the numerical method given in Eq. (3.1) and vary in terms of &. By this we
obtain

=i~ 0" L7 63)

i _ G i i
Pt (g) =pitfo) — A" Y AV ~?0])”?0])®”(o])+(7_1)(15?2])_Eq(qO])H”EZo])"%) Id]’ G.4)

j=1

By =Efy —At”;gi,jv-’yﬁn(’)j) Eg) (3.5)

0=At" i;ﬁi,jv.(y—1)fyég 1d, (3.6)
p

0=At" iﬁi,jv.(y—nf’(qg Id. (3.7)

j=1
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All previous stages are assumed to be well prepared, i.e. they fulfill

EEZ{)] E(O)/ Ezll’] E(l) and V.ﬁ”ff:(), j<i.

Then, Egs. (3.6) and (3.7) directly reduce to

Ozgi,ivglgéi) and OZAVZ',I‘VE”

Thus, E ’Zéi) and E ?11) are constant in space for all i. (Note that if A1;=0, then this is implied

due to the prerequisites.) Next, we consider Eq. (3.5). Due to the previous results and
well prepared previous stages we obtain

~E{p)= —At”AiliEF(’)]ﬂV -ﬁ’(“g).

~n,i
E)
Integrating over the whole domain, using Gauss theorem and well-prepared boundary
conditions, see Lemma 3.1, we can conclude that

E?él) = E?O) = E(O)
Considering again Eq. (3.5), there follows

~n,i __
V-u 0 =0
Thus, @"" fulfills all conditions of well-prepared initial data, see Eq. (3.2). It is straight-
forward to see that the remaining equations

Pl =Plo)—At" 2Ai,jv P,
]:
~n,i __ —~n n P ] ~N,]  ~,] ~n,j 1~n,‘ nj
i) =Pitio) A" Y AiV - | Prgyit gy gy + (1—1) <E(2])_§P(o])Hu(o])H%> Id]
p

constitute a consistent discretization of the incompressible Euler equations, see Eq. (2.3),
with p(,) given by Eq. (2.4). Therefore, the method is asymptotically consistent. O
3.2.2 Modified RS-IMEX splitting

Based on the previously shown result, we show that the overall method is asymptotically
consistent. First, the limiting method is derived.



302 J. Zeifang et al. / Commun. Comput. Phys., 27 (2020), pp. 292-320

Lemma 3.2. The formal e — 0 limit of a globally stiffly accurate IMEX Runge-Kutta scheme, see
Definition 3.1, coupled with the modified RS-IMEX splitting is given by

o5 =plo)—At" YA,V pul, .
j=1
‘ i1 o g
PG =PH{o) — A" 2Ai,jv' 1906 0] = ) 15— 1)
]:

=1
i pn’g
n - n,j 0 n,j n,j
—At ZAi/jv'(ly_l) E(zj) - T <Hu(()]) H% - Hu(oj) _urefH%> Id/ (3-9)
=1
n,j ]
n, PrefE g) — Erefl0 )
E( 0) —E” — At ZAZ]V 7(u 0]) Wre ) Oref
=
i pn’j ; .
—At" Z:Ai,jV Y 0 O; (u?(,)]) - uref) Eref+ urefEEZ(;]) ’ (310)
j=1 re;
i .
0=At"Y Ay V-(y—=1)Eg)Id, (3.11)
j=1
i .
0=At"Y Ay V-(y—1)E;)Id. (3.12)
j=1

AlS0 pyef, threp and E,op are time-dependent; for the ease of presentation we have neglected the super-
scripts n,i. It is to be understood that they are evaluated at time instances 1l ="+ AP, where
c! is the partial time step dictated by the Runge-Kutta method, see Definition 3.1.

Proof. The lemma is a straightforward computation, assuming the Hilbert expansions
p p(’i)+sp( )+szp?l)+(’)(ez)
u" '(11)+8u'(11)+82u’(“)+(’)( &),
E" = E’(qél) —|—sE'(11’l) —I—SZE?Z’I) +0(%)

for every i, and collecting terms in e. O

Remark 3.2. It will turn out that we can neglect difference terms of reference solution
and discrete solution. Note that

nj

uref®u( )+u( )®uref uref®uref:u?6]) QO Uref + Uref O (u (’)) _uref) .
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In this sense, Egs. (3.8)-(3.10) can be simplified to give

j=1
+O (g —thes), (3.14)
E{g) =E{)— Atnjg AV -yt Eg) + O (1) — thref). (3.15)

Note the apparent similarity with the implicit method, see Lemma 3.1.

