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Abstract. Ru-Shan Wu has made seminal contributions in many research areas in
geophysics, such as seismic-wave propagation, scattering, imaging, and inversion.
We highlight some of his research in holography imaging, diffraction tomography,
seismic-wave scattering and its applications to studying Earth’s heterogeneity, one-
way wave propagation and one-return wave modeling, beamlet and dreamlet appli-
cations, strong non-linear full-waveform inversion, and direct envelop inversion.
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1 Subsurface holographic imaging (1970s–)

In 1970s, Ru-Shan conducted translational research — applying optical holography to
subsurface holographic imaging. In optical holography, a hologram is an interference
pattern between the scattered light from an object and the reference light. In image
reconstruction, the object is re-illuminated by the reference light to reproduce a three-
dimensional light field, resulting in an image of the object. Ru-Shan and his colleagues
first studied monochromatic (single-frequency) holography for imaging, and found that
the main challenge in using elastic or electromagnetic waves for subsurface holographic
imaging is its poor longitudinal resolution. To address this limitation, they developed
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Figure 1: Setup of a water tank experiment for testing multifrequency synthetic detecting holography. (From
[60])

the multifrequency synthetic detecting holography to improve the longitudinal image
resolution, and published their research results in Chinese with an abstract in English in
1977 [60].

In the multifrequency synthetic detecting holography technique, after obtaining a
hologram H(ω,ξ,η) (i.e. data acquisition) for each frequency ω within a given range from
ω1 to ω2, the multifrequency holography image M(x,y,z) is generated using (see Eq. 8
in [60])

M(x,y,z)=
∫ ω2

ω1

∫

ξ

∫

η
W(ω)H(ω,ξ,η)e−i ω

v r(ξ,η,x,y,z)dξdηdω, (1.1)

where W(ω) is a weight for a monochromatic hologram at each ω, v is the velocity, and
r is the distance from a source to a position (ξ,η) on a hologram via an imaging point
(x,y,z).

In Ru-Shan’s research on subsurface holographic imaging, he bridged many concepts
in different fields: communication and antenna array, correlation functions and matched
filters, and phased arrays. In addition, he studied the relationship between multifre-
quency synthetic detecting holography and “impulse holography,” and derived the for-
mulas for longitudinal resolution. He and his colleagues verified the feasibility of their
technique using both two-dimensional (2D) synthetic data and laboratory data. They
conducted the microwave multifrequency synthetic detecting holography using labora-
tory data acquired in a water tank (Fig. 1), demonstrating that their method can produce
high-resolution and high-quality images. Fig. 2 depicts an image of two aluminum blocks
reconstructed using their method with six frequencies.
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Figure 2: Image of two aluminum blocks reconstructed using six frequencies. (From [60])

After Ru-Shan came to the U.S. as a visiting scholar in 1979, the Nobel Physics Lau-
reate Samuel C.C. Ting introduced him to seismologists at Massachusetts of Institute of
Technology (MIT). Because of Ru-Shan’s holography work, Professor Keiiti Aki invited
Ru-Shan to work in his group, and later took him as a PhD student. Ru-Shan’s PhD thesis
work was mainly on seismic scattering that is highlighted in Section 3. His postdoctoral
work at MIT on diffraction tomography (Section 2) is in line with his holography work.

2 Diffraction tomography (1980s–)

Wu and Toksöz (1987) [57] published an influential paper on diffraction tomography and
multisource holography, and their relationship through theoretical analyses and numer-
ical experiments. Their theory for diffraction tomography is based on the Born or Rytov
approximation. They studied the performances of diffraction tomography and multi-
source holography by examining the information coverage in the spatial frequency do-
main and using numerical examples.

Wu and Toksöz (1987) [57] found that multisource holography is similar to Kirchhoff-
type migration, and often produces distorted images because of spectral coverage is-
sues. They found that the filtering operation of diffraction tomography helps correct the
nonuniform coverage (including duplication) of the object spectrum in the reconstruction
process, resulting in improved images. They also found that, multisource holography is
better suited for imaging sharp boundaries with large acoustic impedance contrasts com-
pared with diffraction tomography that is based on an approximation of weak inhomo-
geneities.
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Figure 3: The geometry of the basic scattering experiment used to demonstrate the basic principle of diffraction
tomography (from [57]).

Figure 4: The spectral coverages of (a) surface reflection profiling data (the densely dotted area), (b) ver-
tical seismic profiling data (the sparsely dotted area), (c) the combination of both datasets, where k0 is the
wavenumber of the wavefield, K=(Kx,Kz) is the 2-D spatial frequency vector of the object function. (From [57])

Wu and Toksöz (1987) [57] demonstrated the basic principle of diffraction tomogra-
phy using a plane wave incident on an object in a homogeneous, infinite medium, as
displayed in Fig. 3. When a receiver is far from the object, the scattered wave from the
object can be treated as a plane wave at the receiving point. They derived the relationship
between the scattered field and the object spectrum for diffraction tomography.

They evaluated the performance of diffraction tomography for different seismic data
acquisition geometries, including surface reflection profiling (SRP), vertical seismic pro-
filing (VSP), and cross-hole measurements. Fig. 4(a) shows the poor spectral coverage
of single-frequency surface reflection measurements. Fig. 4(b) depicts that the VSP ge-
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ometry provides better single-frequency spectral coverage than surface reflection data.
Fig. 4(c) displays the spectral coverage of the combined data set of VSP and SRP, leading
to an improved spectral coverage.

3 Seismic scattering and Earth’s heterogeneity (1970s–)

When Ru-Shan arrived at MIT in 1979, there was a great deal of activity at MIT around
the topic of seismic scattering. This work was being undertaken by Keiiti Aki (Kei) and
M. Nafi Toksöz along with their students, postdocs, and researchers. This topic was an
excellent fit for the work that Ru-Shan had undertaken in China on holography. Scatter-
ing has been the foundation for a great deal of Ru-Shan’s work whether addressing issues
directly focused on characterizing heterogeneity in the Earth, or using scattering concepts
in other areas of his research, such as imaging. Most of the work discussed in this sec-
tion was done early in Ru-Shan’s career. This work has had a deep and lasting impact
and has been the foundation for countless papers written by investigators throughout
the world. Ru-Shan addressed important theoretical topics and introduced several novel
concepts into the seismic scattering community. He frequently used observations of oth-
ers to motivate the topics that he addressed in his theoretical work. In addition, Ru-Shan
frequently analyzed field data to support his theoretical developments.

Throughout this section, we refer to common parameters that are used to characterize
random media. They are the velocity fractional fluctuation γ given by (Eq. 14 in [34])

γ=

〈

(

δC

C0

)2
〉1/2

, (3.1)

where C0 is the average velocity of the medium and δC is the velocity variation about
C0. The spatial distribution of heterogeneities, δC, may be defined using one of vari-
ous types of statistical functions. An autocorrelation function of the medium is often
used. Autocorrelation functions can have a characteristic length, a, which dominates the
wavelength-dependence of scattering during wave propagation. Typical autocorrelation
functions used to characterize heterogeneity in the Earth include Gaussian, exponential,
and von Kármán [30]. The exponential autocorrelation function is a special case of a von
Kármán autocorrelation function.

