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Abstract. In this paper we introduce a new mathematical model for the ac tive con-
traction of cardiac muscle, featuring different thermo-el ectric and nonlinear conduc-
tivity properties. The passive hyperelastic response of th e tissue is described by an
orthotropic exponential model, whereas the ionic activity dictates active contraction in-
corporated through the concept of orthotropic active strai n. We use a fully incompress-
ible formulation, and the generated strain modi es directl y the conductivity mecha-
nisms in the medium through the pull-back transformation. W e also investigate the
in uence of thermo-electric effects in the onset of multiph ysics emergent spatiotem-
poral dynamics, using nonlinear diffusion. It turns out tha t these ingredients have
a key role in reproducing pathological chaotic dynamics suc h as ventricular brilla-
tion during in ammatory events, for instance. The speci cs tructure of the governing
equations suggests to cast the problem in mixed-primal form and we write it in terms
of Kirchhoff stress, displacements, solid pressure, dimensionless electric potential, ac-
tivation generation, and ionic variables. We also advance a new mixed-primal nite
element method for its numerical approximation, and we use i t to explore the proper-
ties of the model and to assess the importance of coupling terms, by means of a few
computational experiments in 3D.
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1 Introduction

Temperature variations may have a direct impact on many of th e fundamental mech-
anisms in the cardiac function [74]. Substantial differenc es have been reported in the
conduction velocity and spiral drift of chaotic electric po tential propagation in a num-
ber of modelling and computationally-oriented studies [25 ], and several experimental
tests con rm that this is the case not only for cardiac tissue, but for other excitable sys-
tems [28,40]. The phenomenon is however not restricted to electrochemical interactions,
but it also might affect mechanical properties [33, 45, 68]. Indeed, cardiac muscle is quite
sensitive to mechanical stimulation and deformation patte rns can be very susceptive to
external agents such as temperature. For instance, enhancd tissue heterogeneities can
be observed when the medium is exposed to altered thermal states, and in turn these
can give rise to irregular mechano-chemical dynamics. A few examples that relate to
experimental observations from epicardial and endocardia | activity on canine right ven-
tricles at different temperatures, as well as tachycardia and other brillation mechanisms
occurring due to thermal unbalance, can be found in e.g. [25] . These scenarios can be re-
lated to extreme conditions encountered during heat stroke s and sports-induced fatigue
(easily reaching 41 C), and localisation of other thermal sources such as ablation devices;
but also to surgery or therapeutical procedures (in open-ch est surgery tissues might be
exposed to cold air in the operating theatre at 25 C), or due to extended periods of expo-
sure to even lower temperatures that can occur during shipwr ecks or avalanches. Itis not
striking that temperature effects might affect the behavio ur of normal electromechanical
heart activity. However the precise form that these mechani sms manifest themselves is
not at all obvious. This is, in part, a consequence of the nonlinear character of the thermo-
electro-mechanical coupling. For instance, one can show that localised thermal gradients
might destabilise the expected propagation of the electric wave, as well as change the
mechanical behaviour of anisotropic contraction. Our goal is to investigate the role of
the aforementioned effects in the development and sustainanbility of cardiac arrhythmias.
These complex emerging phenomena originate from multifact orial and multiphysical in-
teractions [57], and they are responsible for a large number of cases of pathological dys-
function and casualties. The model we propose here has potential therefore in the inves-
tigation of mechanisms provoking such complex dynamics, in particular those arising
during atrial and ventricular brillation.

Even if computational models for the electromechanics of th e heart are increasingly
complex and account for many multiphysics and multiscale ef fects (see e.g. [11, 58, 70]),
we are only aware of one recent study [10] that addresses similar questions to the ones
analysed here. However that study is restricted to one-dime nsional domains, it uses the
two-variable model from [51], and it assumes an active stres s approach for a simpli ed
neo-Hookean material in the absence of an explicit stretch state. Our phenomenologi-
cal framework also uses a minimal temperature-based two-va riable model, but in con-
trast, it additionally includes a nonlinear conductivity r epresenting a generalised diffu-
sion mechanism intrinsic to porous-medium electrophysiol ogy[36]. We postulate then an
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extended model that also accounts for active deformation of the tissue, where the speci c
form of the electromechanical coupling is dictated by an ada ptation of the orthotropic ac-
tive strain framework proposed in [62].

The remainder of the paper is laid out in the following manner . Section 2 discusses
a combination of phenomenological and physiological coupl ed models from thermo-
electric and thermo-mechanic dynamics being local (potentially sub-cellular in a phys-
iological model), tissue, and organ-scale levels. We introduce in Section 3 a new mixed-
primal nite element scheme for the solution of the set of gove rning equations (in par-
ticular using the Kirchhoff stress as additional unknown), w here we provide also some
details about its computational realisation. All of our num erical tests are collected in
Section 4, including conduction velocity assessment, and a few simulations regarding
normal and arrhythmic dynamics in simpli ed 3D domains. We th  en conclude in Sec-
tion 5 with a summary and a discussion on the limitations and e nvisaged extensions of
this study.

2 A new model for thermo-electric active strain

In this section we provide an abridged derivation of the set o f partial differential equa-
tions describing the multiscale coupling between electric , thermal, mechanical, and ionic
processes; which are, in principle, valid for general excit able and deformable media.

2.1 Muscle contraction via the active strain approach

Let W R2 denote a deformable body with piecewise smooth boundary W, regarded in
its reference con guration, and denoted by n, the outward unit normal vectoron {W. The
kinematical description of nite deformations regarded on a time interval t2 (O,t 4 ]is
made precise as follows. A material pointin Wis denoted by x, whereasx; x=u(t):W!
R will denote the displacement eld characterising its new pos ition x; within the body
W, in the current, deformed con guration. The tensor F:= 1+ r u is the gradient (ap-
plied with respect to the xed material coordinates) of the de formation map; its Jacobian
determinant, denoted by J= detF, measures the solid volume change during the deforma-
tion; and C= F'Fis the right Cauchy-Green deformation tensor on which all st rain mea-
sures will be based (here the superscript ()! denotes the transpose operator). The rst
isotropic invariant controlling deviatoric effects is 1,(C) = tr C, and for generic unitary
vectors f,Sp, the scalarsl, (C)= f, (Cf,), lgts(C)= f, (Csp) are direction-dependent
pseudo-invariants of C measuring bre-aligned stretch (see e.g. [67]). As usual, | denotes
the 3 3 identity matrix. In the remainder of the presentation we wi |l restrict all space
differential operators to the material coordinates.

