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Abstract. We examine the meandering instability for prismatic lattic es formed from
triangles, squares and hexagons using a nearest neighbor kinetic Monte Carlo model.
In the �rst two cases, which are Bravais lattices, we �nd that facets with the orientation
favored in the equilibrium shape of isolated islands are mos t prone to this instability,
while the analogous facet for the hexagonal lattice is the least unstable. We argue that
this is due to a signi�cant difference in the reconstructed/ equilibrium versus the non-
reconstructed edge energy for non-Bravais crystals. Surface/edge energy is typically
modeled as a single-valued function of orientation. We put f orward a simple geomet-
ric argument that suggests this picture is inadequate for cr ystals with a non-Bravais
lattice structure. In the case of a hexagonally structured l attice, our arguments indi-
cate that the non-reconstructed edge energy can be viewed asboth discontinuous and
multi-valued for a subset of orientations that are commensu rate with the crystal struc-
ture. We support these conclusions with density functional theory calculations that
also reveal multivalued surface energies for the set of singular orientations.

AMS subject classi�cations : 82D25

Key words : KMC, surface energy, epitaxy.

1 Introduction

In this paper we use kinetic Monte Carlo (KMC) simulations and th eir underlying lat-
tice models to explore the way surface energy behaves for Bravais versus non-Bravais
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crystals. The effect we identify would appear to be generic t o non-Bravais systems, but
we illustrate it in detail for a nearest-neighbor model with hexagonally structured lay-
ers. Our reason for examining this particular case is that it is the hexagonal analog of the
ubiquitous solid-on-solid or, more descriptively, cube-o n-cube model that has been used
to understand many fundamental aspects of epitaxial growth .

In continuum models the term surface energy normally refers to the surface free en-
ergy g f , so that it includes entropic effects within some thermodyn amic ensemble. This is
modeled as a continuous function of surface/edge orientati on, g f (n̂) [1,2], and this func-
tion is often constructed so that it is consistent with under lying symmetry constraints
combined with experimental observations or data from compu tations [3, 4]. In contrast,
the surface energiesg derived from bond counting models are zero-temperature sur face
energies — entropic effects are introduced via the rates in the KMC model. Most sur-
face energies computed with density functional theory (DFT ) are also zero-temperature
results.

Often there is a further distinction between equilibrium/r econstructed and non-
reconstructed surface energies of ideally truncated planar surfaces. In a lattice based
bond-counting model, one can de�ne an unreconstructed surfa ce energy ḡ(n) as the
number density of broken bonds formed by cutting along a perf ectly �at plane or line.
In a DFT calculation, one can de�ne a similar quantity where, a fter the cut is made, the
surface is allowed to relax by strict energy descent to a local minimum. This is often a
meta-stable con�guration. Alternatively, one can de�ne a rec onstructed surface energy
g̃(n) by allowing the atoms to recon�gure after the cleaving surfac e/edge is introduced,
so that a global minimum is obtained. For the bond-counting m odels, one would do
this subject to the lattice constraint, whereas the DFT calculations would be constrained
by periodic boundary conditions. While the non-reconstruc ted surface energies de�ned
using metastable states may play no role in the equilibrium b ehavior of the system, the
KMC simulations presented below suggest they are important fo r the dynamics of some
non-equilibrium processes. We �nd that the non-reconstruct ed surface energy of non-
Bravais crystals is both multivalued and discontinuous. Th is is due to the fact that some
orientations give rise to a translation invariant pattern o f broken bonds, while others do
not.