Ru-Shan published several highly significant papers in the early 1980s on seismic
scattering. The first paper that Ru-Shan published with his Ph.D. supervisor, Professor
Keiiti (Kei) Aki, was an analysis of Born (e.g. single, weak) seismic scattering by an elastic
heterogeneity [42]. In this paper, they showed how scattering could be analyzed as an
equivalent source. They separately analyzed the cases of low-frequency scattering where
the seismic wavelength is long compared to a, and the cases of high-frequency scattering
where the seismic wavelength is small compared to a. They derived the scattering radi-
ation patterns for P and S waves for both low- and high-frequency cases. Wu and Aki
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(a) (b)

Figure 5: (a) Spherical coordinate system for P-wave incidence, and (b) the scattering patterns for different
equivalent forces. (From [42])

(1985) [42] also showed how the radiation patterns differ depending on the character of
the elastic heterogeneity, e.g. velocity difference, impedance contrast, or density contrast.

Fig. 5 (from [42]) shows an example of how scattering radiation patterns depend on
the type of contrasts. Fig. 5(a) shows the spherical coordinate system used in the analysis
of Rayleigh scattering and Fig. 5(b) displays the equivalent forces and scattering patterns
for a plane P-wave incident on a density contrast (top), contrast in Lamé parameter λ

(middle) and contrast in rigidity µ (bottom). Note that, depending on the type of contrast,
the incident P wave may generate both scattered P and S waves. In the paper, Wu and Aki
(1985) [42] also showed plots for the scattering from various combinations of contrasts in
elastic parameters. This work provided a basis on which to improve our understanding
of seismic scattering from different types of heterogeneities in the Earth and later for
modeling seismic attenuation caused by scattering.

At the same time that Ru-Shan published his paper with Kei on elastic wave scattering
from isolated heterogeneities, Ru-Shan and Kei looked at the issue of wave propagation
through a medium with a distribution of random heterogeneities [41]. Aki (1969) [1] pos-
tulated that the coda of local earthquake waveforms, basically the long tail that follows
the S-wave, is composed of S waves backscattered from medium heterogeneities. One
important question that follows from this conjecture is what does this tell us about the
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Figure 6: Relative backscattering strength for S-S scattering for media relation between medium correlation
length, a, and incident S wave wavelength, λ. Values of a corresponding to 1 Hz S waves in a medium with S
wave velocity of 3.5 km/s are listed below the x-axis label. (From [41])

character of heterogeneity in the Earth’s crust. Wu and Aki (1985) [41] addressed this
issue using several approaches. First they showed that a scalar wave equation gives sim-
ilar results to the elastic wave equation for forward scattered high-frequency waves but
that it does not give reliable results for low-frequency back scattered waves. This finding
means that if they want to model coda waves as back scattered waves, an elastic wave
equation must be used. They also looked at the relative amount of backscattered S waves
that would result for a heterogeneous medium having a given characteristic scale.

Fig. 6 shows the relative amount of backscattering that occurs in a random medium
as a function of the dimensionless parameter 2πa/λ= ka, where λ is the wavelength of
the incident S waves and k is the associated wavenumber. The characteristic length a is
given on the abscissa for a 1-second period S wave in a medium with an S-wave velocity
of 3.5 km/s. For this case, the maximum backscattering occurs when the characteristic
length of the medium heterogeneity is 0.48 km. The wavelength for 1 Hz waves is 3.5 km
so the scale of heterogeneity is small compared to the wavelength of the seismic waves
when the backscattering is strongest.

3.1 Random heterogeneities: propagation and scattering in random media

The common practice in seismology for dealing with multiscale heterogeneities in the
Earth is to smooth both the observed wavefield and the heterogeneity model. The ob-
jective of this smoothing is to allow one to ignore information about small-scale hetero-
geneities and obtain a deterministic model for the slowly varying, large-scale hetero-
geneities. Conversely, stochastic methods can obtain some statistical information about
the small-scale heterogeneities from the statistics of the wavefield fluctuations. Statistical
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parameters of the medium include information about the velocity and density pertur-
bations in the medium: RMS perturbation, characteristic scale length, and the power
spectrum, or correlation function. In this sense, deterministic and stochastic methods
complement each other and allow one to explore multiscale complex media. The scale
where deterministic and multiscale methods overlap varies depending on the medium,
the wavelength of recorded waves, and the density of seismic recordings.

The study of stochastic characteristics of random media began by using forward-
scattered waves. Early studies focused on the coherence of amplitude and phase of long-
period seismic waves across arrays like the Large Amplitude Seismic Array (LASA) and
the Norwegian Seismic Array (NORSAR) that were set up for the detection of nuclear
explosions but whose data were ultimately used for many other purposes (e.g., [2]). Lim-
ited by the amount of information contained in these coherence functions, the medium
model description was restricted to being a single layer of a uniform, isotropic random
medium. Through the use of the scattering theory of Chrnov (1960) [11], several statisti-
cal parameters, such as the RMS velocity perturbation, the average scale length, and the
total thickness of the layer, were inferred from the observed data.

Unfortunately, the single-layered model for interpreting amplitude and phase fluctu-
ations did not fit the data well [50]. There was need to investigate the use of a model
having multiple layers and different scale of heterogeneity in each layer. At the end
of the 1980s, Ru-Shan worked with Stanley Flatté at the University of California, Santa
Cruz, and introduced a new statistical observable, the angular coherence function (ACF)
that defines the coherence in the seismic wavefield as a function of the angle of inci-
dence. This new measure significantly increased the statistical information that could be
obtained from data, and allowed the authors to derive a simple model of a layered, mul-
tiscale random medium [16] and apply it to data from NORSAR. Subsequently, Wu and
Flatté (1990) [50] and Chen and Aki (1991) [10] introduced a new joint coherence function
(JCF) or joint transverse coherence function (JTACF), and used the Rytov approximation
to derive the theoretical relation between the joint coherence functions of array data and
the heterogeneity spectrum of a layered random medium. All these theoretical work was
based on a homogeneous background medium. Zheng and Wu (2008) [69] published
a comprehensive JTACF theory for a depth-dependent background medium using the
WKBJ Green’s function. These developments in theory and methods greatly increased
the amount of information obtained from the dataset.

Most researchers making array measurements of phase fluctuations in array data
used the first arrival times of P waves. Line et al. (1998) [26] and Hong et al. (2005) [20]
evaluated the relation between the JTACF and medium heterogeneity using numerical
simulations. They found differences between the coherence functions derived from the
simulated data and what was expected from the prior theory. Zheng and Wu (2005) [68]
pointed out that the nature of the scattering in a random medium meant that the phase
fluctuations were more reliably measured from unwrapped phase spectra rather than
first arrival measurements. They were then able to resolve the differences between the
numerical simulations and the previous theory.
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3.2 Scattering and attenuation

With the realization that the heterogeneous Earth crust scatters waves came the idea that
this scattering, which redistributes energy, attenuates the amplitudes of direct waves
propagating between a source and a receiver. It was already well established that anelas-
tic attenuation mechanisms remove energy from the wavefield. Laboratory measure-
ments were made on rocks to better understand the mechanism of this anelastic mech-
anism (see e.g. Toksöz and Johnson, 1981 [28]). A compelling question was how big a
role does scattering play in the measured attenuation of direct waves. Ru-Shan was one
of the leaders in investigating this question. Here we discuss the use of single scattering
models to calculate the amount and frequency dependence of the contribution of seis-
mic scattering to attenuation. In the following section, we discuss the use of a multiple
scattering approach that leads to a method for estimating the importance of scattering to
seismic wave attenuation.