Next we recall the active strain model for ventricular elect romechanics as introduced
in [52]. There, the contraction of the tissue results from activation mechanisms governed
by internal variables and incorporated into the nite elasti city context using a virtual
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multiplicative decomposition of the deformation gradient into a passive (purely elastic)
and an active part F= FgFa, de ned in general, triaxial form

Fa=1+0:fo(X) fo(X)+ gsso(X) So(X)+ gnno(x) no(x). (2.1)

The coef cients g, with i= f,s,n, are smooth scalar functions encoding the local consti-
tutive stretch in speci c directions, whose precise de nitio n will be postponed to Sec-
tion 2.3. The inelastic contribution to the deformation mod i es the size of the cardiac
bres, and then compatibility of the motion is restored throu gh an elastic deformation
accommodating the active strain distortion. The triplet (f,(x),s0(X),no(X)) represents
a coordinate system pointing in the local direction of cardi ac bres, transversal sheetlet
compound, and normal cross- bre direction ng(x)= fy(x) so(x).

Constitutive relations de ning the material properties and underlying microstructure
of the myocardial tissue will follow the orthotropic model p  roposed in [34], for which the
strain energy function and the rst Piola-Kirchhoff stresste nsor (after applying the active
strain decomposition) read respectively

Y (Fg)= B HE 9y s Prsllged? 1 4 3 8 pOF D2 g . P= ¥ pF ¢,
2b 2bs , 2b; T
i2f f,sg

(2.2)
where a,b, g, with i2f f,s,fsg are material parameters, p denotes the solid hydrostatic
pressure, and we have used the notation (x)+ := maxf x,0g. Switching off the anisotropic
contributions acting on sg and ng (but not the shear term) under compression ensures that
the associated terms in the strain energy function (in both t he pure passive and active-
strain formulations) are strongly elliptic [55] (these wil | be the terms appearing on the
second diagonal block of the weak formulation from Section 3 , the block corresponding

to displacements), however the overall problem will remain of a saddle-point structure.
The modi ed elastic invariants | F are functions of the coef cients g; and the invariant

and pseudo invariants as follows

gn(gn+2) + gn(gn*+2) 91(9¢+2) Lo+ gn(9nt2) gs(gst 2)
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Accordingly, the active strain and consequently the force a ssociated to the active part
of the total stress, will receive contributions acting dist inctively on each direction f(x),
so(X), No(X).

The balance of linear momentum together with the incompress ibility constraint are
written, when posed in the inertial reference frame and unde r pseudo-static mechanical
equilibrium, in the following way

r P=rogb in W (Oatnal]’ (2.3a)
rd ro=0 in W (O,t nal ], (2.3b)
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where rq,r are the reference and current medium density, and b is a vector of body loads.
Furthermore, the balance of angular momentum translates in to the condition of symme-
try of the Kirchhoff stress tensor P = PF, which is in turn encoded into the momentum
and constitutive relations (2.3a), (2.2), and (2.1).

Following the notation in [5], the contribution to stress th at does not include pressure
explicitly is denoted as G(u) := %Ft , and therefore we have the constitutive relation

P=G(u) pd. (2.4)

2.2 A modi ed Karma model for cardiac action potential

Let us denote by l¢x a spatio-temporal external electrical stimulus appliedto the medium.
On the undeformed con guration we proceed to write the follow ing monodomain equa-
tions describing the dimensionless transmembrane potenti al propagation and the dy-
namics of slow recovery currents according to a speci ¢ tempe rature T:

v f(v,n)

" PORrv= TE lea in W (Ot ] (2.5a)
%: ?i‘z%) in W (0.t na 1, (2.5b)

where the unknowns are the adimensional transmembrane pote ntial, v, and the recovery
variable, n. This reaction-diffusion system is endowed with the follow ing speci cations,
taking the membrane model proposed in [38], and adapting itt o include thermo-electric
effects following the development in [31]

f(v,n):= v+[v S (n)][1 tanh(v v?)]v—zz, (2.6a)

g(v,n):=R(MH(v vy) [TH (v vp)ln, (2.6b)

R(n):= %, S(n):=nM, (2.6¢)
0

W= payr (D= 1Qu(T). 2.60)

As in the original phenomenological model from [38], here H (x) stands for the Heaviside
step function, i.e. H(x)= 0for x 0and H(x)= 1 for x> 0. The (unit-less) transmem-
brane potential assumes values in[ 1,5], and the resting state of the dynamical system is
(v,n)=(0,0). The function R (n) acts as a nonlinear modulator of the time-frame between
the end of an action potential pulse and the beginning of the n ext one (diastolic interval),
as well as the duration of the subsequent action potential pu Ise. The dispersion map S(n)
is based on experimental restitution properties and it rela tes the instantaneous speed of
the action potential front-end at a given spatial point, wit h the time elapsed since the
back-end of a previous pulse that has passed through the same location. In turn, these
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functions are tuned by the parameters L,M, respectively. With the speci cation (2.6d)
we are extending the aforementioned models by including an A rrhenius exponential law
that modi es the dynamics of the gating variable through the f unction Qo= mT To/10,
This term characterises the action of temperature through t he mechanism of ionic feed-
back. In this expression, Ty represents the reference temperature, i.e. 37C, and the law
remains valid within a 10-degrees range. Furthermore, the s o-called Moore term de ning
the time constant t,(T) associated with the transmembrane voltage is assumed to follow
a linear variation with T.