After deriving the surface energies, as de�ned above, for the triangular, cubic and
hexagonal lattices, we will present a few DFT calculations t hat support our conclusions
before moving on to exploring step-�ow dynamics during the e pitaxial growth of many
layers of each crystal structure. The KMC simulations reveal t hat something close to the
equilibrium/reconstructed behavior is rapidly achieved i n many scenarios. For example,
if we consider the surface energy of uniformly propagating s teps at various crystal orien-
tations, we �nd near-equilibrium behavior even for large dep osition rates. To get at the
more subtle behavior of the non-Bravais, hexagonal system, we turn to examining the
meandering, or Bales-Zangwill [5], instability, which str ongly couples the morphology
of the �lm to the surface energy. This instability occurs in sy stems with a large step-
edge, or Ehrlich-Schwoebel [6, 7], barrier that inhibits th e interlayer motion of diffusing
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adatoms. As a result, outwardly perturbed portions of a step that have better access to
the supply of atoms coming from their lower side tend to grow, or form meanders. This
effect is stabilized by a large edge energy, which favors �at ter step-edges. As a result, the
most unstable orientations are those with the lowest edge energy. For the Bravais lattices,
there is no distinction between the equilibrium/reconstru cted and the non-reconstructed
surface energy, as all orientations have a translation invariant broken bond density and
there is no reconstruction of a truncated surface/edge for t he nearest neighbor models.
In contrast, for the hexagonal case, it is the non-reconstructed energy of a straight step
that correctly predicts which orientation is most unstable .

2 The edge energies

We start by examining the nearest-neighbor bond-counting m odels for three lattices: a
simple-cubic lattice, and analogous stacked, triangular and hexagonal prisms. The �rst
two of these are Bravais lattices, which have points f x2 Rdg that are integer combinations
of d independent primitive vectors f eigd

i= 1, where d is the number of dimensions:

x=
d

å
i= 1

niei . (2.1)

For the simple cubic lattice, one can scale lengths so that the primitive vectors are just the
Cartesian unit vectors, î , ĵ and k̂ .

A non-Bravais lattice, often referred to as a “lattice plus a basis” [8] or an n-lattice
with n> 1 [9], can be represented by a �xed arrangement of n lattice points for each point
in an underlying Bravais lattice:

f x+ y ign
i= 1. (2.2)

The simplest example is the hexagonal lattice, which models the idealized graphene
structure. In this case, the underlying Bravais lattice is t he triangular lattice. There are
two hexagonal lattice points associated with each point in t he triangular lattice, which

one can take to be y1 = 0 and y2 = 1
2 i +

p
3

6 j . We will also consider the three dimen-
sional hexagonal prism formed by stacking layers of the hexa gonal lattice. This can be
loosely thought of as a model of graphite, which is formed by a lternating, offset layers of
graphene. Effectively, we would be ignoring the interlayer bonds responsible for the off-
set. These are the result of relatively weak van der Waals forces, as opposed to the much
stronger covalent bonds that form the intralayer bonds. Our primary aim, however, is
not to model a speci�c material, but to make the most straightf orward generalization of
the basic cube-on-cube model.

In a pairwise bond-counting model, an energy is de�ned for a gi ven lattice con�gu-

ration by de�ning sets of bond orientations V = ff v ij g
Ji
j= 1g

Np

i= 1 and corresponding bond
energieseij for each of the Np particles in the system [10]. These sets are often restricted
to neighboring pairs of atoms, but, in principle, could incl ude all combinations of atoms.
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For a crystal with a Bravais lattice structure, the same set of bonds, f v jg
J
j= 1, applies to each

particle in the crystal. In this case, one can show that all or ientations yield a translation
invariant surface energy and, for the nearest-neighbor mod el, there is no reconstruction.
The surface/edge energy of bond-counting models on Bravais lattices is given by

ḡ(n̂)=
1
2

J

å
j= 1

ej
jn̂ �v j j
jdet A j

, (2.3)

where n̂ is the normal to the surface/edge and A is a matrix with the lattice primitive
vectors as columns [11].