Ru-Shan published two papers on the contribution of single scattering to the attenu-
ation of seismic waves in 1982 [34, 35]. In Wu (1982b) [35], Ru-Shan looked at the attenu-
ation of the mean field for waves propagating in a random medium and the attenuation
resulting from using the single scattering approximation. In this paper, he showed that
attenuation predicted by both models is identical and does not depend on the statistics
of the random medium. It does depend on γ and a. The predicted attenuation increases
with increasing frequency. The predicted attenuation (Q−1 is shown as the solid line
denoted with triangles in Fig. 7 for a selected values of γ and a that Ru-Shan chose as
being appropriate from previous measurements of heterogeneity. Attenuation increases
with increasing frequency. Fig. 7 also shows measurements of shear wave attenuation
as a function of frequency made by Aki (1980) [3] in three regions of Kanto, Japan. The
estimated attenuation of S waves at very low frequencies obtained using surface waves
appears on the left portion of the plot. The field measurements show that there is a clear
decrease in attenuation with increasing frequency above about 1 Hz while the value of
attenuation at low frequency appears to be smaller than that for body waves at higher fre-
quencies. Thus, one might infer that there is some frequency between about 0.1 Hz and
1 Hz where there is a peak in attenuation. The observations of attenuation are clearly in
disagreement with the predictions made by the mean field theory and the single scatter-
ing approximation if scattering is a dominant contributor to overall seismic attenuation.

One issue that Ru-Shan pointed out in 1982 [35] is that measuring mean field attenua-
tion in the field is not straightforward. He gives a detailed description of how one might
measure it using seismic arrays. He argued that such measurements can be made using
data from arrays such as LASA. He used amplitude and phase fluctuations reported by
Aki in 1973 [2] to estimate mean field attenuation and compared it with predictions of his
model. His results showed quite a good comparison.

Ru-Shan was not content to leave the subject of scattering attenuation with predic-
tions made for a hard-to-achieve measurement condition. He wanted to model the at-
tenuation in the direct wave that propagates between source and receiver. To accomplish
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Figure 7: Attenuation of S waves as a function of frequency. Open circles and crosses show measurements of
attenuation made by Aki (1980) [3] in Kanto, Japan. Solid curve with triangles shows attenuation predicted by
mean field approach. Solid curves show attenuation predicted using a single scattering approach with attenu-
ation being measured from the backscattered waves. Two solid curves show predictions using an exponential
autocorrelation function to describe the medium heterogeneity with two values of γ and a. Dashed line shows
attenuation predicted as for the solid curves except for a von Kármán autocorrelation function. (From [34])

this task, he began with the Born approximation to calculate the scattering caused by
single scattering [34]. To make up for the use of the single scattering approximation in
his model, he assumed that all energy that is back scattered is energy that is lost from
the direct pulse. In this case, the backscattering is frequency dependent and depends
on the statistics of the random medium. With this model, Ru-Shan found that there is a
peak in attenuation and that the location of the peak depends on the approach he used to
characterize the random medium (he used exponential and von Kármán autocorrelation
functions). By appropriate choice of parameters, he was able to fit the field data shown
in Fig. 7. As Ru-Shan pointed out, the good fits to the data ignore the expectation that
some of the attenuation is likely caused by intrinsic attenuation.

3.3 Radiative transfer of seismic scattering

While Ru-Shan and others showed that a single backscattering model could predict a
frequency dependent attenuation that is consistent with observations, the problem re-
mained on how to determine the importance of scattering to overall attenuation. In 1985
and 1988, Ru-Shan published two important papers to address this question. One de-
veloped a theoretical model and the other applied the model to data. He summarized
the importance of the work well in the first few sentences of the body of the theoretical
paper [36] as follows:
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“Are the measured apparent attenuations for short-period seismic waves caused
by anelasticity of the media or by scattering of the heterogeneities in the me-
dia? Is the single backscattering model a good approximation to the coda en-
velope decay or do we need a multiple scattering model which will have sig-
nificant differences in describing the coda behavior from the single backscat-
tering theory? These are long-standing problems.”

Ru-Shan discussed various approaches for accounting for multiple scattering in mod-
els used to predict waveform characteristics [36]. He then proposed to borrow an ap-
proach from astrophysical optics to model the distribution of seismic energy in space
and time, thus avoiding the complicated issue of phase interference that burdens many
multiple scattering approaches. The approach is called the Radiative Transfer Theory and
its roots are quite old (Schuster, 1905 [31]; Chandrasekhar, 1960 [5]). The theory includes
multiple scattering. In 1985, Ru-Shan [36] translated the terminology of astrophysical op-
tics into one appropriate for seismology. He introduced an important parameter that he
called “Seismic Albedo” given as

B0=
ηs

ηs+ηa
=

Q−1
s

Q−1
s +Q−1

i

, (3.2)

where B0 is albedo, ηs is scattering coefficient, ηa is anelastic absorption coefficient, Q−1
s

is the seismic quality describing attenuation caused by scattering, and Q−1
i is the seismic

quality describing attenuation caused by intrinsic mechanisms, such as those convert
seismic energy into heat. Thus, albedo gives the ratio of scattering loss to total loss. In
1985 [36], Ru-Shan developed the radiative transfer theory for isotropic radiation from
a seismic source and solved the resulting integral equation to obtain the distribution of
normalized energy, e.g. energy normalized by source radiated energy, over space for dif-
ferent values of seismic albedo. These distributions can be thought of as measures of the
integrated energy that passes through a given distance from the receiver.

Fig. 8 shows examples of the energy distributions. The middle panel shows total en-
ergy for different albedos. One interesting result that Ru-Shan noted and explained is
that at some distances from the source and depending on B0, the integrated energy is ac-
tually greater than the source radiated energy. As Ru-Shan explained, this phenomenon
results from multiple scattering that causes a given packet of energy to pass by a given
position multiple times and thus be counted in the integrated energy multiple times.

Ru-Shan followed his 1985 paper with one in 1988 [43] where he analyzed digital data
collected in the Hindu Kush region of Northeastern Afghanistan. To evaluate data as a
function of the source-receiver distance, Ru-Shan chose to evaluate several earthquakes
that occurred at various distances from one station. This allowed him to ignore effects
of local site amplification if he used data from multiple stations. He only needed to find
a method to normalize for differences in radiated source energy among the earthquakes.
He used the well-accepted coda normalization method to normalize seismograms for
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Figure 8: The normalized energy density distribution curves 4πr2E(r), where r is the propagation distance
from the point source. At the top are the curves of the diffuse term, at the bottom are those of the coherent
term; in the middle are the curves of the sum of the two terms. Here De is the numerical extinction distance,
Le =1/ηe is the extinction length of the medium, ηe =ηs+ηa is the extinction coefficient, where ηs and ηa are
the scattering coefficient and the absorption coefficient, respectively. B0 = ηs/(ηs+ηa) is the medium seismic
albedo. (From [36])

variations in radiated source energy. He then used a Fourier Transform to find the en-
ergy as a function of distance and frequency. He found that at frequencies less than 1 Hz,
the data appeared to predict very high albedo. He suspected that these low frequencies
were contaminated with surface wave energy thus making direct application of the ra-
diative transfer theory difficult. Normalized energy at high-frequency fell off very fast
as a function of distance and indicated that the albedo is less than 0.5. Fig. 9 shows the
plot of normalized energy versus distance for 1.5 and 2 Hz [43]. The figure also shows
the distributions of energy calculated using the radiative transfer theory for several val-
ues of seismic albedo. While the authors were unable to reliably estimate the seismic
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Figure 9: The comparison between the observed 4πr2E(r) for f = 1.5 and 2 Hz (EW components) at station
PEN in Hindu Kush and the theoretical predictions of different B0’s. The curve of B0 = 0.9 is the prediction
from the constant Qi (=2500) model, which does not match with the observation. (From [43])

albedo, they estimated that it is in the range of 0.5-0.7. This conclusion means that at
high frequencies the importance of scattering is less than it is at low frequencies.