The model from [38] has been designed speci cally for cardiac tissue and it has been
widely used in high-resolution 2D and 3D electrophysiologi cal studies that match vari-
ous types of experimental data [31]. However, owing to its si mplicity, limitations of this
model are well-known. They relate to lack of accuracy in repr oducing the correct time
and space morphology of the action potential signal, and in d escribing repolarisation
features such as APD restitution, as well as in providing the correct onset and devel-
opment of spiral/scroll waves during arrhythmic scenarios . In fact, a number of more
physiologically accurate cellular models are available fr om the literature [3, 22], but we
restrict to (2.6) as the complexity in our model resides more in the multi- eld coupling
framework and in its suitability for large scale electromec hanical simulations. Exten-
sions to the two-variable model in (2.5) that stay on the phen omenological realm include
the three and four-variable systems mentioned above and pro posed in [3, 23], and they
provide further experimental validation of the suitabilit y of simpli ed models for the
study of a wide class of physiological and pathological scen arios. More speci ¢ aspects
of possible model extensions will be discussed in Section 5. An additional generalisation
with respect to [38] is the self-diffusion due to voltage and the account for anisotropy
in the diffusion. Due to the Piola transformation (forcing a compliance of the diffusion
tensor using the deformation gradients), the conductivity tensorD( , ) in (2.5a) depends
nonlinearly on the deformation gradient F, whereas self-diffusion is here taken as the
potential-dependent diffusivity proposed in [31], but app ropriately modi ed to incorpo-
rate information about preferred directions of diffusivit y according to the microstructure
of the tissue. This model is motivated by diffusion in porous media [71], which has been
applied to cardiac tissue in [36], justi ed by the porous natu re of the medium [46] and by
the multiscale character of diffusion (intercalated discs and gap junctions at the cell level
and micro-tubuli at the subcelullar scale, [73]). More preci sely, we set

D(v,F)=[ Do/2 + Div+ Dov2]dC Y+ Do/2 F *f fF T, (2.7)

where f = Ff,, and where the values taken by the parameters D;, i = 0,1,2 (as well as
all remaining model constants) are displayed in Table 1, bel ow. Note that here the dif-

fusivity is mainly affected by the bre-to- bre connections, and the term JC ! appears
due to the change of con guration from spatial to reference co ordinates, and it is also
referred to as geometric feedback [8]. The constantsD1,D, encode the effect of linear and
quadratic self-diffusion, and they have special importanc e at the depolarisation plateau
phase, since they modify the speed and action potential duration of the propagating



R. Ruiz-Baier et al. / Commun. Comput. Phys., 27(2020), pp. 87-115 93

Table 1: Coe cients for the electromechanical mode(2.3), (2.5), (2.9), with values taken from [7,34,62].

Thermo-electric model parameters
vo=3 [-] vp=1 [-] v =1.5415 [ nm= 1.5 -]
t9=25 [ms] b= 0.008 [-] t9=250  [ms] Do= 0.85 [cnP/s]
D;=0.09 [cnmf/s] D,=0.01 [cnf/s] L=0.9 [-] M=9 -]
To=37 [ C] = 3.9 ]
Mechano-chemical model parameters

a=0.333 [kPa] a;=18.535 [kPa] as=2.564 [kPa] a;s= 0.417 [-]
b=9.242 -] b = 15.972 ] bs= 10.446  [] b= 11.602 ]

Ko=5 [-] Ki=3.5 ] K,=0.035 [F] h2f0.0509y [kPa]
t9=05 [ms] go=10.9 [-]

waves. We also note that even for resting transmembrane potential, the conductivity
tensor remains positive de nite.

2.3 Activation mechanisms

A constitutive equation for the activation functions g; in terms of the microscopic cell
shortening x is adapted from [62] as follows

91(X)= goX, gs(X)=(1+gox) *(1+Kogox) ' 1, gn(X)= Kogox, (2.8)

where gg is a positive constant that can control the intensity of the a ctivation, and where
the speci c relation between the myocyte shortening x and the dynamics of slow ionic
gquantities (in the context of our phenomenological model, o nly n) is made precise using
the following law
dx _ " (x,n)
dt t(T)

where, in analogy to (2.6), the dynamics of the myocyte short ening are here additionally
modulated by a temperature-dependent constant

in W (0,t a1, (2.9)

“(x,n):= KA1+ n) 1 oKon,  ty(T):= t2Quo(T). (2.10)

Here Q1o(T)= MT T/10  The dynamics of these quantities can be observed in the top
panel of Fig. 1, for the case of base temperature and applying two pacing cycles. Ex-
amples of the dynamics of the thermo-electric quantities on the second cycle, and for
varying temperatures are collected in the bottom plots of Fi g. 1. The structure of (2.9)
suggests that thermo-electric effects could be similarly i ncorporated in other models for

cellular activation (depending on cross-bridge transitio ns [43], on calcium - stretch rate
couplings in a viscoelastic setting [21], or using phenomen ological descriptions), that is
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Figure 1: Top: kinetics of adimensional voltage, gating viable (left axis) and cell shortening with active strain
function (right axis) plotted against time. Bottom: Variations of the dynamics of the coupled thermoelectric

model according to temperature. The variations of the actév strain and myocyte shortening coincide and
therefore the latter are not shown.

through a phenomenological rescaling with t,. However, to perform a deeper and clar-
ifying study on the precise modi cation of ionic activity int  he presence of temperature
gradients would be a much more dif cult task.

2.4 Initial and boundary conditions

Egs. (2.3a)-(2.3b) will be supplemented either with mixed n ormal displacement-traction

boundary conditions
un=0 on W, (Otna], and Pn=pyJF 'n on Wy (Ot pa ], (2.11)

(where Wp, Wy conform a disjoint partition of the boundary, the traction w ritten in

terms of the rst Piola-Kirchhoff stresstensoris t=Pn, and the term py denotes a possibly
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time-dependent prescribed boundary pressure), or alterna tively with Robin conditions
on the whole boundary

Pn+hJF 'u=0 on W (O,tna ], (2.12)

which account for stiff springs connecting the cardiac medi um with the surrounding soft
tissue and organs (whose stiffness is encoded in the scalarh). On the other hand, for
the nonlinear diffusion equation (2.5a) we prescribe zero- ux boundary conditions rep-
resenting insulated tissue

D(v,F)rvn=0 on W (Otna ] (2.13)

Finally, the coupled set of equations is closed after de ning adequate initial data for the
dimensionless transmembrane potential and for the interna | variables x,n:

v(x,0)= vp(x), n(x,0)= np(x), x(x,0)= xo(x) on WT O0g. (2.14)

For the electrical and activation model we chose resting val ues for the dimensionless
transmembrane potential, the slow recovery, and the myocyt e shortening vo= ng= Xo= 0,
where initiation of wave propagation will be induced with S1  -S2-type protocols.