With this, we can now, under a restriction on the reference solution, show that the
overall method is asymptotically consistent. For this, we assume that the reference solu-
tion is computed with the fully implicit method given in Lemma 3.1 and then show that
the method given in Lemma 3.2 is solved by the fully implicit solution.

Lemma 3.3. Assume the conditions of Lemma 3.1. Assume furthermore that the reference solu-
tion is computed by the fully implicit method given in Lemma 3.1, i.e.

— n,i

()i =00, (ow)g(t"):=(pu) gy and  Eng(t"):=Efj) =E ).

Then, the solution obtained by the fully implicit method, see again Lemma 3.1, is a solution of the
limiting equations obtained by the modified RS-IMEX splitting, see Lemma 3.2, and in particular
Remark 3.2.

Proof. Plugging the limit solution wy,s(t"') := zTJ’Z(’)i) into (3.13)-(3.15) directly yields the

claim. .

Overall, we can conclude that a globally stiffly accurate IMEX Runge-Kutta scheme
coupled with the modified RS-IMEX splitting is asymptotically consistent if the corre-
sponding implicit discretization is asymptotically consistent, which is indeed the case.

Corollary 3.1. A globally stiffly accurate IMEX Runge-Kutta scheme coupled with the modified
RS-IMEX splitting is asymptotically consistent.

3.3 Fully discrete scheme

In general we use the same discretization as previously used in [23] and [37] for the
isentropic Euler equations. This means that we couple a high order IMEX Runge-Kutta
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scheme with a discontinuous Galerkin method. Details about the used nodal discontinu-
ous Galerkin spectral element method can be found in [17,27]. For problems with strong
gradients, we use a Finite Volume method described in [33] with 2% order in space recon-
struction and MinMod slope limiting [31]. For the fluxes across the boundaries of the DG
elements and the numerical fluxes of the finite volume method we use a Lax-Friedrichs
type Riemann solver described by

*

F =3 (w4 hw) s —w), A=big{l111) @19

for the implicit part and

f= % (7n(w+) +f,(w ) +A(w" —w‘)), A:=2¢Diag{1,---,1}, (3.17)
for the explicit part with (), denoting the flux in face normal direction and ()™ and (-)~
denoting the left and right state at a cell interface.

As described in Section 2 the RS-IMEX splitting requires the solution of the incom-
pressible Euler equations given in Eq. (2.3). For the incompressible solver we adopt the
method for non-variable density incompressible flow which has been used in [37]. Here,
the Riemann solver has to be changed to a Lax-Friedrichs type Riemann solver with

.1 _ _ . 1
g :E(gn(winc+)+gn(winc )+Ainc(winc+_winc ))/ Ainc:Dlag{lr”'/lr;}~

For the solution of the equation system arising from the IMEX Runge-Kutta method we
use a Jacobian-free Newton-GMRES method with analytical block-Jacobi preconditioner
which is described in more detail in [37]. Note that the time step is chosen according to a
CFL number with respect to the velocity u"

Ax
At"=CFL , 3.18
(2N +1)max|u”| (3.18)

with the polynomial degree of the solution approximation N being zero for the finite
volume method.

4 Modeling considerations

The original RS-IMEX splitting, see Definition 2.1, is such that f(w) = f(w)+ f(w), so
there is no modeling error introduced. However, the modified RS-IMEX splitting, see
Definition 2.2, is such that the stiff and non-stiff contributions do not add up to the full
Euler flux function. Hence, this gives in principal rise to an inconsistent scheme; for a
low-Mach solution, the inconsistency scales with (’)(82), it can therefore also be seen as a
modeling error. In this chapter, we investigate the influence of this modification.
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4.1 2dlow-Mach vortex

In this first example, we consider an exact solution. We choose =2, background velocity
U =(1,1) and background energy E. = 1. The initial conditions

0 Y=1 21X 7T 0 ) e (1-11%13)
0" (x)= 1_—877t2€ e , u (x)=ue+e v ) o
4.1)

E'(x) =Euu +° (% +§p°\\u°u%> ,
lead to the exact solution of the Euler equations (2.1) via
o(x,t) =p° (x —uot), u(x,t) =1’ (x—teot) and E(x,t) =E°(x—toot).
For these particular values, the incompressible solution is the constant state

poy=L  weo=te,  pr)=0.