The idealized graphene structure is one of the simplest examples of a non-Bravais lat-
tice. For a nearest-neighbor hexagonal model, the particles have one of two distinct sets of
bonds, ff vAj g3

j= 1,f vBjg3
j= 1g. Gan and Srolovitz were the �rst to address the issue of edge

energy for individual graphene �akes [12]. They use DFT calc ulations for a collection
of graphene ribbons at seven different orientations to inte rpolate an edge energy func-
tion, and consider unreconstructed graphene with both non- terminated and hydrogen
terminated bonds, as well as a model for reconstructed graph ene. Liu et al. [13] revisit
the problem and �rst consider an arbitrarily oriented graphe ne edge that can be decom-
posed into a number of “zigzag” and “armchair” components, s o that the edge energy
can be represented using two energies of these primary con�gu rations along with zigzag
and armchair densities that can be computed from simple geom etric considerations:

g̃(c )=
4

p
3

eA sin(c )+ 2eZ sin(p /6 � c ), (2.4)

where eA and eZ are the energies of an atom in an armchair or zigzag component re-
spectively and c is the edge angle. This assumption is equivalent to assuming edges of
the graphene �ake reconstruct, so that they do not contain si ngly-bonded carbon-atoms.
This same assumption appears to have been tacitly made in [12], as a perfectly linear edge
with the slope indicated in their Fig. 2b would have an additi onal singly-bonded atom at
the kinks along the edge. This assumption is appropriate for a system near equilibrium,
as the singly bonded atoms will quickly restructure to form d ouble bonds. While it is
not surprising that equilibrium shapes are dominated by fac ets without these dangling
atoms, it seems clear they would appear in non equilibrium st ructures and could affect
the dynamics of relaxation and growth processes. Indeed, Ar tyukhov et al. [14] go on
to consider growth mechanisms involving singly-bonded car bon atoms arriving at and
diffusing along steps similar to what occurs in the traditio nal Burton-Cabrera-Frank [15]
theory of step-�ow on surfaces, and singly-bonded atoms at g raphene edges have been
observed in experiments [19]. In view of this, we examine a mo re complete picture of sur-
face/edge energy as a function of perfectly planar/linear f acets at arbitrary orientations
and positions.

Below, we examine these effects for an isolated hexagonal lattice using nearest-
neighbor, bond-counting arguments, neglecting reconstru ctions and other off-lattice ef-
fects. The idealized model allows us to gain a level of mathem atical clarity, but we expect
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Figure 1: A hexagonal/graphene lattice cut by two lines in the zigzag orientation (near the top of the �gure)
and two more in the armchair orientation (near the bottom of the �gure). In the case of the zigzag orientations,
the broken bond density can be altered by a parallel translation of the edge, while the broken bond density is
translation invariant for the armchair orientation.

similar conclusions to apply to real materials and �rst-prin ciples calculations, including
graphene �lms grown on substrates. To make this point clear we have also included a
few results of DFT calculations.

For the graphene structure, we will see that including singl y bonded atoms leads to
a discontinuous, multi-valued edge energy. These singular ities occur for a discrete set of
orientations that are commensurate with the crystal struct ure. In the case of graphene,
this includes the so-called zigzag orientation, which domi nates the equilibrium shape of
isolated crystals in the nearest neighbor model.

The mechanism that is responsible for the discontinuities i n the surface energy is il-
lustrated in Fig. 1 using a nearest-neighbor bonded crystal with the hexagonal/graphene
structure. Most facets behave like the armchair orientation shown at the bottom of Fig. 1,
where the broken bond density, which represents the nonreco nstructed edge energy in
this simple model, is translation invariant. This contrast s with a countable, discrete set
of orientations that behave like the zigzag orientation sho wn at the top of Fig. 1, where
the broken bond density alternates between two values as the line cutting the crystal is
translated in the normal direction.