3 Galerkin nite element method

3.1 Mixed-primal formulation in weak form

The speci ¢ structure of the governing equations (written in  terms of the Kirchhoff stress,
displacements, solid pressure, adimensional electric potential, activation generation, and
ionic variables) suggests to cast the problem in mixed-prim al form, that is, setting the ac-
tive mechanical problem using a three- eld formulation, and a primal form for the equa-
tions driving the electrophysiology. Further details on si milar formulations for nearly
incompressible hyperelasticity problems can be found in [5 , 64]. Restricting to the case of
Robin boundary data for the mechanical problem, we proceed t o test (2.3a), (2.3b), (2.4)
against adequate functions, and doing so also for (2.5) yields the problem: for t> 0, nd

(P,u,p)2LE (W) HY(W) L*W) and (v,n,x)2H*(W)?3such that
VA

[P G (u)+ pd]:it=0 8t 2L 5,,(W), (3.1a)
v z z

P:rvE'+ hF'uv= rgbv 8v2H(W), (3.1b)
ZW w W

[J 1]g=0 8qg2 L3(W), (3.1c)
ZWﬂv z z f(v,n)

—w+ D(,Prvrw= L+l w 8w2HY(W), (3.1d)
ZW it w , w ty(T)

LLLPAR LR /L) P CELL 8(m,j )2 HY(W)2. (3.1¢)

w Tt It w tn(T) tx(T)
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3.2 Galerkin discretisation

The spatial discretisation follows a mixed-primal Galerki n approach based on the formu-
lation (3.1). Our mechanical solver constitutes an extension of the formulation in [5] to the
case of fully incompressible orthotropic materials, where as a somewhat similar method
(but using a stabilised form and dedicated to simplicial mes hes) has been recently em-
ployed in [56] for cardiac viscoelasticity. This family of d iscretisations has the advantage
that the incompressibility constraint is enforced in a robu st manner.

Let us denote by T, a regular partition of W into hexahedra K of maximum diam-
eter hx, and de ne the meshsize as h:= maxfhx :K2T,g. The specic nite element
method we chose here is based on solving the discrete weak form of the hyperelasticity
equations using, for the lowest-order case, piecewise congant functions to approximate
each entry of the symmetric Kirchhoff stress tensor, piecewi se linear approximation of
displacements, and piecewise constant approximation of solid pressure. In turn, all un-
knowns in the thermo-electrical model are discretised with piecewise linear and continu-
ous nite elements. More generally, we can use arbitrary-orde r nite dimensional spaces

Hy L4n(W),Vyp HY(W),W, HYW),Qn L?%W) de ned as follows:

Hpi=ftn2L2(W):t) 2Qu(K), 8i,j2f1, ,dg,8K2Thg,
V= fvp2 HY (W) :vhjk 2 Que 1(K)3,8K 2T,

Qn:= foh 2 LA(W) :ahjk 2 Qk(K),8K 2 Thg,

W= fwp 2 HY(W) :Whjk 2 Que 1(K), 8K 2 Thg,

(3.2)

where Q;(K) denotes the space of polynomial functions of degree s r de ned on the
hexahedron K. Assuming zero body loads, and applying a backward Euler tim e integra-
tion we end up with the following fully-discrete nonlinear e lectromechanical problem,
starting from the discrete initial data v2,n%,x?. Foreachj=0,1, : nd (P."*,ul"* p**

h Ph
j+1 1+l
and (v;, ~,n;,, 7,xy, 7) such that

Z . . . .

[Pjh+1 G (ulh"'l)+ pjh+1\](UL+1)|]:t h:o 8th2Hhv (338.)
ijhﬂir viF (ul )+ ﬂWhF ful ™t vi= 0 8vp2 vy, (3.3b)
Z .
) den=0 8012 Qn, (3.30)
Z j+1l z z i

Vv V . . . f(v..n
WWWM- WD(VL+11F(UL+1))|' th+1 rw . %4_ lext Wh=0

\%

8Wh 2 Wh, (33d)
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Z _j+t1 Z

.

Nh My 9(vpnp)

T Th R =0 8m, 2 Wi, 3.3e
W Dt ) h2 Wh (3.3e)
Z j+1 ] Z ~i oA

Xho Xy (Xpop) - -

L B — 1 Ti.=0 8j W2 W,. 3.3
W Dt I h w () In J n2 W (3.3f)

Due to the intrinsic interpolation properties of the nite-d imensional spaces speci ed in
(3.2), we expect to observeO (h¥* 1) convergence for Kirchhoff stress and pressure in the
tensor and scalar L> norms, as well as O(h**1) convergence for the remaining elds
in the HY norm (which reduces to rst-order convergence for the lowest -order nite
element family, k= 0).

Alternatively to the method above, if we do not apply integra tion by parts in (3.1b),
one can rede ne a method that seeks for H (div ;W)-conforming approximations for the
Kirchhoff stress and L?(W) - conforming approximations of displacements. Thatis, for in-
stance using Raviart-Thomas elements of lowest order to approximate rows of the Kirch-
hoff stress tensor, and piecewise constant approximation of displacements [26], appro-
priately modi ed for the case of hexahedral meshes.

3.3 Implementation details

The coupling between activated mechanics and the electrophysiology solvers is not done
monolithically, but rather realised using a segregated xed -point scheme. The nonlin-
ear mechanics are solved using an embedded Newton-Raphson method and an operator
splitting algorithm separates an implicit diffusion solut ion (where another Newton iter-
ation handles the nonlinear self-diffusion) from an explic it reaction step for the kinetic
equations, turning the overall solver into a semi-implicit method. Updating and storing
of the internal variables x and n is done locally at the quadrature points. In all cases
the solution of linear systems is carried out with the BICGSt ab method preconditioned
with an algebraic multigrid solver (both provided by the PET Sc library), and using a rel-
ative tolerance of 1e-5 for the unpreconditioned “?-norm of the residual. The domains
to be studied consist of 3D slabs, ring-shaped, and ellipsoidal geometries with vary-
ing thickness and basal cuts, discretised into hexahedral meshes of maximum meshsize
h= 0.01cm. The time discretisation uses a xed timestep Dt (dictated by the dynam-
ics of the cell ionic model rather than by a CFL condition, as t he diffusion is discretised
implicitly), and we observe that the hyperelasticity equat ions have a different inherent
timescale, so we update their solution every ve steps taken b y the electrophysiology
solver. Since in (2.9) the evolution of myocyte shortening d oes not depend locally on the
macroscopic stretch, the activation system can be conveniatly solved together with the
ionic model. A tolerance of 1e-7 on the *¥ -norm of the residual is employed to terminate
the Newton iterates for the nonlinear diffusion and for the n  onlinear hyperelasticity sub-
problems. A summary of the overall process, including all st eps from mesh generation
to solution visualisation, is outlined in Algorithm 1.
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Algorithm 1 — Overall coupled electromechanics