To avoid dominating errors from the boundary conditions, we choose a sufficiently large
domain Q) = [—10,10]2 ; and periodic boundary conditions. Note that the solution at the
boundary is close to a constant for the initial solution.

This testcase allows us to

e validate the method concerning its order of convergence;

verify the asymptotic preserving property of the scheme;

illustrate the effect of complex eigenvalues;

investigate the influence of the modification described by Definition 2.2 and hence
the inconsistency introduced into the scheme.

Fig. 1 illustrates the spatial order of convergence for the DG scheme at different Mach
numbers. We see that in general the expected 3™ and 4" order are obtained and only
slight differences between the scheme with and without modification are present. Note
that for small errors and small Mach numbers, the correct order is not reached as round
off errors caused by machine accuracy are dominating. Another observation can be made
for e=1 and e=10"1, where differences between the two schemes are visible. Fig. 1 shows
that starting from a certain spatial resolution, the error does not decrease any more for
the scheme with modification, whereas the unmodified scheme still shows the correct or-
der of convergence. From this we can see that here the modeling error introduced by the
modification is dominating the discretization error. We can conclude that this modeling
error only affects the solution for relatively large Mach numbers and fine discretization
parameters, as can be expected from the scaling of the modeling error. In order to high-
light this, Fig. 2 (left) shows the scaling of the errors of the conservative variables with
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Figure 1: h-convergence of conservative variables for DG RS-IMEX with and without modification evaluated
with low Mach vortex (top: N =2, IMEX-ARS-443 [2], CFL=0.5; bottom: N =3, IMEX-ARK-4A2 [28],
CFL=0.5). Errors are calculated at fenq =0.1.
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Figure 2: Scaling of Errors with respect to € for low Mach vortex using DG RS-IMEX with and without
modification (left). Difference between the two schemes (right). Errors are obtained on grid with 162 elements,
N =2, IMEX-ARS-443, CFL=0.5 and t¢,q=1.

respect to the Mach number. We see that the scaling is as described by Eq. (4.1): The error
scales with €2 in density, €! in momentum and ¢’ in energy. This behavior numerically
verifies the asymptotic consistency of the scheme. On the right of Fig. 2, the difference of
the scheme with and without modification is visualized. It shows that for Mach numbers
e > 1073, the difference between the schemes scales with €2 or better. This is expected
as the terms deleted in the modified RS-IMEX are in O(¢?). For smaller Mach numbers,



J. Zeifang et al. / Commun. Comput. Phys., 27 (2020), pp. 292-320 307

the correct scaling is not visible as here round off errors caused by machine precision are
dominating.

In order to enhance the influence of the complex eigenvalues of the explicit part we
change the initialization of the velocity field of the low Mach vortex given in Eq. (4.1) to

3 (1-11x13)
0 - —X7 e? ( 2
u(x) —suoo+s< i ) — 4.2)
The resulting incompressible state changes to
po=L  up=(000), pa=0.

With this initialization, we obtain complex eigenvalues at the cell boundaries if we choose
e #0. We consider the case ¢ = 10! with u. = (20,20) to investigate the effect of the
potentially dominating complex eigenvalues and the influence of the modification on the
solution on a grid with 16> elements. For this testcase the scheme without modification
fails at t =1 whereas modified the scheme remains stable. As the Mach number of the
dimensional equations of this case is M~2-10~! and the difference between the compress-
ible and the incompressible solution is large, the solution obtained with the modification
has to be considered concerning its validity. We compare the results at ¢t = 10 with the
results obtained with an explicit 4 order scheme. Considering the Ly-Errors in Table 1
shows for a reference Mach number of ¢ =10""! considerable modeling errors introduced
by the modification which almost vanish for e=10"2. As in most low Mach number ap-
plications the focus of interest lies on the velocity field and not the acoustics, we compare
the solution obtained with the modified scheme with the exact solution in Fig. 3. This
reveals that the error introduced by the modification is not visible in the velocity field.