In general, edge orientations fall into one of two categorie s: commensurateorientations
result in a periodic pattern of broken bonds, while non-commensurateorientations result
in an aperiodic pattern of broken bonds. An edge with a commen surate orientation can
be translated so that it passes through multiple sites, whil e an edge with an incommen-
surate orientation can pass through at most one site. The commensurate edges give rise
to two sub-cases we refer to as congruentand incongruent. While the incommensurate
and congruent orientations have translation invariant edg e energies, the edge energy for
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a) b)

Figure 2: A polar plot of broken-bond density/edge energy for the hexagonal/graphene crystal as a function of
edge orientation. The entire plot is shown in (a) while (b) contains only the wedge ranging between armchair and
zigzag orientations. Most values lie on the black curve (2.5), while the discrete set of incongruent orientations
gives rise to discontinuities with two edge energy values for each orientation: the minimum values are shown
in blue and the maximum values are gold. The red curve (2.6) interpolates between the zigzag and armchair
orientation by neglecting dangling bonds.

the incongruent orientations is multi-valued. An edge with a congruent orientation can
be translated so that it passes through either no sites or sites with both A-oriented and
B-oriented bonds, alternating between the two, while an edg e with an incongruent ori-
entation can only pass through no sites or sites with the same bond orientations.

These results are summarized in Fig. 2. The black curve, described analytically by

ḡ(c )=
2

3
p

3

2

å
n= 0

�
�
�cos

�
c � p /6 +

n
3

p
� �

�
� , (2.5)

is the edge energy that applies to the uncountably in�nite num ber of incommensurate
and the countably in�nite set of congruent edges. This edge en ergy is exactly 1/3 what
one would �nd for a nearest neighbor model based on the related Bravais lattice with
an additional lattice point in the center of each hexagon. Th is curve is discontinuous
at the incongruent orientations, where one �nds two possible values of the edge energy
depending on the placement of the facet in the normal directi on. It can be shown that
the average of these two values again lies on the black curve (2.5). Finally, the red curve,
given by

g̃(c )=
1
3

2

å
n= 0

�
�
�cos

�
c +

n
3

p
� �

�
� , (2.6)

is the edge energy (2.4) derived in Liu et al. [13] with values eA = 2
3 and eZ = 1p

3
by

assuming edges that consist of only armchair and zigzag comp onents. This curve is a
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Figure 3: The hexagonal lattice with a single nearest-neighbor bond v and its corresponding set of bond-lines.
The blue reference linêy=

p
3x is used to de�ne the sequencedn referred to in the text.

lower bound on the defect edge energy, and is formed by contin uously interpolating
between the lower of the two possible values one can obtain wi th a zigzag orientation and
the single value for the armchair orientation. Note that if t his simple, interpolated edge
energy function was used to evolve a non-equilibrium shape, one would not expect any
qualitative difference in the dynamics compared to that for a material with a triangular
lattice structure, i.e. both edge energies are a six-petaled �ower.

To get these results, we follow arguments that generalize th ose of Mackenzie et al.
[10], i.e. we compute a contribution to the edge energy for ea ch bond orientation v and
sum the result over all bonds V. To this end, consider the set of all bond-linesparallel to v
that pass through lattice sites. Note that the bonds only cov er 1

3 of each bond-line, with
a repeating pattern of one bond followed by two bond-less seg ments (see Fig. 3). Thus,
the bonds and bond-line structure are periodic in the vertic al direction with period 3 a,
where a is the bond length. We will make use of a Cartesian coordinate system where the
y-axis is aligned with the bond and the origin is placed at the lower end of an arbitrary
bond. It is also convenient to introduce a reference line ŷ=

p
3x and measure distance in

the direction of v relative to this line, D= y� ŷ.
Next, we consider an arbitrary edge y = sx+ b with slope s and intercept b. Between

any two adjacent bond-lines, this line rises a distance r=
p

3
2 asand intersects thenth bond-

line, given by x = n
p

3
2 a, at yn = rn+ b. Relative to the reference line de�ned above, this

produces the sequenceDn = yn � ŷn = ( r � 3a
2 )n+ b. We will need to consider y-values

mapped to the interval [0,3a] via congruence modulo 3a. It will therefore be convenient
to scale distance so thata= 1