1: for a given computation start with an of ine phase and do
2: Setgeometry, size and orientation, and assign boundary labels to the epicardium Wep;,
endocardium YWendo, and basal cut MW ase

3: De ne a global meshsize and construct hexahedral meshes (surface and volumetric)

4: Generate orthotropy of the medium through the rule-based algorithm i n mixed form

5: Setmaximal and minimal angles for rotational anisotropy  gepj @and Gendo

6: Setthe ventricular centreline vector kg

7: De ne mixed nite-dimensional spaces for the approximation of a p otential f and an
auxiliary sheetlet eld z

8: Apply boundary conditions on the nite element space for sheetlet s and solve the dis-
crete counterpart of (4.1)

9 Obtain sheetlet directions from sp= z,,/ kz,k

10: Project the centreline as follows 8= ko (ko so)Sso

11: Compute at bres eld $,=sy Ky kibk

12: Apply arotation of at bres incorporating intramural angle vari  ation

13: end for

14: Settimestep Dt, initial and nal times t=tg,t g ;

15: De ne mixed nite-dimensional spaces in (3.2)

16: De ne constant and solution-dependent model coef cients

17: Apply boundary conditions and set initial solutions from express ions or data
18: Construct functional forms appearing in the Galerkin discretisation (3.3)

19: while t<t,, do

20: Construct the nonlinear algebraic system associated with (3.3d)-(3.3f), taking the reaction
terms explicitly

21: Construct the linear system arising from the Jacobian of the nonlinear problem

22: for k= 1 until convergence do

23: Assemble and solve the matrix system associated with the Jacobian

24: Update Newton approximation and reinitialise

25: end for _ ) ) ) _ _

. ; i j i+l i+l j+1 ;

26: Update thermo-electric solutions v vy, SN, N, T X, X, © and time-dependent
coef cients (e.g. boundary pressure py(t))

27: Compute orthotropic activation quantities from (2.8)

28: Construct the nonlinear algebraic system associated with (3.3a)-(33c)

29: Construct the linear system arising from the Jacobian of the nonlinear problem

30: for k= 1 until convergence do

31: Assemble and solve the tangent linear system for increments

32: Update Newton approximation and reinitialise

33: end for

34: Update time: t t+Dt,j j+1

35: Output solutions for visualisation and data analysis

36: end while

4 Numerical results

Before carrying out model validation and performing simula tions with the fully coupled
model described in Section 2, we conduct a mesh convergence st to assess the accuracy
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Figure 2: Example of approximate displacement eld on the @t@med domain and a coarse hexahedral mesh
in the undeformed con guration (left); and error history fo an accuracy test of the mixed formulation for
hyperelasticity (right) generated using a lowest-order stiretisation.

of the mixed nite element scheme proposed for the three- eld h  yperelasticity subprob-
lem (2.3)-(2.4), in the case when the material is completely passive. The following test
has been employed (for isotropic, Mooney-Rivlin materials) as a benchmark for different
nite element solvers [4]. In the 3D domain de ned by a ring-sha ped region of width

0.25cm, internal diameter of 0.5 cm and external diameter of 1 cm, we de ne closed-form
manufactured solutions as

2 2 1 2
— 4 4 A4 - 4, = 44 = 4 =
p(x,y,2)= x* y* z%, u(xy,z) X 5yZ, y 5xz, 102 5xyz ,

and construct an exact form of the Kirchhoff stress, as well as body loads and eventually
traction terms using these smooth functions. Sheetlets are radially de ned, whereas -
bres are clockwise oriented with respect to the y axis, and the hyperelasticity parameters
are set according to the second part of Table 1. Boundary conditions were considered of
mixed type as in (2.11), but setting appropriate nhon-homoge neous terms. The traction
boundary Wy corresponds to the top and bottom faces of the ring (parallel to the xz
axis where the normal vector is n=( 0, 1,0)!), whereas the normal displacement bound-
ary Wy is conformed by the internal and external curved surfaces. W e compute errors
between the exact solutions and the approximate elds genera ted by the lowest-order
scheme on a sequence of unstructured hexahedral meshes of diferent resolutions. These
(absolute) errors are measured in the tensor and scalarL? norms for the Kirchhoff stress
and pressure, respectively; and in the H! norm for the displacements. We plot the re-
sults versus the number of degrees of freedom in Fig. 2(right ), where we can observe an
optimal convergence ( rst-order in this case), as anticipat ed in Section 3. The number of
Newton iterates required to reach convergence was in average 4.
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4.1 Conduction velocity assessment

Following the study in [13], we next consider the electromec hanical model (2.3), (2.5),
(2.9) de ned on the 3D slab W=( 0,10 (0,5 (0,5 cm?3. The boundary conditions cor-
respond to (2.11) and (2.13). The bottom ¢= 0), back (y = 0), and left (x = 0) sides of
the block will constitute {Wp where we impose zero normal displacements, and on the
remainder of the boundary Wy = fWnWp we prescribe zero traction. We consider only
constant bre and sheetdirections f,=(1,0,0", so=(0,1,0", and a stimulus of amplitude
2 and duration 2ms is applied on the left wall at time t= 1ms, which initiates a planar
wave propagation. At a temperature of T = 37 C, the thermo-electric effects are turned
off (both Q10 and Moore terms equal 1), and the reported maximum conduction velocity
of 45.1 cm/s can be computed using D = 1.1cn?/s (that is, setting D= D, = 0). Then,
variations of temperature and of the constants that charact erise the nonlinear diffusion
lead to slight modi cations on the conduction velocity. Here this value is computed us-
ing the approximate nondimensional potential, and activat ion times measured between
the points (x,y,z) =(4.663,2.5,2.5 and (x,y,z) =( 5.337,2.5,2.5, that is a spatial varia-
tion in the x direction of dx= 0.674 cm, and employing a threshold of amplitude 1. We
also vary the mesh resolution and observe that the coarsest atio-temporal discretisa-
tion that maintains conduction velocities in physiologica | ranges requires a meshsize of
h= 0.025 cm and a timestep ofDt = 0.03ms. Our results are summarised in Table 2. We
can note that for the lowest temperatures, the changes in the mesh resolution entail sub-
stantial modi cations in the conduction velocity, whereas f or higher temperatures the
effect seems to be milder and even coarse meshes give physiabgical results. This effect
is physically linked to the widening of the action potential at low temperatures. After
computing each conduction velocity value, we have commence d another pacing cycle
(with an S2 applied at t= 330 ms), and run the simulation until t= 720 ms. Snapshots of
the dimensionless potential, activation, displacement ma gnitude, and solid pressure are
depicted in Fig. 3, where we can observe (in particular for t= 150 ms) a marked defor-
mation in the sheetlet direction complying with the shorten ing in the bre direction. In
Fig. 4 we plot the history of the main thermo-electric and kin ematic variables on the mid-
point of the line where conduction velocities are computed. We remark that the different