The fit to the radiative transfer theory model is done in the frequency domain and has
the potential to ignore energy that arrives later than the end of the time window used to
compute the spectra. Wu and Aki (1988) [43] thus evaluated whether the single scattering
model or a diffusion model could fit the time history of the envelopes of the seismograms.
The single scattering model is appropriate for a weak scattering regime and the diffusion
model is appropriate for a strong scattering regime. Wu and Aki (1988) [43] pointed
out that the diffusion model had been shown to work well to fit the envelopes of seis-
mograms recorded on the moon. They first found that seismogram envelopes from the
Hindu Kush could not be fit by one predicted by the diffusion model. They then showed
that it can be well fit by an envelope predicted by the single scattering model. Combin-
ing the frequency domain analysis conducted using the radiative transfer theory with the
successful fits to envelope traces in the time domain using the single scattering model,
Wu and Aki (1988) [36] concluded that scattering is not a dominant mechanism for at-
tenuation of high-frequency seismic waves. This conclusion has been later confirmed by
studies conducted by many authors. There is some indication that at frequencies below
about 2 Hz, scattering is the dominant attenuation mechanism (see e.g. [30]).

The study using the radiative transfer theory has led to a large number of papers that
extended the theory to more complicated cases and a solution of the radiative transfer
equation in the time domain was found (e.g. Zeng, 1991 [66]). A discussion of studies
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conducted using the radiative transfer theory over many years following the pioneering
work of Wu (1985) [36] and Wu and Aki (1988) [43] can be found in Sato et al. (2012) [30].

4 One-way wave propagation and one-return wave modeling

(1990s–)

Ru-Shan made remarkable contributions in one-way wave propagation and one-return
wave modeling. One-way methods use the scattering formulation in which the medium
is considered as a background model with a perturbation. One main issue of the one-way
methods is the wide-angle accuracy of the one-way wave propagator with respect to a
pre-defined propagation direction. The accuracy depends on how to properly handle
scattering by strong medium perturbations. To address this issue, Ru-Shan developed
one-way methods using local propagators (e.g., beamlets and dreamlets; see Section 5)
to reduce the perturbation. For strong scattering, Ru-Shan’s key contribution helped un-
derstand the divergence issue of summing up the Born scattering series. He then devel-
oped the multiple-forward-single-backward renormalization method to solve the prob-
lem. Ru-shan also developed the thin-slab method and the super-wide angle screens to
improve the wide-angle accuracy. He used his one-way methods to model long-distance
high-frequency elastic Lg wave propagation excited by nuclear tests in the 1990s, a feat
that is extremely difficult to achieve using the full-wave finite-difference method. Note
that, although currently the reverse-time migration (RTM) is most commonly used in
seismic imaging, one-way imaging methods dominated the field for more than 30 years
since the 1970s. The many novel developments in one-way methods can provide fruitful
ideas for future work in seismic inversion.

4.1 Acoustic and elastic one-way and one-return propagators: Generalized
Screen Propagator (GSP) and De Wolf approximation

Ru-Shan pioneered the development of a suite of methods for efficient modeling of one-
way wave propagation and one-return wave modeling in complex acoustic and elastic
models. The methods are based on the multiple forward-scattering and single back-
scattering approximations. These algorithms simulate primary reflections from hetero-
geneities and neglect the internal reverberations while accounting for all forward scat-
tering phenomena, such as focusing/defocusing, diffraction, refraction, and interfer-
ence. Ru-Shan and his colleagues implemented the one-return method using an itera-
tive marching algorithm shuttling between space- and wavenumber-domains using FFTs.
The one-way and one-return methods are accurate and highly efficient for seismic-wave
modeling, particularly for long-distance propagation of high-frequency seismic waves.
Ru-Shan and his colleagues have successfully used these methods for seismic modeling,
imaging, computing finite-frequency sensitivity kernels for seismic tomography and mi-
gration velocity analysis, and modeling crustal guided waves.
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Figure 10: Geometry for derivation of the wide-angle complex-screen method. The medium is sliced into
thinslabs. For scattering and propagation effects of the thinslab between plane S and S1, when the wavefield is
known on S, the wavefield on S1 is obtained using the forward propagation approximation. (From [37])

In 1994, Ru-Shan [37] developed a wide-angle complex-screen method for an elastic
one-way propagator. Fig. 10 depicts the basic concept of a one-way wave propagator. A
3D inhomogeneous medium is sliced into a series of thin slabs perpendicular to the main
wave-propagation direction. With known wavefield incident at plane S, the wavefield
at plane S1 is calculated using the incident waves and all forward scattered waves from
heterogeneities between S and S1. Ru-Shan [37] derived a system of equations for one-
way wave propagation in arbitrarily heterogeneous elastic media using elastic Rayleigh
integrals and the local Born theory. Compared with the scalar phase-screen, the elas-
tic complex-screen has the following features. (1) For P-P scattering and S-S in-plane
scattering, the elastic complex-screen acts similar to scalar phase screens while both are
3-component vector fields. (2) For P-S and S-P conversions, the screen is no longer a
pure phase-screen and becomes complex (with both phase and amplitude terms); both
conversions are dominated by the shear modulus perturbation. The numerical results
obtained using the complex-screen method agree well with 3D finite-difference wave-
equation modeling and analytical solutions.

In 2003, Ru-Shan [39] studied the theory for one-wave wave propagation using the
Born, Rytov, and De Wolf approximations [14,15]. He developed three dual-domain gen-
eralized screen propagators, including the hybrid pseudo-screen, the wide-angle Padé-
screen, and the higher order generalized screen propagators. Compared with conven-
tional one-way propagators, these methods can properly handle large-angle wave prop-
agation fairly accurately in media with strong velocity contrasts. The renormalized for-
ward propagator is given by

G f =
∞

∑
m=0

[

G0ε f

]m
G0, (4.1)
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and the renormalized incident field is

u f =
∞

∑
n=0

[

G0ε f

]n
u0. (4.2)

The De Wolf approximation becomes

u=u f +G f εbu f . (4.3)

In these equations, ε f and εb are forescattering and backscattering potentials, respectively,
G0 is the Green’s operator for the background medium, G f εbu f is the primary backscat-
tered field under the De Wolf approximation.

The above approximation is a multiple-forescattering, single-backscattering approx-
imation. To model full wavefield including multiple backscattering using renormalized
forward Green’s function, Ru-Shan introduced De Wolf series [39, 62],

u=u f +G f εbu f +G f εbG f εbu f +···

=
M

∑
m=0

[G f εb]
m

u f . (4.4)

The De Wolf approximation is the first order approximation. The difference between
the De Wolf series and the Born series is in the Green’s functions. De Wolf series uses
the forward-scattering renormalized Green’s function, while Born series uses the back-
ground Green’s function. Consequently, the De Wolf series avoids the serious divergence
problem of Born series, since the backscattering coefficient is always smaller than one.

Fig. 11 shows an example of 3D migration using the generalized screen propagator
(GSP) that is based on the De Wolf approximation. It compares 2D slices of 3D images
obtained using the C3 subset of 3D SEG/EAGE salt model. The left column is for vertical
slices at Line 90 and the right column is for horizontal slices at depth 126. Panels (a), (b)
and (c) are velocity models and images from the split-step Fourier method and the GSP
method, respectively.