3 and this congruence operation corresponds to taking the
fractional part of y-values. After scaling, half of the bond s are congruent to the interval
[0,1/3 ] while the other half are congruent to the interval [1/2,5/6 ]. Relative to the refer-
ence line, the scaled bond locations will have fractional pa rts in the interval [0,1/3 ]. In
order to determine the intersections with bonds, it is suf�ci ent to consider the fractional
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part of the sequencedn = Frac(Dn).
An edge orientation is commensurate with respect to bond v if r 2 Q and incommensu-

rateotherwise. For a given edge orientation, one can show that al l of the bonds v 2 V fall
into the same category. For incommensurate orientations, the edge energy is de�ned as
the mean number of bonds cut across the entire edge. A natural hypothesis for this mean
is g(n̂) = 1

3G(n̂), where Gis the edge energy for the related triangular lattice with ad di-
tional nodes in the center of each hexagon, as the graphene lattice is formed by removing
2
3 of these bonds. The triangular lattice is Bravais, so that Gcan be computed from (1).

To see that this is correct, we �rst consider the case b= 0, producing the sequence
dn= Frac[(r � 1

2)n]. Sincer is irrational, so is r � 1
2 and Weyl's equidistribution theorem [20]

then indicates that the sequence is uniformly distributed. This implies that one third of
the bond-line intersections correspond to broken bonds. Fo r b6= 0, Frac[(r � 1

2)n+ b] =
Frac[(r � 3a

2 )n+ Frac(b)], from which we can see that broken bond density in the incom-
mensurate case is translation invariant, as the portion of t he uniform distribution of dn

that is shifted out of the interval [0,1] on the right simply reemerges on the left. The same
result holds for each v 2 V and therefore

g(n̂)=
1
3

G(n̂)=
2

3
p

3

3

å
i= 1

jn̂ �v i j, (2.7)

where we have expressed the result using twice the contribut ion from the three distinct
A-bond orientations vA1 = (

p
3/2,1/2 ), vA2 = ( �

p
3/2,1/2 ), vA3 = ( 0,1), as the B-bonds

give rise to the same contributions.
The sequencedn is periodic whenever r is rational, repeating every N bond-lines,

where N is the smallest even integer such that Nr 2 Z . When this integer N is divisible by
three, we refer to the orientation as congruent, as one can show that congruence applies to
all bonds v2 V or none at all. Congruent orientations have the same translation invariant
broken bond density as the incommensurate orientations. To see this, note that the N
bond-line intersections are evenly spaced over one period of length p= rN and that the
corresponding values of dn, though re-ordered, are uniformly spaced over the interval
[0,1], with one third of these corresponding to a bond crossing.

The remaining commensurate cases have a repeating sequencedn with N � 1 or 2
mod3. In these cases, which we refer to asincongruent, there is no way to have exactly
one third of the dn falling into the �rst third of (0,1]. Instead, the number of intersections
with bonds per period will round up or down to the nearest inte ger that is divisible by 3.
If N � 1 mod3, the lesser of the two edge energies is given by

g �
v (n̂)=

n � 1
3p

=
pGv(n̂) � 1

3p
=

1
3

Gv(n̂) �
1

3p
,

and the greater of the two edge energies is

g+
v (n̂)=

1
3

Gv(n̂)+
2

3p
.
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Which of the two applies depends on the intercept b of the dividing line, and the edge
energy fails to be translation invariant for these orientat ions. The transition between the
two values takes place whenever the edge crosses a lattice site. If N � 1 mod3, this
occurs whenever Frac(b)= k/ N or k/ N + 1/ (3N) with k2 Z . And if N � 2 mod3, when
Frac(b)= k/ N or k/ N + 2/ (3N). We will refer to the set of edges with b between any two
of these transition values as a band. Note that all edges within a single band share the
same energy value. There are two possible values for any edgeorientation, with bands
alternating between the two and one of the bands being twice a s wide as the other.

If N � 2 mod3, the two edge energy values are

g �
v (n̂)=

1
3

Gv(n̂) �
2

3p
, g+

v (n̂)=
1
3

Gv(n̂)+
1

3p
.

