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Abstract. In this paper, we investigate the performance of the exponential time dif-
ferencing (ETD) method applied to the rotating shallow water equations. Comparing
with explicit time stepping of the same order accuracy in time, the ETD algorithms
could reduce the computational time in many cases by allowing the use of large time
step sizes while still maintaining numerical stability. To accelerate the ETD simula-
tions, we propose a localized approach that synthesizes the ETD method and overlap-
ping domain decomposition. By dividing the original problem into many subdomain
problems of smaller sizes and solving them locally, the proposed approach could speed
up the calculation of matrix exponential vector products. Several standard test cases
for shallow water equations of one or multiple layers are considered. The results show
great potential of the localized ETD method for high-performance computing because
each subdomain problem can be naturally solved in parallel at every time step.
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1 Introduction

The exponential time differencing (ETD) method, as an exponential integrator-based
method, has been developed for solving evolutionary partial differential equations of
semi-linear or fully nonlinear types (see, for example, [1–8] and a thorough review [9]).
Such a method is constructed on the basis of exponential integrators and variation-of-
constants formula, and is known for its desirable numerical stability. Indeed, for stiff
problems, a large time step size can be used in ETD, while tiny time step sizes are of-
ten required by explicit time stepping. In addition, differently from standard implicit
time stepping, nonlinear solvers are not required in ETD. Therefore, the ETD method
usually leads to significant computational savings comparing with other time-stepping
algorithms. The major computational efforts in ETD schemes are spent in evaluating ma-
trix exponential and vector products. Many algorithms have been proposed in order to
evaluate matrix exponentials [10–15]. Some of them are designed for large sparse ma-
trices, while the others only work for matrices of moderate size. We are interested in
the former as the discrete system we consider in this paper is of large dimensions. The
first comprehensive package for evaluating large-scale matrix exponential vector prod-
ucts is EXPOKIT, which was developed by Sidje in [12]. The backbone of its sparse rou-
tines is Krylov subspace projection method such as the Arnoldi and Lanczos processes
whose mathematical foundation was established in [16–18]. By projecting large matrices
to smaller ones via the Krylov subspace approach, the corresponding matrix exponential
becomes easier to compute. The other main idea in EXPOKIT is to adapt the time step
size of the ETD simulations based on an error estimator developed in [17]. Combing the
time stepping idea of EXPOKIT and the adaptivity of the dimension of the Krylov sub-
space [1], the phipm function algorithm was developed in [13]. This algorithm achieves
a balance between the time stepping error and Krylov projection error by dynamically
choosing the dimension of the Krylov subspace and the size of time stepping. But it was
pointed out in [19] that the Arnoldi procedure still takes too much time, which made
phipm less efficient than other semi-implicit predictor-corrector schemes for geophysical
fluid dynamics problems. Thus, the Krylov subspace with the incomplete orthogonal-
ization procedure (phipm/IOM2) was recently introduced, which has been successfully
applied, in the context of exponential Rosenbrock integration methods, to the shallow
water equations on the sphere [15]. Another solver, KIOPS, was proposed in [14] for
calculating ϕ-functions in exponential integrators to allow efficient implementation of
multi-stage exponential integrators.

To accelerate the exponential time integration, a different research direction is to take
advantage of parallel and high-performance computing. A straightforward way is to per-
form the parallelization at the algebraic level. For instance, the parallel adaptive-Krylov
exponential solver was proposed in [20], where the standard data-parallel approach is
taken, that is, each vector is split across all the processors and MPI communication is
used for performing the vector algebraic operations. However, since the matrix exponen-
tial is global and dense, this approach usually requires a high communication volume.
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A different way is to divide the problem into many subdomain problems of smaller size
using domain decomposition (DD) so that they can be solved using exponential integra-
tors in parallel. Based on the overlapping domain decomposition, a localized compact
ETD algorithm was first introduced in [21] for extreme-scale phase field simulations. In
that approach, subdomain problems are solved locally in parallel at each time step, and
the data in overlapping regions is shared by neighboring subdomains; thus only a small
volume of data needs to be transferred between the neighbor subdomains for time step-
ping. Numerical experiments on three-dimensional coarsening dynamics demonstrated
great computational efficiency and excellent parallel scalability of this approach on su-
percomputers. The overlapping localized ETD was analyzed in [22] and in [23] for the
time-dependent diffusion and semi-linear parabolic equations respectively, in which the
convergence of the iterative solutions to fully discrete localized ETD solutions and to the
exact semi-discrete solution was rigorously proved. A non-overlapping localized ETD
was proposed and analyzed for diffusion problems in [24], where the convergence and
exact mass conservation were demonstrated.

