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Abstract. The Direct Waveform Inversion (DWI) is a recently proposed waveform in-
version idea that has the potential to simultaneously address several existing chal-
lenges in many full waveform inversion (FWI) schemes. A key ingredient in DWI is
the explicit use of the time-space causality property of the wavefield in the inversion
which allows us to convert the global nonlinear optimization problem in FWI, with-
out information loss, into local linear inversions that can be readily solved. DWI is a
recursive scheme which sequentially inverts for the subsurface model in a shallow-to-
deep fashion. Therefore, there is no need for a global initial velocity model to imple-
ment DWI. DWI is unconditionally convergent when the reflection traveltime from the
boundary of inverted model is beyond the finite recording time in seismic data. In or-
der for DWI to work, DWI must use the full seismic wavefield including interbed and
free surface multiples and it combines seismic migration and velocity model inversion
into one process. We illustrate the concepts in DWI using 1D and 2D models.

AMS subject classifications: 34K29, 34L25, 74J20, 78A46
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1 Introduction

The seismic full waveform inversion (FWI) [1, 2] initially formulated in the time domain
represents an important conceptual leap whose purpose is to find a subsurface model that
can be used to predict observed seismic waveforms in both phase and amplitude, wiggle
to wiggle. FWI can also be implemented in the frequency domain [3–6]. Despite some
success, FWI mathematical formulation has significant physical limitations. The goal of
this paper is to understand the cause of the limitations and propose a new formulation,
called direct waveform inversion (DWI), to overcome these limitations. At present, DWI
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is by no means perfect but nevertheless it provides promising directions for waveform
inversion.

Seismic FWI problem was frequently cast into a global nonlinear mathematical opti-
mization problem where a model is sought to minimize a misfit/objective function de-
fined between the observed data and the model-predicted data [7]. The nonlinearity
arises because the change in seismic data in response to the change in the model param-
eter is not linear. In FWI, one linearizes the problem around a starting model and then
computes the local gradient (e.g., the Frechet derivative) of the data perturbation with
respect to the model perturbation and updates the model along the gradient direction.
The updated model will be the next starting model and this process can be iterated until
certain criterion about the misfit is met.

Challenges to implement FWI were almost immediately recognized since the incep-
tion of the FWI idea [1,2]. The first one is the initial-model dependence and convergence
issue in the nonlinear global optimization. The second one is FWI‘s apparent lack of
ability to recover low-wavenumber (large-scale) strong-contrast model variations.

FWI results strongly depend on the initial model that is usually not an outcome of
FWI itself but is provided as an input to FWI. FWI works well if a good initial model in
the neighborhood of the true model can be found in the beginning [8–11]. If the initial
model is far from the true model, the FWI iteration may converge to a local minimum
of the objective function and the global optimization cannot be attainable. Real geologi-
cal models are likely to be complex. Demanding an initial model that is already close to
the true model undercuts the true value of practical implementation of FWI. Fortunately,
Kolb et al. [12] showed in numerical examples that if a coarsely smoothed version of
the true model is available as the starting model, FWI could converge to the true model.
This conclusion had been confirmed more recently [4, 13]. Can FWI produce its own low-
wavenumber initial modeling? Within the gradient-based FWI theoretical framework, we
need low frequency seismic data in order for FWI to recover the low-wavenumber model
component [12,14] because the FWI formulation/approximation is more linear/accurate
at low frequencies. Seismic data in exploration settings are bandlimited. However, even
without the low frequency data, the low-wavenumber model information is indeed con-
tained in data and we can readily obtain it using many other methods such as traveltime
tomography or the normal moveout analysis [15]. The inability of FWI to invert for low-
wavenumber model variations relative to a simple starting model (e.g., homogeneous, or
linear) shows the deficiency in FWI formulation.