Wu et al. (2006) [62] developed two versions of the one-return method based on the
De Wolf approximation: one is the wide-angle, dual-domain formulation, and the other
is the screen formulation with small-angle approximation. Their results demonstrated
that the forward scattered waves are mainly controlled by velocity perturbations, while
the backscattered waves are primarily dominated by impedance perturbations. Fig. 12
schematically illustrates the flowchart of the thin-slab method for implementing the one-
return approximation, where (a) shows the original medium sliced into thin-slabs, and
(b) depicts the iterative procedure of transmitted and reflected wave calculations using
the one-return approximation. They numerically demonstrated the effectiveness of the
thin-slab and screen methods, and the wide-angle capability of the dual-domain imple-
mentation [61]. Fig. 13 is the 3D French model for numerical test. Fig. 14 compares syn-
thetic seismograms calculated using finite-difference (solid lines) and thin-slab methods
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Figure 11: Comparison between 2D slices of 3D images obtained using different methods for the C3 subset of
the 3D SEG/EAGE salt model. The left panels are vertical slices at Line 90, and the right panels are horizontal
slices at depth 126. Panels (a), (b) and (c) are the velocity models, images produced using the split-step Fourier
method and images generated using the GSP migration, respectively. (From [39])

(a) (b)

Figure 12: Schematic illustration of the thin-slab method for implementing the one-return approximation: (a)
the original medium is sliced into thin-slabs; (b) the iterative procedure of transmitted and reflected wave
calculations by the one-return approximation. (From [62])

(dashed lines) methods. The results show generally good agreement between the two
methods. However, the one-return approach is approximately 2-3 orders of magnitude
faster than an elastic FD algorithm.
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Figure 13: 3D French model. The fat solid lines indicate the horizontal surface at which the thin-slab method
is connected to the reflectivity method. The structure in grey has a perturbation of −10% in both P and S
velocities. (From [62])

Figure 14: Comparison of synthetic seismograms calculated using finite difference (solid lines) and thin-slab
methods (dashed lines). From top to the bottom are X-, Y- and Z-components of displacement, respectively.
(From [62])
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Ru-Shan also developed one-way propagators with an alternative geometry, i.e., with
a horizontal main propagation direction and vertical screens. This geometry is suitable
for calculating turning waves for velocity tomography, and for simulating crustal guided
waves. Wu et al. (2000) [54] developed the half-space one-way propagator for simulating
SH-wave propagation in the crustal waveguide. They used the method to simulate the
arriving regional wave Lg in different types of complex crustal waveguides including
those with small-scale random heterogeneities. They studied the influence of these het-
erogeneities on Lg amplitude attenuation and Lg coda formation. Wu et al. (2000) [53]
used the one-way propagator to study the energy partition and attenuation of Lg-waves
in complex crustal waveguides with both large-scale structures and small-scale random
heterogeneities. Their studies specifically addressed leakage attenuation caused by large-
angle forward scattering from random heterogeneities, removing the guided wave en-
ergy out of the trapped mode and those leaking into the mantle. The equivalent Q for
leakage attenuation as a function of character scale of the random heterogeneities agrees
well with the scattering theory.

4.2 Super-wide-angle GSP

To overcome the angle limitation of conventional one-way propagator, Ru-Shan devel-
oped the super-wide-angle one-way propagator [24, 25, 52]. By combining two orthog-
onally propagating one-way wavefields using wavefront reconstruction, the method is
accurate for super-wide angle (greater than 90◦) propagation and can model turning
waves. The method could be used for imaging steep subsalt reflectors and overhang-
ing salt flanks. They numerically verified the efficacy of the method. Fig. 15 displays the
modeling result of turning waves in a linear gradient velocity model obtained using the
super-wide angle one-way operator.

5 Beamlet and dreamlet (1990s–)

5.1 Concept of beamlets and frames

Mosher, Foster, and Wu (1996) [29] first introduced the idea of beamlet. They imple-
mented the beamlet in the frequency-space-wavenumber domain. The beamlet, like a
flashlight beam localized in space and direction, uses local reference velocities. The use
of the local velocities decreases the medium perturbations in the scattering formulation
of one-way propagators (Fig. 16). Therefore, the beamlet provides an approach to im-
proving propagation accuracy. In contrast to the beamlet method, global one-way meth-
ods use a global reference velocity, leading to large perturbations and large errors in the
propagators. Another advantage of using the beamlet is that a beamlet is automatically
equipped with the local propagation angles (see Fig. 17), which is important in correct-
ing the image amplitudes for the finite acquisition aperture. Physically, the properties of
the beamlets are attractive. In fact, a similar idea was introduced in 1946 by Gabor [17]
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(a) (b)

(c)

Figure 15: Modeling turning waves using a wavefield reconstruction method. (a) velocity model; (b) snapshots
obtained using the wavefield reconstruction method; (c) synthetic seismograms observed on the surface. The
vertical coordinate is reduced traveltime and the horizontal axis is trace number on the surface (the point
source is in the middle). The direct arrivals are weakened to render the signals of turning waves more clearly.
(From [52])

Figure 16: Background velocity profile (using local reference velocities) and local perturbations in the local
perturbation theory, compared with the global reference velocity (dashed line) and global perturbations in
standard perturbation methods. (From [58])

who used overlapping Gaussian window modulated sinusoids of different frequencies
to represent communication signals. Daubechies [12, 13] later showed that Gabor’s re-
construction was not stable and redundancy (i.e., smaller distance between neighboring
Gaussian windows) is needed to achieve a stable signal reconstruction. In Gabor’s origi-
nal decomposition/reconstruction, there is no redundancy (or redundancy factor is one).



L. Huang et al. / Commun. Comput. Phys., 28 (2020), pp. 1-40 21

Figure 17: One-way wave propagation in the beamlet domain. (a) Space-domain wavefield is decomposed into
the summation of beamlets. (b) Wave propagation in the beamlet domain. (c) Space-domain wavefield at
depth is reconstructed using the new beamlets. (From [58])

Daubechies [12,13] used frame vectors in signal analysis of the windowed Fourier trans-
form. Loosely speaking, frame vectors are similar to basis vectors. Both frame vectors
and basis vectors span the same space. However, the number of frame vectors is more
than the number of the basis vectors. Therefore, the use of the frame vectors to decom-
pose and reconstruct signals is redundant.

5.2 Gabor-Daubechies beamlets

Ru-Shan pioneered the use of frames and the dual frames to construct new beamlet prop-
agators [46] in 2001, to create new imaging tools [47] in 2002, and target-oriented beam-
let migration based on the Gabor-Daubechies (G-D) frame decomposition [9]. The G-D
beamlet imaging shows a much better image than the Kirchhoff migration (Fig. 18).

5.3 Local cosine beamlets

Ru-Shan introduced the local cosine beamlets (LCB) [58] to overcome some computational
efficiency drawback in the G-D beamlets. The G-D frames vectors are redundant and
computationally inefficient. To reconstruct a signal using the frame coefficients, one
needs to use the dual frame vectors [47]. On the other hand, the LCB is a set of basis
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(a)

(b)

(c)

Figure 18: (a) Velocity model of the 2D cross-section AA’ of the 3D SEG/EAGE salt model; (b) Image obtained
using beamlet migration; (c) Image obtained using Kirchhoff migration. (From [47])

vectors without redundancy and there is a fast LCB transform algorithm available [58].
LCB can also handle large-contrast media and produce high-quality images (Fig. 19).

5.4 Beamlet transform applications: true-amplitude imaging and directional
illumination

The amplitude of a seismic migration image is usually not proportional to the local reflec-
tivity. The true-amplitude imaging is to preserve the local reflectivity image amplitude.
Ru-Shan contributed greatly in this area. He found that acquisition system plays a big-
ger role than the propagator amplitude accuracy in true-amplitude imaging. He further
showed that it is necessary to correct the image amplitude using the directional illumina-
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Figure 19: Comparison of image quality and cost of poststack migration for the 2D cross-section AA’ of the 3D
SEG/EAGE salt model using different methods. (a) Split-step Fourier method. Computing cost is set to 1.00.
(b) GSP method. Computing cost is approximately 1.53. (c) LCB method. Computing cost is approximately
1.55. (d) LCB method. Computing cost is approximately 1.66. (From [58])

Figure 20: The definition of reflection (θr) and dip (θn)angles. For the same receiver array aperture, the received
energy depends on the dip of the reflector. (From [56])

tion in local dip/reflection angle domain. His true-amplitude imaging methods improve
amplitude-balanced images and reduce artifacts.