In this paper, we consider the rotating shallow water equations in the context of
MPAS-Ocean [25], the ocean component of MPAS – Model for Prediction Across Scales.
MPAS is a set of open-source software utilities jointly developed by National Center
for Atmospheric Research and Los Alamos National Laboratory to model atmosphere,
ocean and other earth-system components with application to climate, regional climate
and weather studies. To obtain a global ocean model capable of resolving full physics and
handling multiple resolutions within a single simulation, MPAS-Ocean utilizes the TRiSK
scheme [26,27] – a C-grid staggering finite volume method – for spatial discretization on
unstructured, multi-resolution meshes of the sphere. Such meshes are constructed by
Spherical Centroidal Voronoi Tessellations (SCVTs) [28, 29] whose dual meshes are De-
launay triangulations. In fact (as explained further below), the TRiSK scheme is applica-
ble to any conforming mesh composed of convex polygons that are locally-orthogonal,
including latitude-longitude grids, dipole and tripole displaced pole grids, conformally
mapped cubed sphere grids, Voronoi diagrams and Delaunay triangulations. The scheme
possesses desirable properties for modeling oceanic and atmospheric flows, in particu-
lar, it supports steady-state nonlinear geostrophic balance, and allows for the conser-
vation of mass and total energy and a robust simulation of potential vorticity dynamics.
These properties are achieved mainly because of the construction of the flux interpolation
scheme which maps a flux field on the primal mesh to a new flux field on the dual mesh
in such a way that the divergence of the new flux on the dual mesh is an interpolation
of the divergences on the neighboring primal mesh cells. Equivalently, the constructed
flux is geometry-compatible, i.e. satisfying the “null-divergence” condition proposed
and studied in [30–32] for hyperbolic conservation laws on manifolds to ensure station-
ary geostrophic modes. It should be noted that the flux reconstruction scheme in TRiSK
is robust and works on any orthogonal grids, particularly on multi-resolution meshes
by SCVTs as demonstrated in [33]. Therefore, the TRiSK scheme has been widely used
for modeling both global ocean/atmosphere circulations and flow motions in coastal re-
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gions. The analysis of the scheme was presented in [26] and [27] for the linearized and
nonlinear shallow water equations, respectively.

In this work, we focus on efficient time-stepping methods for the nonlinear shallow
water equations discretized in space by the TRiSK scheme; specifically, we propose a lo-
calized ETD method that combines the ETD method with the overlapping domain de-
composition. The ETD methods have been increasingly used as the time integration
scheme for the shallow water equations on the sphere of earth [15, 19, 34, 37]. Among
them, in [37], different ETD methods have been proposed and analyzed for the multi-
layer rotating shallow water equations with TRiSK discretization. These schemes are
efficient in the sense that considerably larger time steps over an explicit integrator can
be taken while stability and sufficient accuracy are still maintained; moreover, numerical
results show that significant cost reductions are achieved with the ETD method over an
explicit time discretization scheme (RK4). The conservation of mass of the ETD scheme
in the framework of TRiSK discretization is also proved. Our goal here is to construct
localized ETD methods which maintain all the desirable properties of the global ETD
method while reducing the size of the problem with domain decomposition, thus further
speed up the overall computation. Extensive numerical experiments are carried out to
demonstrate the effectiveness of the localized ETD method, which achieves the desired
accuracy as the global ETD method and shows great potential in parallel computing due
to its natural scalability.

The rest of this paper is organized as follows. The mathematical model and spa-
tial discretization for the shallow water equations are presented in Section 2. The ETD
method is briefly reviewed in Section 3, and the localized ETD method is then proposed
and discussed in Section 4. Various numerical experiments are presented in Section 5,
followed by some concluding remarks given in Section 6.