Gradient-based FWI methods do not account for the full physics of wave scattering
and propagation. Tarantola [16, p.128] pointed out that the FWI local Frechet gradient
amounts to the linear single-scattering Born approximation. Recent work by Wu and
Zheng [17] showed a one-to-one correspondence between the n-th order Frechet deriva-
tive and the n-th order multiple Born scattering. This means that FWI‘s dropping high-
order functional derivatives is to physically ignore possible multiple scattering among
unknown model perturbations/scatterers. This is a significant drawback in the FWI as-
sumption. Wu and Zheng [17] further showed in numerical modeling that including
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multiple forward scattering is critical to build correct traveltimes for transmission paths.
Both transmitted and reflected waves have transmission paths. Therefore, it is critical
to be able to take into account multiple scattering among model perturbations in wave-
form inversion. (Note that the single scattering here is referred to single interactions
between the background wavefield with the unknown model perturbations. However,
the background field can be multiply scattered by structure contained in the background
model.) The Born approximation is accurate if the following two conditions are satisfied:
the data frequency is low or if the size of the perturbation is small compared to the wave-
length; and the unknown model perturbation is weak. The first condition can be fulfilled
if the low-wavenumber component of the starting model matches the low-wavenumber
component of the true model. Within the framework of FWI theoretic, there has been
a significant amount of work to obtain a low-wavenumber initial model, which is then
used as an input to FWI in sequel. This includes the envelope inversion [18–23], inten-
sity inversion [24], waveform correlation function inversion [25], and Laplace FWI [26]
and so on. There is also effort to extrapolate the bandwidth of the data to ultra-low fre-
quency [27, 28].

FWI formulation by no means is the only formulation for waveform inversion. There
are also other efforts to directly consider the nonlinearity by incorporating multiple scat-
tering in waveform inversion such as the T-matrix approach [29–35], or inverse scattering
series [36–39].

Recently, Liu and Zheng [40, 41] proposed a reflection direct waveform inversion
(DWI) scheme by explicitly exploiting the causality of space-time wavefield in the in-
version process as a constraint. As a consequence, DWI converts a global nonlinear problem
into many local linear inversion problems. DWI does not require a global initial model. DWI
first inverts for the shallow model and then recursively inverts for the deeper model.
Unlike the FWI iterative process, this recursion process is always convergent and in the
meantime it can fit the waveforms. DWI must use all wave types (primary reflections, in-
ternal and free surface multiples, etc.). DWI represents a different theoretical framework
compared to gradient-based inversion methods. Our focus here is to expand and review
the basic ideas of DWI using the time-space causality principle as an explicit constraint
so this idea can be developed further by interested people.

2 Basic idea of DWI

2.1 DWI in 1D

The time-space causality concept of DWI can be simply understood in a 1D case along the
z direction (Fig. 1). The model can be parameterized as a stack of horizontally stratified
layers. We consider the acoustic case. Each layer is homogeneous and characterized by a
sound speed, ci, and a layer thickness, Hi, where the subscript indicates the layer number
(Fig. 1). The pressure field is P(z,t) and particle velocity field is Vz(z,t), where z is the
depth and t is time. U(z,t) and D(z,t) are upgoing and downgoing pressure fields at z,
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Figure 1: DWI process for a 1D layered model.

respectively. To simplify notations, we use Pi=Pi(z,t), Vzi=Vz(zi,t), D±
i =Di

(

z±i ,t
)

, and
U±

i =Ui

(

z±i ,t
)

. z+i and z−i represent depths slightly below and above zi, respectively.
Our starting assumptions are:

(i) The incident wave is a downgoing plane wave initiated at time zero at the acquisi-
tion plane z0. The wavelet is an impulse.

(ii) Both the wave pressure P0 and the vertical particle velocity Vz0 are recorded. The
recorded waves include all the primary reflections as well as the multiple reflections
among all layers.

(iii) The model parameters for all layers are unknown except the velocity of the top
layer is known, c0.

(iv) All layers have the same density, ρi =ρ.

Having both types of data (pressure and particle velocity) will allow us to separate
the wavefield at a depth into upgoing and downgoing waves [42]. In many cases, we may
have just one type of data. If only pressure data are available, it can be used to predict the
particle velocity data [43–45]. Because we assume the availability of both pressure and
particle velocity data, it does not matter whether the acquisition plane is a free surface or
not. For now, we regard the first layer as an infinite half space.
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For plane waves, we can decompose the pressure-velocity data, P-Vz, at a depth level
into an upgoing U and a downgoing D pressure wave at the same depth via the following
two relations:

P=D+U, I ·Vz=D−U, (2.1)

where I is the acoustic impedance, defined as the product of sound speed and density.
Now we describe the DWI inversion steps:

(1) Using the recorded data, P0 and Vz0, we can obtain the upgoing and downgoing
pressure at z0, U+

0 and D+
0 , respectively;

(2) If there is no free surface, there will be only one pulse in D+
0 (t) which is the direct

wave at time zero. However, the upgoing wave U+
0 (t) may have many arrivals

due to wave interaction with multiple layer interfaces. We know that the earliest
arrival in U+

0 (t) must be from the nearest reflector, which is at z1. We can certainly
pick its traveltime, t1 and amplitude, A1. Reflections from any other depths must
come later than t1 and this is the time-space causality principle which states a
correspondence between the earliest arrival in time and the nearest reflector in space;

(3) Since we know c0 and have picked t1, we can compute the distance H1 to obtain the
depth of the first reflector z1: H1= c0t1/2 and z1 = z0+H1;

(4) We extrapolate the upgoing and downgoing pressure waves from z0 to depth z−1
and get U−

1 and D−
1 . D−

1 is a time-delayed version of D+
0 and the amount of time

delay is H1/c0. On the other hand, U−
1 is a time-advanced version of which means

we need to shift U+
0 to the negative time direction to get U−

1 and the amount of
time shift is −H1/c0. The amplitude ratio A1 = U−

1 (t1)/D−
1 (t1) is related to the

impedance contrast between the two layers: A1 =(c1−c0)/(c0+c1) so we can ob-
tain the velocity c1 for the next layer;

(5) From U−
1 and D−

1 and using Eq. (2.1), we can obtain the P−Vz data at depth z−1 ,
P1 and Vz1. The P−Vz data are continuous across the boundary so we can pass the
P−Vz data to depth z+1 ;

(6) At the very top of the second layer z+1 , we can decompose P1−Vz1 data into upgoing
and downgoing pressure waves, U+

1 (t) and D+
1 (t), using c1 that has already been

obtained in step (4);

(7) Unlike D+
0 (t) which has a single seismic event, the downgoing D+

1 (t) now may
have a train of events because the interface at z1 can constantly reflect waves down-
ward. The upgoing U+

1 (t) should be composed of many seismic events too;

(8) We can regard the downgoing D+
1 (t) as an input signal and the upgoing U+

1 (t) as
an output. We then deconvolve D+

1 (t) from U+
1 (t) and obtain a reflection response

of the medium (z> z1 part and with a transparent boundary condition at z1) due
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to a downgoing impulsive plane wave initiated at z+1 . Here D+
1 (t)∗R(t) =U+

1 (t)
where ∗ is the convolution operation. In the deconvolution, the response R(t) must
be causal, R(t)=0 for t<0. Now, we can loop this process recursively from step (4)
to step (8) with a stopping criterion in the next step (9);

(9) Because the seismic data recording time length is finite and each depth extrapola-
tion (Step (4)) will shift the upgoing wave U(t) to the negative time direction. At
sufficiently large depth z, the upgoing wave will be all zero and this is the stopping
criterion for DWI.

We can see that DWI does not need a global initial model to start with. It integrates
imaging and inversion as a single step and it is recursive and always convergent. If the
layers have different densities, we need to use several plane waves of different incident
angles to resolve elastic properties of the underlying layers.

2.2 DWI in 2D and 3D models

In two- or three-dimension models, the DWI idea is essentially the same however the
implementation is considerably more complex. We need to make two changes.

First, instead of using downgoing/upgoing waves in the 1D case, we use outgoing
W (x,t) and ingoing N(x,t) waves (Fig. 2), respectively. The sense of outgoing or ingoing
is with respect to a closed boundary. The acquisition plane S0 with an outward normal

Figure 2: DWI process for a 2D (or 3D) model.
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n is closed and on S0 we record both pressure u(x,t) and ∂u(x,t)/∂n which is related to
the particle velocity along the outward normal direction at x∈S0.