Table 1: Ly-Errors of vortex according to Eq. (4.2) at t=10 for 4" order explicit DG scheme and modified
RS-IMEX.

e=10"1 Ly-Error(p) Lp-Error(pu) Ly-Error(pv) Ly-Error(E)
explicit 1.55-107° 1.49-107° 1.49-107° 3.99-10~7
RS-IMEX mod. | 2.69-107° 1.29-104 1.29-104 8.64-10°
e=10"2 Ly-Error(p) Lp-Error(pu) Ly-Error(pv) Ly-Error(E)
explicit 3.65-1078 6.38-107° 6.38-107°%  1.84.1071°
RS-IMEX mod. | 4.90-10~8 6.37-107° 6.37-107° 4.65-107°

4.2 Colliding pulses

This testcase allows us to identify the influence of the modification on the solution and
propagation velocities for different Mach numbers. Introduced by [26], it describes the
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exact solution modified RS-IMEX

Figure 3: Velocity field at t=10 for low Mach vortex with e=10"1 (DG with 4™ order in space and time, 162
elements)

one dimensional development of two colliding pulses at ¢ = {; on the domain —L < x <
L=2. The initial data are given by

p(x,t=0)=0.955+¢ (1—cos (2%) ) ,
u(x,t:0)=—sign(x)ﬁ(l—cos(?)) , (4.3)

p(x,t=0)=2y+ey (1—cos (?) ) ,

with o =1.4. It is necessary to mention that this testcase, due to the e—~dependent do-
main, does not fit into the general framework; transforming it to a fixed domain would
lead to another type of singularly perturbed equation than (2.1). However, treating it
numerically is insightful to investigate to what extend the method presented here can be
used.

The solution converges pointwise to the incompressible reference state

P(0) =0.955, u)=0, p2)=0. (4.4)
For the evaluation of this testcase we consider four different schemes:
1. A fully explicit scheme, which we consider to be the “true” solution;
2. the RS-IMEX scheme without modification, see Definition 2.1;
3. the RS-IMEX scheme with modification, see Definition 2.2;
4

. and a fully implicit linear scheme neglecting the explicit flux in Definition 2.2 to
show the influence of the nonlinear part.
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Figure 4: Pressure distribution at t =1.63 for colliding acoustic pulses with ¢= % calculated with different
schemes (44 DG elements with N'=7, 3" order in time and CFL=0.4). Left: view of total domain; right: zoom
to left pressure peak.
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Figure 5: Pressure distribution at t=1.63 for colliding acoustic pulses with e=10"% calculated with different
schemes (44 DG elements with A’ =7, 3" order in time and CFL=10"%). Left: view of total domain; right:
zoom to left pressure peak.

Fig. 4 shows that for a moderately large Mach number (e= 7;), there are significant differ-
ences between the schemes. Whereas the RS-IMEX without any modification coincides
with the explicit reference solution, the other schemes show different wave speeds. We
see that the modified RS-IMEX scheme has qualitatively the same behavior as the full
Euler equations but with a slightly faster propagation velocity. Neglecting the nonlinear
terms results in other propagation velocities and no steepening of the pressure pulses.
Hence, while the modified RS-IMEX scheme still shows qualitatively good results, the
fully linear scheme is not applicable for such Mach numbers. Changing the reference
Mach number to e=10"* reveals that the influence of the nonlinear parts are very small.
As displayed in Fig. 5 almost no differences between the schemes are visible. This il-
lustrates the findings of Section 3.2 as the error introduced by neglecting (parts) of the
explicit flux vanishes for e — 0.
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4.3 Converging-diverging nozzle

This testcase taken from [16] describes the two dimensional steady flow in a converging-
diverging nozzle. The incoming flow is accelerated by the nozzle and due to the outlet
pressure a shock is formed in the diverging part of the nozzle. The occurring Mach num-
bers are not small and will illustrate the limitations of the introduced low Mach number
scheme. The upper and lower nozzle contour being slip walls are given by h*

41, for —2<x<0,
h*(x) =1 +(cos(ZX)+3)/4, for0<x<4, (4.5)
+1, for4<x<8.