Table 2: Computed conduction velocitie$m/s ] according to di erent temperature values and spatio-tempal
re nement.

Temp. h=0.025cm, h=0.0125cm, h=0.006cm,
Dt=0.03ms Dt=0.0075ms Dt=0.00125ms

T=33C 0.356 0.377 0.422
T=35C 0.428 0.435 0.441
T=37C 0.439 0.447 0.453
T=39C 0.442 0.450 0.448

T=41C 0.443 0.451 0.451
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Figure 3: Samples of the approximate solutions (dimensiesk potential, activation, displacement magnitude,
and solid pressure) shown on the deformed domain &t 50,150,450ns (left, middle, and right panels, respec-
tively). For this test we have usedl = 39 C.

thermal states, in addition to modifying the conduction vel ocity, also affect the shape and
duration of the action potential wave. In agreement with the constitutive modelling, the
amount of contraction is not linked to the velocity of propag ation but rather to the dura-
tion of the action potential. More precisely, since the activ e-strain contraction is linked to
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Figure 4: Evolution of main variables measured on the poif6,2.5,2.5 and up to t= 720ms, computed at
temperature T= 39 C.
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Figure 5: Temperature distributions in the undeformed comuration, where the colour code is inC.

the amount of tissue undergoing a certain level of voltage, i t turns out that at lower tem-
perature the action potential wave is larger (experimental evidence for this phenomenon
can be found in [24]), and therefore the amount of tissue unde rgoing contraction is larger.

4.2 Scroll wave dynamics and localised temperature gradien ts

We now perform a series of tests aimed at analysing the differ ences in wave propagation
patterns produced with different temperature conditions s uch as those encountered in
transmural gradients induced by fever, cold/hot water, and /or localisation of other ther-
mal sources such as ablation devices. First on the case of thébase temperature T= 37 C,
secondly in the case where the domain is subject to a temperature gradient in the direc-
tion of the sheetlets sp=(0,1,0!, and third when the temperature has a radial gradient in
the xy plane (see Fig. 5).
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Figure 6: Scroll waves developed aftdr= 450ms (left panel) andt= 600ms (right panel) usingT = 37 C,
plotted on the deformed con guration, and where arrows indate displacement directions.

The domain of interest is now the slab W=(0,6.79 (0,6.79 (0,0.679 cm3, which
we discretise into a structured mesh of 72'000 hexahedral elements, with h= 0.116 cm.
We use a xed timestep Dt= 0.03ms and set a constant bre direction f,=( 1,0,0t. We
employ an S1-S2 protocol to initiate scroll waves [2], where S1 is a square wave stimula-
tion current of amplitude 3 and duration 3 ms, starting at t= 1 ms on the face de ned
by x= 0; and S2 is a step function of the same duration and amplitude , applied on the
lower left octant of the domain at t= 350 ms. This time the boundary conditions for the
structural problem are precisely as in (2.12), using the constant h= 0.05; and the boundary
conditions for the electrophysiology adopt the form (2.13) . Fig. 6 shows two snapshots
of the voltage propagation through the deformed tissue slab for the rst case, of constant
temperature (case ). Differences between the patterns obtined at different temperatures
are qualitatively shown in Fig. 7, which displays the differ ence in the dimensionless po-
tential between case Il and case |, as well as between case lland case I. A fourth case (not
shown) was also tested, where the temperature gradient is pl aced in the direction of the
bres. Then the differences in propagation are much more pron ounced (up to the point
that the S1-S2 protocol described above is not able to produce scroll waves).

4.3 Scroll waves in an idealised left-ventricular geometry

We generate the geometry of a truncated ellipsoid, as well as unstructured hexahedral
meshes using GMSH [27]. The domain has a height (base-to-ape) of 6.8 cm, a maximal
equatorial diameter of 6.6 cm, a ventricular thickness of 0. 5 cm at the apex and of 1.3 cm at
the equator. Relatively coarse and ne partitions with 13'79 3 (corresponding to a mesh-
size of h=0.104 cm) and 86'264 elements (and with a meshsize oth= 0.052 cm) are used
for the simulations in this subsection. Consistently with o ther electromechanical simu-
lations on idealised ventricular geometries, here we consider a time-dependent pressure
distributed uniformly on the endocardium (that is, using th e second relation in (2.11)).
In addition, on the basal cut we impose zero normal displacem ents (the rst condition
in (2.11)), and on the epicardium we impose Robin conditions (2.12) setting a spatially
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Figure 7: Adimensional potential di erence between case uifiform temperature atT= 37 C) and two di erent
gradient distributions in the sheetlet (case Il - left) andadial directions (case Il - right), plotted on the referere
domain (for the sake of clarity of visualisation) at timeg = 350ms (top panels),t = 450ms (middle row), and
t=600ms (bottom panels).

varying stiffness coef cient, going linearly from hnjn, on the apex, to hpnax on the base
h(y) := ﬁ[hmax(yb y)+ hmin (Y Ya)], Where ya,,y, denote the vertical component of
the positions at the apex and base, respectively. These condtions are suf ciently general
to mimic the presence of the pericardial sac (as well as the combined elastic effect of other
surrounding organs) having spatially-varying stiffness.