The total edge energy for an edge within a thin band is given by

g1(n̂)= å
N � 1 mod 3

g+
v i

(n̂)+ å
N � 2 mod 3

g �
v i

(n̂)

=
1
3

G(n̂)+
2

3p
(m1� m2), (2.8)

where mj is the number of bonds in f v ig for which N � j mod 3. Similarly, the edge
energy for a edge within a thick band is

g2(n̂)=
1
3

G(n̂)+
1

3p
(m2� m1). (2.9)

Note that

lim
p! ¥

g1= lim
p! ¥

g1=
1
3

G,

so that in the limit where the period of the bond intersection s becomes large, both
of the values for the incongruent orientations converge to t he value for incommensu-
rate/congruent orientations.

Let g � (n̂)= min f g1(n̂),g2(n̂)g and g+ (n̂)= maxf g1(n̂),g2(n̂)g. These two functions
are then the minimum and maximum energy values for the orient ation n̂ shown in Fig. 2.
In particular, the zigzag orientations minimize g � over all incongruent orientations. If we
perform the classical Wulff construction using g � as the edge energy, we get a hexagon
with zigzag orientation edges.

3 Density functional theory results

We have also done DFT calculations for graphene edges that con�rm that multi-valued
edge energies for certain orientations are not an artifact of the simple bond-counting
model.
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All calculations were performed with the FHI-AIMS package [1 6]. This is an all-
electron full-potential DFT code that uses numeric atom-ce ntered orbitals as its basis set.
The exchange-correlation energy was approximated by the GGA-PBE functional [17]. We
used light basis set settings as implemented in FHI-AIMS, and included van der Waals
interactions as implemented by the Tkatchenko-Schef�er [1 8] method.

We used a supercell approach where graphene ribbons were bounded by two iden-
tical edges on the left and on the right and periodic boundary conditions were enforced
at the top and bottom. We carefully tested the width of the gra phene ribbons and for all
results reported below we used a width of � 15 	A. The edge energy was calculated as the
difference of a supercell calculation with two edges (as described above) minus the en-
ergy of the corresponding number of carbon atoms in a pristin e (in�nite) graphene sheet.
All atoms in the calculations were allowed to relax. We calcu lated a number of different
edge orientations as summarized in Table 1.

Table 1: Edge energy calculations from DFT calculations fora number of edge orientations from armchair to
zigzag.

Angle (deg) Type Energy
0.0 (AC) Congruent 1.031767446
4.715003954 Max 1.109965069

Min 1.091758775
6.586775554 Max 1.152994339

Min 1.116107374
10.89339465 Max 1.310235317

Min 1.16634251
13.89788625 Max 1.227909468

Min 1.196419461
16.10211375 Max 1.293860808

Min 1.222571091
19.10660535 Congruent 1.276464491
21.05172444 Max 1.293664015

Min 1.274587888
22.41091053 Max 1.30050333

Min 1.285688572
23.41322445 Congruent 1.30536139
30.0 (ZZ) Max 1.923011558

Min 1.351281052

Note that in these calculations, the minimum energy occurs f or an armchair edge,
whereas the nearest neighbor model described in the previou s section has the minimum
occurring for the lower of the two zigzag edge energies. To ge t quantitative agreement
with the DFT results we would have to include longer range int eractions. Nevertheless,
we include these results to emphasize the qualitative featu re that there are two distinct
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energy values for incongruent edges as the edge is translated. We also note that the DFT
results are in good agreement with those of Liu et al. [13].