Wu and Chen in 2006 [48] developed a method to evaluate directional illumination
and acquisition aperture efficacy using wave theory-based beamlet decomposition. They
introduced the image conditions in the local angle domain (Fig. 20), defined the local
image matrix, and calculated the direction illumination in the image space.
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Figure 21: Directional illumination album for the dominant frequency (15 Hz) from all the 325 shots for a
2D cross-section of the 3D SEG/EAGE salt model: (a) vertical direction; (b) −30◦ (from vertical to left); (c)
−45◦ (from vertical to left); (d) +30◦ (from vertical to right); (e) +45◦ (from vertical to right); and (f) total
illumination intensity. (From [48])

The acquisition-aperture efficacy matrix and acquisition dip-response vector can be
used to quantify the efficacy of an acquisition configuration at a given subsurface point.
As numerical examples, Wu and Chen (2006) [56] calculated the direction illumination
maps and acquisition dip response maps in different velocity models. Fig. 21 depicts
the 15-Hz directional illumination album for a 2D cross-section of the 3D SEG/EAGE
salt model, where (a) to (f) are illumination intensities for different angles and for total
intensity. Fig. 22 shows the acquisition dip response album of the 2D cross-section of the
3D SEG/EAGE salt model, where (a) to (f) are response intensities at different dipping
angles and for total response intensity.

Wu et al. [49, 56] developed an angle-domain amplitude correction method for true-
amplitude wave-equation migration. The correction formulation relates the local image
matrix to the local scattering matrix. The local image matrix bears the footprints of the ac-
quisition aperture and propagation path effects, and the local scattering matrix is directly
related to the medium property. They obtained the local image matrix using beamlet de-
composition. They carried out the acquisition aperture correction using the acquisition
aperture efficacy matrix or acquisition dip response, which includes effects from both
acquisition configuration and complex overburden structures. Fig. 23 shows that the
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Figure 22: ADR album of a 2D cross-section of the 3D SEG/EAGE salt model from all the 325 shots with 176
left-hand-side receivers for each shot: (a) horizontal dip; (b) +30◦ (down from horizontal); (c) +45◦ (down
from horizontal); (d) −30◦ (up from horizontal); (e) −45◦ (up from horizontal); (f) total response intensity.
(From [48])

(a) Image without correction (b) Image after correction

Figure 23: Comparison of the images for a 2D cross-section of the 3D SEG/EAGE model before and after the
amplitude correction. (From [56])

angle-domain amplitude correction greatly reduces the distortion of image amplitudes
caused by the acquisition aperture effect.

Wu et al. (2004) [49, 56] developed two types of correction methods: one for common
reflection-angle images and the other for total strength images. These methods signifi-
cantly improve the amplitude fidelity and image quality.

The concept of the acquisition dip response (ADR) correction not only is applicable for
one-way propagators but also for full-wave reverse-time migration [65] to achieve true-
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(a) (b)

Figure 24: The migration image compensated by (a) source illumination and (b) ADR. Superimposed traces
are the theoretical normal reflectivity (red) and the image amplitudes (blue) [65].

reflection imaging. Local beams (beamlet), local angle-domain, and local phase-space are
all closely linked. Xie et al. (2006) [64] developed a full-wave-equation-based method for
seismic illumination analysis. They used a local plane-wave analysis method to calculate
localized directional energy fluxes for both source and receiver waves. They obtained an
illumination matrix and applied it to target-oriented or volumetric illumination analyses.
This method is flexible and practical for illumination analysis in complex 2D and 3D
velocity models with nontrivial acquisition and target geometries.

Yan et al. (2014) [65] developed an amplitude correction method using the acquisi-
tion dip response (ADR). In the method, the mono-frequency (the dominant frequency)
Green’s functions from shot/geophone locations are generated and decomposed locally
into incident/scattered plane waves to construct ADRs of different dip angles. The con-
ventional RTM image is decomposed into a stack of common dip images, which are com-
pensated individually using the corresponding ADRs. Then, the corrected images are
stacked again to form the final image. They numerically demonstrated the efficacy of
the method. Fig. 24 shows RTM images for a 2D cross-section of the 3D SEG/EAGE salt
model with the source illumination correction in (a) and the ADR correction in (b). The
theoretical normal reflectivity (red) and the image amplitude (blue) are superimposed on
the images in Fig. 24. The ADR corrected image reproduces true impedance contrast of
subsurface structures, particularly for steeply dipping structures and in subsalt regions.
In true-reflection imaging, the image amplitude is proportional to the local reflectivity.

5.4.1 Dreamlet concept

Imaging in the compressed domain is a dream for geophysicists. Dreamlet = drumbeat
(time-frequency, t−ω, localization) + beamlet (space-wavenumber, x−k, localization).
Beamlets represent space localization using a windowed x−k transform. Because seismic
events are sparse in time, it is better to also have time localization using a windowed t−ω

transform. In fact, seismic events are sparse in both time and space, most of the dreamlet
coefficients are close to zero, and this property can be used to significantly compress
seismic waveform datasets.
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Figure 25: Snapshots of a single dreamlet propagation. Because of the symmetrical property of the local-cosine
basis, the dreamlet has two symmetric lobes of packets. On the left is the dreamlet of ξ̄=8∆ξ̄, and on the right
ξ̄=0. ξ is the horizontal wavenumber and ∆ξ is the sampling interval of ξ. (From [59])

Figure 26: Wave spreading of beamlet propagation. On the left is the beamlet of ξ̄ = 8∆ξ̄, and on the right,
ξ̄=0. (From [59])

Wu et al. (2008) [59] employed dreamlets for wave propagation and imaging (Fig. 25).
Compared with the dreamlet propagation that is localized in time-space, the beamlet
spreads its energy along the entire wave path (i.e. not localized in time) (Fig. 26) [59].

5.5 Dreamlet wavefield compression and denoising

Because of the complete localization of the dreamlet (time-space-frequency-wavenumber
localization), using dreamlets to decompose seismic data can achieve significantly better
compression compared with curvelets [4, 51] and beamlets (Fig. 27). Dreamlets have the
highest compression ratio. Because of this property, dreamlets can also be used for de-
noising [22].

5.6 Dreamlet imaging and migration

Imaging using dreamlets with selected significant coefficients improves the computa-
tional efficiency because the number of significant coefficients are small. Wu and his
colleagues successfully employed the dreamlet concepts in prestack depth migration
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Figure 27: Seismic-wavefield compression ratios (CR) of different methods. As shown in the figure, the threshold
varies from 1% to 5% of the maximal coefficients in each decomposition method, and the blue-square, green-
diamond, magenta-asterisk lines stand for the CR’s of multi-scale, multi-dimensional local harmonic (self-similar
dreamlet), curvelet, and beamlet methods, respectively. (From [59])

with source-receiver survey sinking [33], in Gabor-frame-based Gaussian packet migra-
tion [18], and in migration with Gaussian wave packets based on Poincare wavelets [19].