Fibre and sheetlet directions are constructed using a slight modi cation to the rule-
based algorithm proposed in [62], that we outline here for th e sake of completeness (see
Algorithm 1). The needed inputs are a unit vector kg aligned with the centreline and
pointing from apex to base, the desired maximal and minimal a ngles that will determine
the rotational anisotropy from epicardium to endocardium,  Gepi, Gendo; @nd boundary la-
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Figure 8: Ellipsoidal bre distribution, collagen normakheetlet, and cross- bre directions generated with a
rule-based algorithm and settingjepi= 50 , Gendo= 60 .

bels for the epicardium Wepi, endocardium fWepqo, and basal cut Wy,se. The rst step
consists in solving the following Poisson problem (here sta ted in mixed form for a poten-
tial f and a preliminary sheetlet direction z) endowed with mixed boundary conditions

r z=0 and z=rf in W,

4.1
zn=0 on MWhase =0 on TWengo, f=1 on Wep. 4.1)

The unknowns of this problem are discretised with Brezzi-Do uglas-Marini elements of
rst order de ned on quads, and piecewise constant elements [2 6]. Once a discrete rst
sheetlet direction z;, is computed, the nal sheetlet directions are obtained by nor malisa-
tion sp= z,,/ kz,k (all normalisations in this section refer to component-wis e operations
using the Euclidean norm). Secondly, we project the centreline &= kg (ko so)sp and
then compute an auxiliary vector eld Po (known as at bre eld), using the sheetlet
and the projected centreline vectors po = sy B kibk. Thirdly, we proceed to project
now the at bres onto the sheetlet planes exploiting the rota tional anisotropy, through
the operation

fo= Bycos(a(fn))+ so Rysin(a(f n)+ so(So Pp)[L cos(a(f n))],
where f , is the discrete potential and the function

1
180p

modulates the intramural angle variation. Sample bre, shee tand normal directions gen-
erated using this algorithm are shown in Fig. 8.

Let us point out that a simpler, primal formulation can be use d for (4.1) written only
in terms of f, from where bre elds can be recovered (as done in other contri butions).
However, we have found that our mixed method produced bres an d cross- bres that

Q(f h) = [(eri Oendo)f ht cIEndo],
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Figure 9: Temperature distribution for the second test caggop left), and two snapshots (200,300 ms after the
S1 stimulus) illustrating the torsion and wall-thickeningof the left ventricle (top centre and top right, where
the arrows indicate the displacement direction). The bottm panels show cuts along the midplane for the
top centre and top right gures.

are smoother, and this de nitely has an impact when the ventri cle surfaces are not so
regular as the present ellipsoid. Such a discussion has not much relevance here because
we are sticking to very simple geometries, but it provides an argument (apart from the
apparent novelty) in favour of using a mixed method.

The remaining constants employed in this Section are gepi= 50 , Gendo = 60 , hmax =
0.6kPa (that is, we consider a transmurally asymmetric bre d istribution), and hmin =
0.001kPa. As in the tests reported in previous subsections,the dynamics here are initi-
ated through an S1-S2 approach [39], which is a standard stimulation protocol in cardiac
electrophysiology (both experimentally and in silico), aimed at determining spiral wave
inducibility, in the context of replicating archetypal fea tures of cardiac arrhythmias. One
typically generates a planar electrical excitation (S1), followed by a second broken stimu-
lus (S2) during the repolarisation phase of the S1 wave, the so-called vulnerable window.
In our numerical simulations, S1 is set on the apex and S2 is initiated at the same location,
but only for the quadrant x> 0,z> 0.

We consider two cases: one when the temperature is kept constant at 37 C, and an-
other when at the time of switching on the electromechanical coupling, a localised point
on the epicardium towards the base is maintained at a lower te mperature 34 C. The tem-
perature distribution in this second case is de ned as

T(x,y,2)= 37 3exp( [(x 3)3+y?+7%)/3),

(see the leftmost panel in Fig. 9). We illustrate the torsion and wall-thickening effects
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Figure 10: Propagation of the adimensional transmembranetential plotted on the deformed domain, using
a constant temperature (top panels) and a cold spot (bottom)Snapshots shown at 200,300,400,500 ms after

the S2 stimulus.

achieved by the orthotropic activation model in the centre a nd right panels of Fig. 9,
observed before applying the wave S2.

Finally, a few snapshots of the scroll wave dynamics for the t wo cases are presented
in Fig. 10, indicating again an important model dependency o n temperature variations.
In particular, the cold region notably increases the action potential duration. Once the ar-
rhythmic pattern is fully established, the differences bet ween the two cases are increased
since higher nonlinearities appear. Samples of stress entiies, displacement, pressure, and
myocyte contraction are in presented in Fig. 11, plotted on w edges that highlight ventric-
ular thickening, stress concentrations on the endocardium , a more pronounced pressure
pro le near the apex, and apex to base motion. In addition to th is test, we perform a set
of simulations using a constant higher temperature at 39 C, and snapshots of the approx-
imate transmembrane potential at various time steps are dis played in Fig. 12.

5 Concluding remarks

We have advanced a new theoretical framework for the modelli ng of cardiac electrome-
chanics that incorporates active strain, anisotropic and n onlinear diffusion, and thermo-
electrical coupling as main ingredients. The proposed mode Is couple different multi- eld
and multi-scale (cell and sub-cell levels) phenomena, and they constitute a natural exten-
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Figure 11: Sample approximate Kirchho stress, displacemg pressure, and myocyte shortening at end diastole,
t=470ms (top) andt=610 ms (bottom).

-1'\0\§ [ \Q\'zgw (N \2\1(\3\ (AN \1\1\"\51 v(m,y,z)

Figure 12: Propagation of the dimensionless transmembrapetential plotted on the deformed domain, us-
ing a higher temperature throughout the domain and a thinneventricular geometry. Snapshots shown at
100,200, ,800ms after the S2 stimulus.
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sion of porous medium electrophysiology [36] to the case of ¢ ardiac electromechanics.
The continuum homogenised approach features a temperature dependence of all reac-
tion rates, as well as preserving material frame invariance and equilibrium constrains.