4 Kinetic Monte Carlo

KMC replaces Molecular Dynamics with a Markov Chain, where the st ates are different
con�gurations for the basins of attraction and the transitio n rate models are based on
the harmonic approximation to transition state theory [21, 22]. Ideally, the basins are de-
�ned by particle locations in con�gurations that locally mini mize some potential energy

function F (f r i g
Np

i= 1) for the Np-particle con�guration space. However, for crystalline ma-
terials, these basins adopt an approximate lattice structure, so many models assume an
idealized, perfect lattice. The most commonly performed si mulations assume a simple
cubic lattice, with states represented by occupation array s on this lattice s= f sijk 2f 0,1gg.
One then associates an energyE(s) with each con�guration. For example, the simplest
models associate a “bond” energy eb with each pair of occupied nearest neighbors. There
is a close analogy between the model just described and the well studied Ising model for
a ferromagnet [23, 24]. Indeed, one can directly map the states and energies from one
system to the other. There exists a tremendous variety of generalized models, allowing
for longer range interactions, multiple species and many-b ody interactions.

Transitions are usually restricted to single-atom moves to neighboring unoccupied
sites, with rates that depend exponentially on an atom's bin ding energy:

R= Ke� neb/ kBT, (4.1)

where n is the number of occupied nearest neighbor sites, eb is the bond energy just
described, kB is Boltzmann's constant, T is the temperature and K is a prefactor that
sets the overall timescale of the dynamics. In a solid-on-solid model, one assumes no
vacancies or overhangs, so that every surface atom sits on one in the previous layer. In
this case, the substrate contribution to the hopping rate can be absorbed into the prefactor
K. Within this same model, a simple way to incorporate a step ed ge barrier is to reject a
fraction n of interlayer moves. This must be done in both directions to m aintain detailed
balance. These rates then allow the system to maintain a canonical equilibrium state with
the Boltzmann distribution where the probability of being i n state s is

P(s)=
1
Z

e� E(s) / kBT, (4.2)

where Z = å sexp(� E(s)/ kbT) is the canonical partition function, E(s) is the energy asso-
ciated with state s, kB is Boltzmann's constant, and T is the temperature. These transitions
form a continuous-time Markov process governed by the master equation

d
dt

P(sj )= å
i

�
R(si ! sj )P(si ) � R(sj ! si )P(sj )

�
, (4.3)
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which has the steady state (4.2) as the result of adetailed balancerelationship where the
�ux between any two states matches, i.e.

R(s1 ! s2)P(s1)= R(s2 ! s1)P(s2). (4.4)

The goal of KMC simulation is to produce a sequence of events that sample the dy-
namics as quickly as possible. To do this, one must implement the following steps:

KMC Algorithm

1. Calculate the sum PJ= å J
j= 1R(si ! sj ), retaining the partial sums Pj .

2. Choose a random number r 2 [0,PJ),

3. Search the list of partial sums until Pj � 1 � r < Pj .

4. Select and execute eventj.

A fast way of implementing this algorithm is to use an inverte d list data structure [25].

5 KMC results

Simulations of the meandering or Bales-Zangwill instabili ty using the cube-on-cube
model for epitaxial growth are well established [26]. Norma lly, these simulations as-
sume a stepped surface with steps oriented so that perfectly �at steps are kink-free. This
corresponds to interfaces with orientations at a local mini mum/cusp in the polar plot
of the surface energy as a function of orientation (see Fig. 4). In such simulations, one
uses a periodic boundary condition in the direction paralle l to the steps and a helical type
boundary condition orthogonal to the steps, so that the top a nd bottom step are smoothly
joined. This enforces a topological constraint where the net number of steps down per
period is �xed. To consider a broader class of miscut surfaces , we modify the periodic
boundary condition so that the net number of oriented kinks a long each step can be con-
strained in a similar way. As one tilts the mean orientation o f the steps away from the
equilibrium angle, introducing kinks along the step, one ra ises the surface energy. Per-
turbations to such interfaces are therefore higher energy and more dif�cult to maintain,
with the result that the tilted interfaces are less prone to t he meandering instability.