Analogous to [37] we prescribe the flux in normal direction on the slip walls as the veloc-
ity in this direction is zero

o1 e 2 2 T
f = £2 E_EP(HuHZ_Hu_urefHZ) (0 ny nz ns 0) ,

f =0,
g =pe(0 n ny n3 0)7,

with all variables being prescribed from the inner side. The initialization and the left
inflow boundary condition at —1 <y <1is given by p=1, u=0.355, v=0and p=1 cor-
responding to a Mach number of M =0.3. At the outflow the pressure p =% is prescribed
and the reference Mach number is chosen to be ¢ =1. For the spatial discretization we
use a second order finite volume method with 400 x 100 elements and the second order
IMEX-ARS-222 from [2] with CFL=0.5. Instead of using the numerical flux function as
described in Egs. (3.16) and (3.17) we use instead

A=A:=max(|u,|+c),

denoting the maximum local eigenvalue of the non-split system in face-normal direction
with ¢ = | /% being the local speed of sound. Fig. 6 shows that the unmodified RS-

IMEX scheme and the explicit scheme have similar solutions, whereas the position of the
shock is slightly different for the modified RS-IMEX scheme. The position of the shock
calculated with the explicit and the unmodified RS-IMEX scheme matches the results
from [16]. The incompressible reference solution and the density field for the calculation
with the unmodified FV RS-IMEX scheme are illustrated in Fig. 7.

Concluding, this testcase shows that the modified RS-IMEX splitting should not be
applied to flows with high Mach numbers as the propagation velocities of the acoustic
waves are not correct which leads to non-physical solutions. But we can see that also for
a testcase where the incompressible reference solution shows a completely different flow
field than the compressible one, the potentially complex eigenvalues might not cause
trouble.
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Figure 6: Pressure along y =0.4 calculated with explicit FV scheme and FV RS-IMEX with and without
modification, indicated shock position according to [16]
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Figure 7: Density in converging-diverging nozzle at steady state, calculated with unmodified FV RS-IMEX (top).
Velocity magnitude of incompressible reference solution after three time steps (bottom).

In this section, we have investigated the influence of the modification on the prop-
erties of the resulting scheme. We have shown that complex eigenvalues arising in the
unmodified scheme can cause stability issues in some cases, but not in all. As this is not a
priori clear for a specific testcase, our findings indicate that the modified scheme, which
guarantees real eigenvalues, has to be used. We have further demonstrated that the in-
troduced modeling error scales as expected with respect to ¢, allowing the application
of the scheme to low Mach number flow phenomena. This will be presented in the next
section.

5 Numerical experiments

After having numerically analyzed the modeling error, we present in this section numer-
ical results for flows at low Mach number, which is of course the natural habitat of this
current method.
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5.1 Gresho vortex

The Gresho vortex describes a stationary rotating vortex and has been used to show the
asymptotic preserving property in e.g. [3,8,29]. For an asymptotic preserving scheme,
the vortex should remain unchanged regardless of the Mach number. The initialization
of the Gresho vortex from [14] has been adapted to the nondimensional Euler equations
to illustrate the properties of the RS-IMEX scheme. For the domain [0,1]? it is given by

5r, r<0.2,
p=1, u=ep{2-5r, r<04,
0, else,
(5.1)
po+€2(%r2), r<0.2,
p=1 po+e*(4In(5r)+4—20r+%1r?), r<04,
po+¢€*(4In(2)—2), else,

with pp=0.5, r being the radius and e, being the two dimensional azimuthal unit vector
in polar coordinates. The transformation into cartesian coordinates is given by

B P Y _ [ —sin(arctan2(y—0.5,x—0.5))
r—\/(x 05)*+(y-05)*  and e"’_(Cos(arctanZ(y—O.S,x—0.5)) '

The hydrodynamic pressure is obtained by p,) = glz (p—po). Fig. 8 shows the ratio of the
local Mach number and the maximum Mach number at ¢ =103 at different times. It
is visible that the shape of the vortex remains almost unchanged. A comparison of the
behavior at different reference Mach numbers ¢ in Fig. 9 shows that € has no influence on
the temporal evolution of the velocity field. Together with Fig. 8 this illustrates the low
Mach number capabilities of the scheme.