6 Strong-nonlinear FWI and Direct Envelope Inversion (DEI)

(2010s–)

6.1 Background

In full-waveform inversion (FWI), the observation is recorded seismic traces dobs (r,s,t),
where r, s are the receiver, source locations, respectively, and t is time. The goal of FWI
is to find the true subsurface model mtrue such that the forward modeled seismic traces in
mtrue match the observation

A(mtrue)=dobs (r,s,t) , (6.1)

where A is a modeling operator solving the wave equation in model mtrue for the source
and receiver (s,r). The model is usually a 3D model such as the P-wave velocity.

How to find the true model mtrue? In FWI, one guesses an initial model m0 that is
hopefully not far from mtrue, such that we can use a perturbation expansion

A(m0+δm)≈A(m0)+A′(m0)δm+O(δm)=dobs(r,s,t)=A(mtrue), (6.2)

or

δd=dobs (r,s,t)−A(m0)≈A′(m0)δm, (6.3)

from which δm can be solved if the terms in O(δm) can be ignored. A′(m0) is called
the Fréchet derivative that expresses a linear relationship between the wavefield pertur-
bation δd and the model perturbation δm. However, it is possible that the initial model
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m0 may not be close to the true model. In this case, one can update the model from
m0 →m1 =(m0+δm) using δm solved from Eq. (6.3). We then use m1 as the new initial
model to repeat the process until some convergence criterion can be achieved. Unfortu-
nately, the convergence is usually slow or not guaranteed at all, which depends on the
choice of the initial model m0.

Two problems are outstanding in FWI:

• Can we ignore O(δm) in (6.2)? If we do so, what physics is ignored?

• Can FWI come up with its own initial model m0?

Ru-Shan has contributed significantly in addressing these problems.

6.2 High-order Fréchet derivatives and multiple scattering

Like the Taylor series, we can use higher-order functional Fréchet derivatives that are
multi-linear mapping operators with properly defined norms (for details, see [6, 32]) for
the perturbation expansion in (6.2)

A(m0+δm)=A(m0)+A′(m0)δm+
1

2
A′′(m0)δm2+···+

1

n!
A(n)(m0)δmn+··· , (6.4)

where A′, A′′, and A(n) are the first, second, and nth order Fréchet derivatives. The series
(6.4) is closely related to the Born series. In 2014, Ru-Shan [63] produced an important
insight that

”There is a one-to-one correspondence between the mathematical n-th order
Fréchet derivative and the physical n-th order multiple scattering term in the
Born scattering series.”

Therefore, ignoring high-order terms in (6.2) is the same as ignoring multiple scatter-
ing. However, multiple scattering cannot be ignored when the heterogeneity size is large
compared to the wavelength or when the velocity contrast/perturbation is strong.

Owing to this reason, FWI using only the first-order Fréchet derivative works effec-
tively when the initial model is close to the true model, which implies two things: the
medium contrast ‖δm‖| is small and the spatial size of ‖δm‖| is small (i.e., the large-scale
structure in the true model is well captured in the initial model). If the FWI initial model
is just a homogeneous model, to invert for the large-scale inhomogeneities, we need to
have low-frequency seismic data corresponding to long wavelengths to justify the use of
only the Fréchet derivative and make the first-order Born approximation valid. If we do
not have low-frequency data, we must include higher-order derivatives and use multiple
scattering.

Ru-Shan’s work in waveform inversion focuses on strong scattering and on how to
obtain the low-wavenumber initial model without using low-frequency data.



30 L. Huang et al. / Commun. Comput. Phys., 28 (2020), pp. 1-40

6.3 Strong scattering modeling

Seismic inversion and modeling are tightly related to each other. The ability to invert for
large-scale strong-contrast scatterers depends on our understanding of modeling wave
interaction with such scatterers. Multiple scattering must be included for modeling strong
scattering. Historically, multiple scattering was described in the Born scattering series,
with each term describing a scattering order. When the background field encounters a
scatterer, it produces a first-order scattering. The first-order scattered wave encounters
another scatterer and produces a second-order scattering, and so on. Seismic modeling
with a finite number of terms in the Born series is called the naive Born approximation.
Unfortunately, the Born series is usually not convergent. To handle the divergence issue,
Ru-Shan has made significant contribution by recognizing that

“by re-ordering and renormalizing the Born series into the multiple-forward-
single-backward De Wolf series, one can get a convergent field.”

Ru-Shan’s work on seismic modeling of strong scattering started in the 1990s [23, 38,
62]. For a more recent work, we refer readers to [23]. In particular, he used the De Wolf se-
ries (DWS) renormalization. In DWS, rather than dealing with the omni-directional scat-
tering, he re-ordered the scattering series into a multiple-forward and single-backward
scattering series. Therefore, the divergent parts can be progressively canceled as more terms
are added. Fig. 28 shows a comparison between the naive Born approximation and the
DWS using a resampled 2D cross-section of the 3D SEG/EAGE salt model. The naive
Born calculation diverges as more and more terms/orders are used. The renormalized
DWS converges.

6.4 Nonlinear sensitivity kernel

In waveform inversion, a sensitivity kernel maps model perturbations (e.g., velocity
anomaly) to seismic data perturbations. For example, the commonly used Fréchet deriva-
tive is a linear mapping kernel. This linear kernel is not sufficient when the heterogeneity
scale a is large in size compared with the wavelength λ, or when the medium contrast
is strong, or both. Using the DWS, Ru-Shan derived the nonlinear sensitivity kernel [63]
using the multiple forward scattering renormalization (Fig. 29). Figs. 29(b)-(d) show that,
when the heterogeneity size is small compared with the wavelength (a∼0.1λ), the linear
Fréchet kernel (Fig. 29(b) works well compared to the exact result (Fig. 29(c). However,
when the heterogeneity size is large (a∼5λ), the linear kernel (Fig. 29(e) cannot capture
the sensitivity (Fig. 29(f) whereas the nonlinear DWS kernel can (Fig. 29(g). The impli-
cation of this observation in waveform inversion is obvious. If we rely on the Fréchet
derivative, we have to find conditions that make the linear kernel valid. This means that
the availability of the low-frequency data is crucial as low-frequency waves have long
wavelengths, resulting in a small value of a/λ. If we do not have low-frequency data, we
need to have a better initial model so that the heterogeneities are of small sizes or weak
perturbations.
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Figure 28: Comparison of modeling strong scattering using the naive Born series and the De Wolf series. (a) A
resampled 2D cross-section of the 3D SEG/EAGE salt model. The source is at the top center of the model and
174 receivers are evenly distributed on top of the model. The source wavelet is a 15 Hz Ricker. (b) Background
model; (c) Real part of the recorded wavefield at 10 Hz, computed by summing the naive Born series (first-order
Born: BA-1 and the 3rd order Born: BA-3); (d) Real part of the wavefield at 10 Hz, computed by summing
the renormalized de Wolf series (DWS) (first-order DWS: DWA-1 and the 3rd order DWS: DWA-3). (Modified
from [23])

The nonlinear kernel states that

“If multiple scattering nonlinear kernel is used in the waveform inversion, the
need for low-frequency data is reduced.”