2 Rotating shallow water equations and spatial discretization

The rotating shallow water equations (SWEs) have been widely used for modeling the
atmospheric and oceanic flows, which can be seen as a simplification of the primitive
equations obtained under the assumption of a small ratio of the vertical length scale (fluid
thickness) to the horizontal one. The single-layer SWEs describe the motion of a thin layer
of fluid with a uniform density and a free surface, lying on a rigid bed. The multilayer
model considers the variance of density in the vertical direction and models the dynam-
ics of several layers of fluids stacked on top of each other, which provides a more accurate
vertical profile than the single-layer model. Both models will be presented in the follow-
ing. Furthermore, for geophysical flow problems, the Coriolis force is included in order
to account for the rotating effect of the Earth. To better address the multiple scales of the
geophysical flows, meshes with multiple resolutions are often applied. To this end, we
choose the TRiSK scheme for spatial discretization [25–27, 35], as it can handle meshes
with variable resolutions and possesses desired properties of conservations.
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2.1 Single-layer shallow water equations

Let Ω be the sphere of earth or a part of it. The single-layer rotating SWEs can be written
in the following vector-invariant form:





∂h

∂t
+∇·(hu)=0, in Ω×(0,T),

∂u

∂t
+( f +ω)k×u+∇

(
|u|2

2
+g(h+b)

)
=G(h,u), in Ω×(0,T),

(2.1)

where h is the fluid thickness, u is the fluid horizontal velocity field on the earth’s surface,
ω=k·(∇×u) is the relative vorticity with k the surface normal vector satisfying k·u=0,
and G is the additional stress or diffusion terms that must be determined on a case-to-case
basis. Three parameters involved are the gravity acceleration g, the bottom topography b,
and the Coriolis parameter f =2Ω0sinθ, where Ω0 is the angular velocity of rotation and
θ the latitude. The fluid absolute vorticity is f +ω. By introducing the potential vorticity
(PV)

q=
f +ω

h
, (2.2)

the rotating SWEs can be recast in the following form:





∂h

∂t
+∇·(hu)=0,

∂u

∂t
+q(hu⊥)+∇

(
|u|2

2
+g(h+b)

)
=G(h,u),

(2.3)

where u⊥=k×u is the velocity rotated through a right angle, and q(hu⊥) is the thickness
flux of PV perpendicular to the velocity field u and is referred to as the nonlinear Coriolis
force [27].

2.2 Multilayer shallow water equations

The multilayer shallow water model describes the motion of a stack of fluids with distinct
densities [36–38]. It is able to provide more accurate vertical profiles of the fluid velocity
and depth, compared with the single-layer model. Assuming that there are L layers of
fluids, we define ρl to be the density of the l-th layer that satisfies ρl−1 < ρl , for 2≤ l ≤ L
(i.e. the density is increasing with water depth). Denote by hl and ul the fluid thickness
and velocity of the l-th layer, and by h and u the vectors containing all the layer variables.
Set the layer coordinates ηl as

ηl(h)=b+
L

∑
i=l

hi, for l=1,··· ,L, and ηL+1=b, (2.4)
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so that the layers are separated based on their densities (also known as isopycnal con-
tours). Then the governing equations for the fluid in layer l read:





∂hl

∂t
+∇·(hlul)=0,

∂ul

∂t
+q(hl ,ul)hlu

⊥
l +∇

(
|ul |

2

2
+

gpl(h)

ρl

)
=Gl(h,u),

(2.5)

where Gl is the additional stress or diffusion that will be specified in numerical experi-
ments, and pl(h)=ρlηl(h)+∑

l−1
i=1 ρihi is the dynamical pressure.

Remark 2.1. The rotating SWEs have been widely used for predicting tides and storm
surge levels of the ocean, in which the term G in Eq. (2.3) or Gl in Eq. (2.5) plays an
important role in making the prediction feasible. The choice of this term will be specified
in Section 5 for each test case.

2.3 Spatial discretization by the TRiSK scheme

The TRiSK scheme is a C-grid staggering, mimetic finite volume/finite difference scheme
for spatial discretization that preserves the desirable properties of the continuous equa-
tions, such as the conservation of mass, total energy and PV. The TRiSK scheme has been
used for the horizontal discretization of the primitive equations in MPAS-Ocean. Here,
we give a brief introduction of the scheme. For details, the reader is referred to [26,27,39].