5.2 Double shear layer

This testcase has been taken from [12] and has been studied more recently in [8]. It de-
scribes the incompressible flow of a developing shear layer on the two dimensional peri-
odic domain Q)= [0,27]?. The initial data are given by

7T
plryt=0)=1z,

_m_ Jtanh((y—=3)/p), y<m,
M(x/y/t—o)_{tanh((%_y)/p)/ clse,

(5.2)
v(x,y,t=0)=0.05 sin(x).

The pressure for the compressible calculation has been set to p =1/ with v =1.4, the
hydrodynamic pressure has been initialized to p(;) =0. We calculate this testcase with

the DG scheme using /' =5 and 162 elements as spatial and 3" order IMEX-ARS-443
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Figure 8: Relative Mach number of Gresho vortex for e=10"2 at different times calculated with the modified
RS-IMEX (3" order in time and 4/ order in space with 162 DG elements and CFL=0.2).
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Figure 9: Temporal evolution of the Ly-error of the x-momentum for the Gresho vortex at different reference
Mach numbers ¢, computed with the modified RS-IMEX.

with CFL=0.5 as temporal discretization. Considering the vorticity in Fig. 10 shows good
agreement with the very accurate incompressible reference results from [8] obtained with
a Fourier spectral code. Again, no dependency on the reference Mach number is visible.
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e=10"1 e=10"4

Figure 10: Vorticity of double shear layer calculated with the modified RS-IMEX for the reference Mach numbers
e=10"" (left) and e=10"* (right) at final time t=6.

5.3 Baroclinic vorticity generation problem

This problem has been considered in [29] and describes the two dimensional interaction

of an acoustic wave with a layered density. The compressible initial data with e=0.05 on
the periodic domain —L<x<L:= 10 <y<Ly:= 25—L are given by

€

p(x,y,t=0) =p0+ﬁ <1+COS (%)) +®(y),

u(x,y,t=0)= %uo <1+cos <%)),

(5.3)
v(x,y,t=0)=0,
1 X
p(x,y,t=0)= potsey <1—|—cos <T) ) ,
with po=1, uo=./7, po=1, y=14 and
18L, if0<y<Zz,
PW= 5L 1), o
. (L—y —1), else.
The corresponding incompressible initialization is given by
1
Pty t=0)=po+®(y),  u)(xy,t=0)=Zuo, (5.4)

v(o)(x,y,t=0) =0, p(z)(x,y,t=0) =0.

The different accelerations caused by the acoustic wave in the two density layers lead to
rotational excitation. Hence, a long wave sinusoidal shear layer is formed. After several
passes of the acoustic wave, the sinusoidal shear layer becomes instable and smaller but



J. Zeifang et al. / Commun. Comput. Phys., 27 (2020), pp. 292-320 315

t=0 Density
E1.90t:|e+00
—1.4
1
t=10 =
—0.55
EI.OOOe—Ol
t=20

Figure 11: Density of barotropic vorticity generation problem at different times calculated with modified RS-
IMEX FV scheme with 2@ order space and time.

fast growing vortices are generated. Caused by the density jump at y= %, the DG scheme
(without limiting) is instable for this test case. Hence, we use a second order finite volume
scheme with minmod limiter for the calculations with 800 x 160 elements and use IMEX-
ARS-222 with CFL=0.1 for time integration.

Fig. 11 shows the temporal evolution of the instabilities. Whereas at t =10 the si-
nusoidal deformation of the shear layer is fully developed, its small scale disturbances
are just starting to grow. At t =20 we see that the instabilities have grown considerably,
forming Kelvin-Helmholtz vortices. The development of the instabilities is strongly de-
pendent on the chosen numerical scheme and discretization parameters allowing only a
qualitative comparison with the results from [29]. Considering the solution at the final
times for the present scheme and for the scheme from [29], the density fields show a good
agreement. Note that same flow patterns do not occur at the same simulation time for
different schemes.

Note that for this testcase, the same reasoning as in Section 4.2 holds; due to the
e-dependent geometry, the underlying singularly perturbed equation is different to the
one assumed. Still, it is worth noticing that the algorithm produces good results.