We emphasize here that the ’single’ or ’multiple’ scattering is referred to the interac-
tion between the background field and the unknown heterogeneities yet to be inverted.
The wavefield (i.e. Green’s function) in the background model can itself contain multiple
scattering.
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Figure 29: Comparison of sensitivity kernels computed using different modeling methods for two different-sized
heterogeneities. (a) A Gaussian anomaly in a homogeneous background medium. At the center of the Gaussian
anomaly, the velocity is 20% higher than the background and the velocity anomaly decays away from the center
in a Gaussian fashion. The standard deviation of the Gaussian profile are a=1 km (b-d) and a=50 km (e-g).
The source is located at the top center of the model and the receivers are at Z=500 km. The parameter λ is
the P-wavelength in the background medium. Modeled seismic waveforms are calculated using (b and e) the
first-order Born approximation or the linear Frechet derivative kernel, (c and f) the full-wave finite difference
(FD), and (d and g) the De Wolf series using multiple forward scattering (i.e., the non-linear kernel). In (b-g),
the time is reduced. The reduced traveltime is defined as the true traveltime minus the background traveltime.
The FD result is assumed to be accurate. (Modified from Figs. 3-4 in Wu and Zheng [63])

6.5 Envelope and signed envelope inversion

Conventional FWI works well if the initial model is close to the true model. In fact, the
initial model only needs to be approximately correct at long-wavelength scales. For an
arbitrary starting model, it is necessary for FWI to use the low-frequency content in the
data because FWI is based on the single-scattering (Fréchet) inversion engine. However,
the problem is that real active seismic data may not contain low frequencies (lower than
5 Hz). Within the framework of conventional FWI, the lack of low-frequency is a main
issue for FWI convergence. For the purpose of model building, one can find a model to
just fit certain aspects of the data. For example, traveltime tomography can generate a
good smooth large-scale velocity model using only the first-arrival times.

Ru-Shan has conducted a series of systematic works to find an effective approach
for inversion of seismic reflection waveform envelopes. The inversion focuses on using
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(a) (b)

Figure 30: (a) Comparison of waveform spectrum and envelope spectrum for the Marmousi data with a Ricker
source excitation and (b) same as (a) but with a low-cut source excitation. The low-cut source is obtained by a
5-Hz low-frequency taper.“True-model” means the spectrum of the 1D vertical profile of the true velocity after
depth to time conversion. The “Perturbation” spectrum is the spectrum of the 1D profile of the velocity model
difference after depth to time conversion. (From [55])

the seismic envelope and the modulation signal model (instead of the commonly-used
convolution) to invert for large-scale velocity structure [8, 27, 55]. The advantage of this
method is that the workflow is the same as that in FWI but the data misfit is the envelope
difference. Ru-Shan initially developed an indirect envelope inversion (EI) method [55].
“Indirect” is meant to contrast with the newly developed “direct envelope inversion”
(DEI). In the indirect EI, the gradient operator for updating the model is derived through
the chain rule of differentiation with respect to the data functional, which is a double
linearization. Hence, the waveform sensitivity operator (Fréchet derivative) can be used
in EI but the effective data residual (adjoint source) is changed to the one related to the
envelope. The envelope has low frequency (often called ultra-low-frequency, namely
frequencies lower than the lowest frequency of the source frequency band) information
(not to be confused with the low frequency in the waveform wiggles) (Figs. 30(a)-(b).
Therefore, fitting the envelope (long-period signal) can avoid the cycle skipping problem
commonly encountered in FWI. Note that the envelope inversion is not meant to replace
FWI, but to produce the initial model for FWI. Numerical examples in Figs. 31 and 32(a)-
(d) show that using EI followed by FWI is better than using FWI alone (Figs. 32(e)-(f)).

Ru-Shan then developed the multi-scale direct envelope inversion (MSDEI) with new
Fréchet derivatives [44,45]. As we mentioned above, the indirect envelope inversion (EI)
applies the chain rule of differentiation to the data functional to use the waveform Fréchet
derivative,

δe

δv
=

δe

δp

δp

δv
, (6.5)

where δe/δv is the envelope Fréchet derivative and δp/δv is the waveform Fréchet
derivative. In strong-scattering cases, both the envelope-to-waveform derivative and the
waveform Fréchet derivative on the right-hand side of the above equation are strongly
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(a) (b)

Figure 31: (a) True Marmousi model and (b) linear gradient initial model. (From [55])

Figure 32: Seismic envelope inversion tests on the Marmousi model. (a) Smooth background obtained from
envelope inversion (EI) using the full-band source, (b) same as (a) but with the low-cut source, (c) combined
EI + WI inversion result (waveform inversion using the smooth background from envelope inversion) using the
full-band source, (d) combined EI + WI inversion result using the low-cut source, (e) direct waveform inversion
(FWI) from the linear initial model using the full-band source, and (f) same as (e) but using the low-cut source.
(From [55])
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(a) (b)

(c) (d)

(e) (f)

Figure 33: MSDEI results obtained using envelope data with polarity (envelope by signed demodulation) for a
2D SEG/EAGE salt model: (a) True model; (b) Initial model; (c) Result of conventional FWI; (d) Result of
indirect envelope inversion (using waveform Fréchet derivative) + FWI; (e) Result of MSDEI + FWI; (f) Result
of MSDEI + FWI using envelope phase-data in the local time-frequency domain. (Modified from [40])

nonlinear, so the chain rule of differentiation is a double linearization that renders the
failure of the indirect EI when applied to strong-scattering cases. To overcome this limi-
tation, Ru-Shan introduced the direct envelope Fréchet derivative and the calculation for-
mulas [44, 45]. Hence, not only the limitation of the waveform Fréchet derivative δp/δv,
which is based on the weak-scattering theory, is avoided, but also the severe distortion
by the data filter δe/δp is removed. This feature tremendously expanded the application
range of DEI (direct envelope inversion). Fig. 33 gives a summary of the results from
MSDEI applied to the 2D SEG/EAGE salt model and the comparison to the results from
other inversion methods.

Ru-Shan used a 2D SEG/EAGE salt model with strong scattering to verify the capa-
bility of his MSDEI method. Fig. 33(a) is the true model and Fig. 33(b) is the initial model
for inversion. The model in Fig. 33(a) contains the large-scale salt dome and the strong
velocity perturbation (from the background model). The source is a Ricker wavelet with
a dominant frequency of 9 Hz (cut off signals below 4 Hz). Fig. 33(c) is the result of
conventional FWI, and Fig. 33(d) is the result of conventional envelope-inversion (indi-
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rect EI). As expected, both conventional FWI and indirect EI fail in this strong-scattering
case. The last two figures (Figs. 33(e),(f)) are the results obtained using direct envelope
inversion (DEI). Fig. 33e is the result of MSDEI with signed envelopes [7, 8]. Fig. 33(f) is
the result of MSDEI using envelope data through time-frequency analysis [21]. DEI with
the signed envelope gives excellent recovery of the salt structure, since signed envelopes
keep the polarity information of reflections in the data, and the inversion process can
better recover the positive or negative velocity jumps. The MSDEI method with the en-
velope phase in the local time-frequency domain and the normalized envelope amplitude
can enhance the signal of reflections from deep structures, so the inversion has better re-
covery of deep structures (Fig. 33(f)). Conventional FWI can add the high-wavenumber
component to the inversion. Therefore, MSDEI + FWI gives a better recovery of a broad
wavenumber spectrum of the model. Some results have also been obtained for source-
independent MSDEI [67].

7 Summary

We have highlighted only some of Ru-Shan Wu’s research. We marvel at the numer-
ous remarkable innovative ideas and methods that he has contributed to three major
fields in seismology: seismic scattering, imaging, and inversion. He has successfully dis-
covered deep connections among seemingly unrelated concepts across different physical
sciences. He has pioneered research particularly in diffraction tomography, seismic scat-
tering in random media, scattering and attenuation, radiative transfer of seismic scatter-
ing, acoustic and elastic one-way wave propagation and imaging, beamlet and dreamlet
for seismic-wave modeling and imaging, strong-nonlinear full-waveform inversion, and
direct envelop inversion. Ru-Shan constantly looks for scientific challenges and consis-
tently identifies important ones. He can easily initiate a new research topic and make
impactful contributions. We look forward to his continued contributions in addressing
many challenging problems in geophysics.
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