We illustrate these basic results in Fig. 5 with two surface i mages — an initial one and
one after 80 monolayers (ML) of growth — for each of three tilt a ngles. The �rst pair is for
growth at the equilibrium orientation and is subject to the g reatest degree of instability,
while the third one is maximally tilted away from the preferr ed angle for equilibrium
structures and is almost completely stable. These results are further re�ected in Fig. 6
where we plot the relative defect energy (broken bond densit y),

ḡ � ḡ0=
å Z � 1

i= 1 (Z � i)Ni

( ideal facet length)(number of steps)
� ḡ0, (5.1)
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Figure 4: Polar plots of the edge energy functions counting nearest-neighbor bonds for the simple square lattice
(in blue) and the triangular lattice (in red). Since both lattices are Bravais, edge energy values are translation
invariant, leading to single valued functions.

Figure 5: Snapshots of surface morphology in simple-cubic lattice simulations. Each row shows snapshots at 0
ML and a 80 ML. The deposition rateF= 10� 3, the bond strengtheb= 11 and the rejection raten= 0.9. The
top pair corresponds to the case of perfectly at steps with periodic and helical boundary conditions imposed.
The next two pairs correspond to cases where steps are oriented at 26.6 and 45 degrees. Plots in the second
columns correspond to data points in Fig. 6.
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Figure 6: Evolution of the relative defect energy in simple-cubic lattice simulations. The top curve corresponds
to a no-kink condition, where the angle of tilt is zero. The bottom curve corresponds to the case with the most
kinks, where the angle of tilt is 45 degrees. As we increase the angle of tilt, we observe a stabilizing e�ect.

Figure 7: Evolution of the relative defect energy in triangular lattice simulations. The top curve corresponds to
a no-kink condition, where the angle of tilt is zero. The bottom curve corresponds to the case with the most
kinks, where the angle of tilt is 30 degrees. As we increase the angle of tilt, we observe a stabilizing e�ect.

where ḡ0 is the non-reconstructed surface energy of the mean edge orientation, Z is the
lattice coordination and Ni is the total number of atoms with i bonds, as a function of
monolayers grown for the various orientations. Thus, the de fect energy also serves as a
good measure of the degree to which the interface has formed meanders. We repeat this
for the triangular lattice in Fig. 7, where we again see that i t is the orientation favored for
equilibrium con�gurations that is most susceptible to the me andering instability.

Our �nal result is to repeat the calculations for the hexagona l lattice. The equilibrium
shape for this lattice features hexagonal structures with z igzag facets, consistent with
the Wulff shape shown in Fig. 2. However, Figs. 8 and 9 show tha t it is the armchair
orientation that is most prone to the meandering instabilit y. This is consistent with the
proposition that the perturbations to the interface have a s urface energy governed by the
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Figure 8: Contour plots of surface height after 100 ML of growth on a 900 by 300 section of hexagonal lattice
with 180 steps. The deposition rateF= 10� 7, the bond strengtheb= 10 and the rejection raten= .96. The top
�gure had the steps constrained to the armchair orientation, while the bottom �gure was constrained to the
zigzag orientation, with the third image at an intermediateorientation. These correspond to the data points
shown in Fig. 9.

Figure 9: Surface energy as a function of time for the hexagonal version of the Bales-Zangwill instability. The
top curve corresponds to the armchair orientation, indicating that this is the most unstable orientation, while
zigzag corresponds to the lowest curve, indicating that this is the most stable orientation.

non-reconstructed edge energy (2.5) in Fig. 2.



T. Krumwiede et al. / Commun. Comput. Phys., 27 (2020), pp. 70-86 85

6 Conclusion

The results in the previous section are consistent with the n on-reconstructed defect en-
ergy being the dominant factor governing the evolution of di sturbances to the moving
fronts in the presence of a step-edge barrier. There may, however, be other factors that
explain or contribute to the explanation for the observed be havior. For example, in ad-
dition to the anisotropic surface energy, it may be the case that the asymmetry in attach-
ment kinetics is in�uenced by the anisotropy. If so, it seems likely that this effect too
could be traced back to the singular behavior of the broken bo nd density as a function of
orientation.

Further work examining the impact of these observations on t he non-reconstructed
evolution of crystals would be of interest. Simulations usi ng molecular dynamics, KMC
and/or phase-�eld crystal would seem well suited to this purp ose.
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