Based on the extinction theorem (46), we can compute the outgoing W and ingoing N
waves on S0:

W (x,t)=− lim
ε→+0

‹

S0

[

u
(

x′,t
)

∗
∂G(x+εn|x′ ,t)

∂n(x′)
−G

(

x+εn|x′ ,t
)

∗
∂u(x′,t)

∂n(x′)

]

dS0

(

x′
)

,

(2.2)

N(x,t)=− lim
ε→+0

‹

S0

[

u
(

x′,t
)

∗
∂G(x−εn|x′ ,t)

∂n(x′)
−G

(

x−εn|x′ ,t
)

∗
∂u(x′,t)

∂n(x′)

]

dS0

(

x′
)

, x∈S0,

(2.3)

where G(x|x′ ,t) is the Green‘s function between a receiving point x and a source point x′,
the symbol ∗ is the time convolution, n(x′) is the outward normal at x′∈S0.

Secondly, to use the time-space causality, we need a pair of collocated source and
receiver. We have obtained W (x,t) and N(x,t) for any point x ∈ S0. By studying the
time lapse between ingoing and outgoing waves, we can obtain the position of the local
reflector (Fig. 2). All reflectors form a surface S1. Since the velocity in the region between
S0 and S1 is known, we can extrapolate the fields, W and N, from S0 to S−

1 (interior side
of S1). The time-space causality stipulates that: the first/earliest pulse in the ingoing
(reflected) wave N(x∈S1,t) must be produced by the first/earliest pulse of W (x∈S1,t)
due to a reflector at x∈S1 (Fig. 2). The ratio of the two pulse amplitudes yields the velocity
at the other side the reflector in S+

1 . Up to this point, we have figured out the location
of the reflector S1 and the velocity on the other side (or the exterior) of S1. We can then
recompose the outgoing and ingoing waves to pressure-particle-velocity data on S−

1 and
pass them continuously to S+

1 using boundary conditions. We can repeat this process and
the domain of the inverted model is recursively enlarged until we exhausted the data due
to their finite recording time.

3 Numerical examples

In this section, we show two numerical examples to illustrate the effectiveness of the DWI
approach. The first example is for a 1D horizontally layered medium with plane wave
incidence and reflection. The second one is for a 2D irregular piece-wise homogenous
layered medium with a point source (i.e., a line source in 2D if embedded in the 3D
space).

3.1 DWI for a 1D layered medium

Our first test model is a layered medium (Fig. 3). The layers are horizontally stratified
and within each layer the medium is homogeneous. The layer thickness is 3 m. The
medium density is constant throughout the model space. The model has a free surface
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Figure 3: Comparison between the true model (red line) and the DWI inverted model (black line).

Figure 4: Recorded pressure, P, and vertical particle motion data, Vz.

boundary condition. The plane wave source depth is 20 m. The source wavelet is a Ricker
of 20 Hz central frequency. Therefore, the wavelength is about 100 m, which is large com-
pared to the 3-m layer thickness. The receiver is at 40 m depth, recording both pressure
and vertical-component particle velocity waveforms (Fig. 4). The recorded waveforms
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are complex due to the free-surface and internal multiples (Fig. 4). However, DWI can
successfully recover the model sound speed profile (Fig. 3). In fact, DWI captures all
physics and DWI inversion must use all wave types.

Because DWI uses the reflectivity model to invert velocities, DWI approximates a gra-
dient layer with a constant-velocity layer. Therefore, DWI can invert for major disconti-
nuities in the true model (Fig. 3). Because of this limitation of using reflectivity inversion,
DWI is not able to produce perfect result for a model with many thin layers ( 3m in this
case for wavelength ∼100 m). Considering the results are obtained using only one plane
wave, we expect the results can be improved with more plane waves of different inci-
dent angles. The other limitation is that if there are no physical reflections, DWI cannot
produce an inversion result. However, given that DWI is a highly efficient algorithm,
the DWI result can be used as a good starting model for FWI. This idea will be tested in
future.