The TRiSK scheme uses the spherical centroidal Voronoi tessellation (SCVT) [40] and
its dual Delaunay triangulation as the primal mesh and dual mesh, respectively. As a
C-grid staggering scheme, for the discrete quantities of the rotating SWEs (2.3) and the
multilayer extension (2.5), the TRiSK scheme places the fluid thickness at the primal mesh
cell centers, stores the normal component of the velocity at the primal cell edges, and
puts the PV at the primal cell vertices (see Fig. 1). Take the single-layer rotating SWEs for
example, the semi-discrete system after the spatial discretization is:





∂hi

∂t
=−[∇·Fe]i,

∂ue

∂t
=−[∇(Ki+g(hi+bi))]e−F⊥

e q̂e+G(h,u),

(2.6)

where hi =
∫

Pi
hdx/Ai is the cell average of fluid thickness h over the primal mesh cell

Pi with Ai being the area of cell Pi and h=(h1(t),··· ,hNc(t)) with Nc being the number
of primal cells. For the velocity, the unknowns are ue = u·ne representing the compo-
nent of the horizontal velocity field in the direction normal to the primal cell edge e and

u= (u1(t),··· ,uNe(t)) with Ne the number of primal edges. In addition, Fe = ĥeue is the

fluid thickness flux per unit length in the direction of ne with ĥe = [h]i→e denoting the
average of h on primal edge e using its values hi on neighboring primal cells; q̂e =[q]v→e

an averaging of q on the primal edge e using its values qv on primal vertices and F⊥
e the
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Figure 1: The staggering of variables for the thi
kness h, the normal 
omponent of the velo
ity u and the PV

q in the TRiSK s
heme [25℄.

thickness flux perpendicular to Fe. The specific form of F⊥
e can be obtained based on the

flux reconstruction operator in [26, 27].

The semi-discrete system (2.6) can be rewritten in the following general form:

dW(t)

dt
=F(W), (2.7)

where W = (h1(t),··· ,hNc(t),u1(t),··· ,uNe(t))
T ∈ R

Nc+Ne and the right-hand side vector
F(W) is generally nonlinear. Next, we discretize (2.7) in time to obtain a fully discrete
problem.

3 Exponential time differencing method for time discretization

For time integration, we make use of the exponential time differencing Runge-Kutta
(ETD-RK) method, which is known for better stability over the explicit stepping meth-
ods. In particular, we illustrate the ETD-RK scheme of third order accuracy in detail as
it will be used in our subsequent numerical experiments. Note that in [37], an ETD-RK
type scheme was proposed using a static linearization constructed from the Hamiltonian
formulation of the continuous equations evaluated at a reference state with zero velocity.
However, the applicability of such a scheme is limited as the fixed linearization matrix is
not reliable when the velocity field is far away from the zero, which is a common situation
in many cases, such as the shallow water test case 5 (SWTC5) and test case 6 (SWTC6)
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in [41] (see Section 5). Therefore, the continuous linearization via computing the Jacobian
matrix of the right hand side of system (2.7) is used in this paper.

3.1 Exponential time differencing Runge-Kutta

Consider a uniform partition of time interval [0,T]: 0= t0< t1< ···< tM=T with time step
∆t=T/M. Denote by Wn the approximation of W(tn) at the time tn and Jn the Jacobian
matrix of F(W) evaluated at Wn, Jn =

∂F
∂W (Wn). The system (2.7) is then equivalent to

dW(t)

dt
= JnW(t)+Rn (W(t)) , (3.1)

where Rn(W(t)) is the associated nonlinear remainder: Rn(W) = F(W)− JnW . Multi-
plying (3.1) by the integrating factor e−Jnt, and then integrating the system from t= tn to
t= tn+1, we obtain

W(tn+1)= e∆tJnW(tn)+e∆tJn

∫ ∆t

0
e−τJn Rn(W(tn+τ))dτ. (3.2)

The essence of ETD methods is to approximate the nonlinear term Rn(W(tn+τ)) appear-
ing in the integrand of (3.2) for τ ∈ [0,∆t] [2]. General three-stage, third-order ETD-RK
schemes were proposed in [42]. In our implementation, we use the following ETD-RK3
scheme:

wn,1=Wn+
1

2
∆tϕ1

(1

2
∆tJn

)
F(Wn), (3.3a)

wn,2=Wn+
2

3
∆tϕ1

(2

3
∆tJn

)
F(Wn)+

8

9
∆tϕ2

(2

3
∆tJn

)(
Rn(wn,1)−Rn(Wn)

)
, (3.3b)

Wn+1=Wn+∆tϕ1(∆tJn)F(Wn)+
3

2
∆tϕ2(∆tJn)

(
Rn(wn,2)−Rn(Wn)

)
, (3.3c)

where the two ϕ-functions are defined as

ϕ1(z)=
ez−1

z
, ϕ2(z)=

ϕ1(z)−1

z
=

ez−1−z

z2
.