The novelties of this contribution also include a mixed-pri mal method based on a
pressure-robust formulation for hyperelasticity. Our num erical scheme has been used to
assess the in uence of space and time discretisation at diff erent thermal states in three-
dimensional domains. Comparisons were made in terms of loca | conduction velocity as
well as onset and development of scroll wave dynamics as prec ursors of life threatening
arrhythmias. The numerical simulations demonstrated the s uitability of the proposed
model in reproducing key physiological features. In additi on, we have observed model
scalability adequate to conduct large scale computations.

Our results, collected in Section 4, suggest that the new model develops higher non-
linearities and allows for more complex brillation dynamic s when simulating classical
S1-S2 stimulation protocols in anisotropic ventricular do mains. For instance, the pres-
ence of cold regions in combination with our active strain mo del lead to an enhanced
cardiac dispersion of repolarisation, which in turn result s into more involved scroll wave
dynamics. Stimulation protocols (which represent the poss ible initiation of spiral waves
and arrhythmic patterns from e.g. a ctitious ectopic focus) are greatly affected, and
might even fail, under modi ed temperature conditions. For i nstance, allowing tem-
perature gradients along or across the bre direction can res ult in completely different
activation patterns. A thorough computational assessment of these differences is there-
fore of key importance in determining experimental pacing m echanisms [30]. We believe
that the disruptions produced uniquely by temperature gradients can be even more pro-
nounced in the context of electromechanical simulations (as a consequence of the non-
linear coupling between the involved effects), and thus may play a key role in the onset
and development of arrhythmias (experimental evidence for this strong relation has been
known for other soft tissues since several decades, see e.g[42]). The set of preliminary
tests presented in this paper highlights the importance of t he proposed thermo-electro-
mechanical coupling. Nevertheless, further investigatio ns are necessary to determine
other potential effects of the thermal coupling into the for mation of local anchoring of
spiral waves to material heterogeneities (pinning phenome na, [6]), their removal through
low energy intra-cardiac de brillators (unpinning protoco Is, see for instance [49]) and
also the in uence of the mechanochemical patterns in the ind uction and modulation of
spatio-temporal alternans dynamics [32, 50, 61].

General limitations of our study reside in that we adopt a sim plied phenomeno-
logical approach for both the thermo—electrophysiology an d the excitation contraction
coupling modelling. Also, we have employed only idealised g eometries in all our com-
putations, but remark that a more dedicated personalisatio n could be incorporated once
the following list of possible generalisations are in place .

First, higher complexity in the electrophysiology and inth e contraction models should
be included to improve the (at this point, still quite basic) structure of the coupling mech-
anisms [22], also considering recent contributions where i nductances are introduced [63].
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In particular, these extensions could lead to more re ned con clusions regarding the on-
set and control of arrhythmias and brillation in which memor vy effects are predomi-
nant [44]. Secondly, it is left to investigate whether spati o-temporal variations of temper-
ature have an effect, perhaps in long term and operating thea tre scenarios. In perspective,
the present study could serve in understanding and possibly controlling temperature-
altered cardiac dynamics in patients subjected to whole-bo dy hyperthermia. This is a
medical procedure relevant for treating metastatic cancer and severe viral infections as
e.g. HIV [37,41]. Let us also remark that heat conduction in t he short-scales we consider
here (that is within one or two heart beats), can still be cons idered negligible. However,
cell and tissue homeostasis and energy dissipation within a n extended non-equilibrium
thermodynamics framework could be an important improvemen tto our models, follow-
ing for instance [14, 18, 66]. These extensions would incorporate a complete bio-heat for-
mulation [28, 54], which can account for the combined effect s of heat generation from the
heart muscle, as well as advection-diffusion of temperatur e due to vasculature and blood
OW.

Another limitation of the present model is the phenomenolog ical description of the
intracellular calcium. The lack of precise calcium dynamic s forces us to include an ad hoc
calcium-stretch coupling. More realistic models as the one in e.g. [43] account also for
better action potential shape and morphology, inter- and in tracellular calcium dynamics
and potentially including multiscale thermo-mechanical f eatures; they will be incorpo-
rated in our framework in a next stage. On the same lines, we al so aim at incorporating
microstructure-based bidomain formulations [60], but spe ci cally targeted for electrome-
chanical couplings [65] allowing for effective applicatio n of de brillation protocols (e.g.
the so-called virtual electrode effect) [20].

In addition, we plan to apply the present model and computati onal methodology in
the study of spatio-temporal alternans [19, 29] as well as spiral pinning and unpinning
phenomena [35, 75]. These supplementary studies would also contribute to further val-
idate the proposed multiphysics framework against experim ental evidence. In fact, the
idealised ventricular domain embedded with myocardial bre s in rotational anisotropy
that we used in Section 4.3 can be readily exploited towards t he characterisation of the
complex and unknown intramural dynamics, as soon as high-re solution imaging data
are incorporated into our computational framework. A furth er tuning of the material
parameters using synchronised endocardial and epicardial optical mapping datasets will
also be carried out. These studies are considered as a directpplication of the very recent
technology developed in [9] for the identi cation of electro mechanical waves, and phase
singularities in particular, through advanced imaging pro cedures.

The passive material properties of the muscle have been conddered independent of
temperature, and a simple constitutive relation could be em bedded in the strain-stress
law using the results from [69], or in the cell contraction mo del following e.g. [48]. More-
over, taking as an example what has been proposed for other biological scenarios such
as vascular pathologies, we estimate that the concepts of time-dependent mechanobio-
logical stability [16] as well as growth and remodelling [15 ,17], could be incorporated in
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the context of computational modelling of the heart. For ins tance, here we would con-
sider distributed properties of collagen and muscular bres , following for instance [53].

Mechanoelectric feedback has been left out from this study (w ith the aim of isolating the

effects of the thermo-electric contribution in an electrom echanical context), so we could
readily employ recent models for stretch activated current s [59, 72], or alternatively em-
ploy stress-assisted conductivity as in [7,47]. Other extensions include the use of geo-
metrically detailed biventricular meshes, more sophistic ate boundary conditions (setting

for instance pressure-volume loops on the endocardium), and the presence of Purkinje
networks [12] and/or fast conduction systems that could de n itely have an impact on
the reentry dynamics. Goals in the longer term deal with opti mal control problems ex-
ploiting data assimilation techniques [1] using imaging to ols and in silico testing of novel
de brillation protocols [49].
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