5.4 Flow over a cylinder

With this testcase the ability of using non-periodic boundary conditions as well as the
asymptotic preserving property can be illustrated. We consider the two dimensional flow
over a cylinder with slip walls and choose the initial data as

=1, u=1, ©v=0, =, (5.5)
P p 'y

with v =1.4 and the hydrodynamic pressure for the incompressible solver is p;) =0. At
the inflow, a Dirichlet boundary condition with state given in Eq. (5.5) is used, whereas at
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Figure 12: Isocontours and coloring of pressure coefficient at e=10"1 (left) and e=10~2 (right) calculated with
the modified RS-IMEX.

the outflow only the momentum is prescribed. For the calculation we use a 3" order DG
scheme and IMEX-ARS-443 with CFL=0.5. To show the asymptotic preserving property
if wall boundary conditions are present, we consider the pressure coefficient

PP
™ Poalual
where the pressure is calculated via the equation of state. For a vanishing Mach number,
an exact solution is known (see e.g. [1]) from potential flow where C, ranges from —3
to 1. In Fig. 12 the pressure coefficient is displayed for the reference Mach numbers
e=10""! and 1073 showing the flow characteristics of potential flow. As the pattern of
the isocontours and the numerical range of the pressure coefficient is almost the same for
both Mach numbers, we have evidence that the present scheme is asymptotic preserving
also if wall boundary conditions are present.

5.5 Taylor-Green vortex

As a final testcase we consider the tree dimensional Taylor-Green vortex which has been
used to investigate the dissipative behavior of numerical schemes at low Mach num-
bers for inviscid Euler equations in [3] and [37]. The incompressible initialization of the
Taylor-Green vortex on a periodic box with dimensions Q)= [0,27]3 is given by

Py =1,
cos(x1)cos(xy)cos(x3)
() (x,t=0)=Vp | —cos(x1)sin(xz)cos(x3) |,
0

VZ
P (xt=0)= P(01)6 0 (cos(2x1)+cos(2x,)) (cos(2x3) +2),
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Figure 13: Scaled change rate of kinetic energy for TGV at different reference Mach numbers ¢ (DG scheme
with 3™ order in space and time, CFL=0.9 and 163 elements, modified RS-IMEX).

where Vj denotes a constant initial velocity which is chosen to be Vp =1; x1, xp and x3
denote the spatial coordinates. The initialization for the compressible solver reads

p(x,t=0)=1,

cos(x1)cos(xz)cos(x3)
u(x,t=0)=Vy | —cos(x1)sin(xy)cos(x3) |,
0
V2 oVZe?
:P_O+P 0

—=—(cos(2x1)+cos(2x7))(cos(2x3)+2),

p(x,t=0) p 16

with ¢ =1.4 resulting in a maximum Mach number of . We consider the scaled change
rate of the kinetic energy defined as

JEkin L d (1 2
i3 (glul?),

as an indicator of the dissipative characteristic. For an asymptotic consistent scheme, the
scaled change rate of the kinetic energy should be the same for different reference Mach
numbers as displayed in Fig. 13. Slight variations are only visible for e=10"! probably
caused by compressibility as already observed in [37] thereby confirming the AP property
of the scheme also for this 3d case.

6 Conclusion and outlook

In this work, we have presented an IMEX splitting of the full Euler equations based on
the incompressible reference solution. We have shown that it is (semi-discrete in time)
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asymptotically consistent. Numerical experiments have demonstrated that this modified
RS-IMEX scheme avoids stability problems induced by complex eigenvalues and offers a
possibility to capture the convective phenomena correctly in the case of low Mach num-
bers. We have also seen that it is not suitable for large Mach numbers, which is not a
surprise as its construction rational relies on introducing a modeling error of O(¢?). Fur-
thermore, we have seen that the straightforward application of the RS-IMEX, so without
a modification, gives rise to complex eigenvalues. In many applications, though, this
does not seem to be a problem which is subject of current investigations.

The developed scheme is potentially attractive for efficient computations of low Mach
number flows as it is high order in space and time and requires no implicit solution of
a nonlinear system other than a solve for the incompressible solution. Due to the rela-
tively large zoo of different splittings (and other low-Mach schemes), the most eminent
question is to compare these. This is currently work in progress. In some sense, the
contributions in this paper are very relevant for this, because now also the RS-IMEX can
be compared against other schemes. Last but not least, we consider a pure low Mach
scheme as an intermediate step only. The long-term goal is the construction of a suitable
all-Mach scheme.
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