3.2 DWI for a 2D irregularly layered medium

The second test model is a layered model with irregular layers (Fig. 5a). The maximum
velocity contrast is 200%. We used a 2-D acoustic finite difference method to model the
full seismic data to be used in DWI. The model grid size is 5m and time step is 1ms. The
density is constant throughout the model. We calculated wavefields for 3 shots. The 3
sources are all at depth 0.1km. Their horizontal locations are X = 0.5km (Shot-1), 1.5km
(Shot-2), and 2.5km (Shot-3), respectively. The source wavelet is a Ricker wavelet of 20Hz
central frequency. A line of receivers, recording the pressure (P) and particle velocity (Vz),
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Figure 5: 2D DWI inversion. a) True model; b) recorded data for Shot-2 (x = 1.5km, z= 0.1 km); c) DWI
inverted model; d) modeled seismic gather using the DWI model in c) for Shot-2. In both b) and d), the direct
waves are muted.
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are placed in the first layer below the source, at a depth that is 0.19 km above the seafloor
(i.e., the bottom of the first layer). The receiver interval is 5m from X=0km to X=3km.
Both top and bottom of the model are half spaces and there is no free surface. A sample
shot gather for Shot-2 is shown (Fig. 5b) with direct P−waves muted.

We make some remarks about the 2D DWI inversion result. First, 2D DWI again
integrates imaging and inversion into a single process using time-space causality. The
inverted model (Fig. 5c) contains both layer interfaces and velocity values of the layers.
Secondly, the modeled shot gather (Fig. 5d) using the DWI-inverted model (Fig. 5c) is
close to the recorded data (Fig. 5b) for Shot-2, where primary reflections, refracted ar-
rivals, and multiples are all modeled.

4 Discussions and relations with other methods

As discussed in Introduction, the gradient-based full waveform inversion (FWI) is just
one of many types of waveform inversion strategies. In FWI, interaction between the
background wavefield and the unknown scatterer is treated as a single-scattering Born
scattering which is valid if the size of the scatterer is small relative to the wavelength (im-
plies low frequency wave) and the velocity perturbation is weak. As a consequence, FWI
needs to start from an accurate global low-wavenumber model or needs low-frequency
data. This also means that FWI is likely to succeed if the unmodeled scattered field (e.g.,
the difference between the observed data and the modeled data) is weak and can be
modeled by the Born scattering.

In contrast, DWI builds on the explicit use of the time-space causality. The causality
allows us to perform waveform inversion locally. It reduces the global nonlinear opti-
mization to many local inversions. Therefore, a global starting model for DWI is not
necessary. DWI builds the model in a shallow-to-deep fashion until all recorded data
are used due to their finite recording length. It is interesting to note that Kolb, Collino
and Lailly [12] found that ”progressive downward determination of the velocity distribu-
tion” was better in overcoming the ”local minimum” issue in FWI. While FWI is likely to
succeed when the unmodeled field is weak, DWI works well if the unmodeled scattered
field is a strong signal.

We also need to point out that the Marchenko-type methods also employ causality
principle [47–58]. It is beyond the scope of the paper to give an in-depth review of the
development in Marchenko inversion and imaging, which is an active research field. In-
stead, we refer interested readers to Kiraz and Nowack [59] for a review regarding the
1D inversion and to Lomas and Curtis [60] for higher dimensions. However, it is worth
noting that Marchenko focusing needs an accurate velocity model to estimate the travel-
time from the receiver depth to the focal point inside the model whereas DWI does not
need a global initial velocity model to start the inversion using one-sided data.

There are many challenging issues in DWI to be solved in future. Since DWI inverts
model for the shallow part first, how the error in the shallow part will affect inversion
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for deeper structure needs further work to clarify and such error propagation should be
model dependent. We may not be able to find the true model but at least we can test
if the inverted model is correct or not using modeling and observation. If the observed
data have no reflections, DWI will not work because it is built on reflectivity modeling
while FWI can still work. In the real Earth, the wavefield is elastic and P and S waves can
convert to each other. For P-to-P reflections, the time-space causality principle still holds
but the application of the same principle to the S-to-S reflection requires us to isolate S
waves which itself can be a challenge. We view DWI as a useful complement to FWI and
the DWI output model may be a good input model for FWI to refine the model details.

5 Conclusions

We showed that DWI is a working strategy for performing waveform inversion. The
numerical success for 1D and 2D models we have presented here show that DWI is a
promising alternative framework to the conventional FWI formalism. In our numerical
examples, we have shown that DWI inverts the model in a shallow-to-deep fashion and
DWI does not require a global initial model to start with. DWI is unconditionally conver-
gent and it is recursive rather than iterative. DWI combines imaging and inversion into
a single step. In future, we will extend the DWI to models with more complex structure.
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