It can be seen from (3.3) that the products of matrix exponential functions with vectors
are required. Since the Jacobian matrix appearing in many practical problems is typically
large and sparse, how to quickly evaluate the matrix exponential vector products is es-
sential in the simulations. The Krylov subspace algorithms provide an efficient way to
perform these calculations.

3.2 Krylov subspace algorithms

By projecting the matrix onto a subspace of small dimension, the Krylov subspace algo-
rithms are able to evaluate the matrix exponential function in a more efficient way than
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the original problem. In addition, one doesn’t need to form the matrix explicitly in this
approach, because only the action of the matrix on single vectors is required.

The Krylov subspace of dimension m for a matrix A ∈ R
n×n and a vector b ∈R

n is
defined as

Km(A,b)=span{b,Ab,··· ,Am−1b}, (3.4)

where m ≪ n. Applying the Arnoldi process leads to the orthonormal basis {vi}
m
i=1 of

Km(A,b): for j=1,2,··· ,m,

ṽj+1=Avj−
j

∑
i=1

hi,jvi, hi,j =(vi,Avj), for i=1,2,··· , j,

vj+1=
1

hj+1,j
ṽj+1, hj+1,j =‖ṽj+1‖,

where v1 = b/‖b‖, (·,·) denotes the Euclidean inner product in R
n, and ‖·‖ =

√
(·,·)

is the associated induced norm. Let Vm = [v1,··· ,vm] be the n×m matrix formed by the
orthonormal basis vectors {vi}

m
i=1, and Hm the m×m upper Hessenberg matrix consisting

of the coefficients hi,j obtained from the Arnoldi process. We then have the following
relation:

AVm =VmHm+hm+1,mvm+1eT
m, (3.5)

where em = (0,··· ,0,1)T ∈ R
m is the m-th canonical basis vector of R

m. It follows from
the above relation that the Hessenberg matrix Hm =V T

m AVm, which means that Hm is the
projection of A onto the Krylov subspace with respect to the orthonormal basis {vi}

m
i=1.

Finally, the approximation of matrix exponential vector products, ϕs(∆tA)b for an integer
s≥0, can be given as in [13] by

ϕs(∆tA)b≈Vm ϕs(∆tV T
m AVm)V

T
m b=‖b‖Vm ϕs(∆tHm)e1, (3.6)

where e1 is the first canonical basis vector of R
m. Because the size of Hm is small, the eval-

uation ϕs(∆tHm)e1 is computationally cheap and can be computed using, for instance, a
dense Padé approximation, see [12] for the details.

However, it has been observed that the Arnoldi process has taken a big part of com-
putational efforts in numerical simulations [19]. To further reduce computational cost,
the incomplete orthogonalization method (IOM) has been used instead of the standard
Arnoldi process. The IOM was originally proposed in [43] to compute the eigenvalues of
large unsymmetric matrices, and was recently applied to perform an efficient exponential
time integration for the advection-diffusion equation [44] and for the shallow water equa-
tions on the sphere [15,19]. We follow [15] and use the IOM with an orthogonalization of
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length 2 (IOM2): for j=1,2,··· ,m,

ṽj+1=Avj−
j

∑
i=max(1,j−2)

hi,jvi, hi,j =(vi,Avj), for i=max(1, j−2),··· , j,

vj+1=
1

hj+1,j
ṽj+1, hj+1,j =‖ṽj+1‖.

It is worthwhile to note that {vi}
m
i=1 are only orthonormal locally, i.e.,

(vi,vj)=δij, for |i− j|≤2,

where δij is the Kronecker delta. The phipm/IOM2 solver developed in [19] is based on
this idea and the adaptivity of Krylov subspaces.

4 Localized exponential time differencing method

In this section, we propose a localized ETD (LETD) method with natural scalability, that
synthesizes the overlapping spatial domain decomposition and the ETD time integration.

For a given domain Ω, we construct an overlapping decomposition of Ω by first par-
titioning it into K non-overlapping subdomains {Ω̃k}

K
k=1, namely the control regions, as

shown in Fig. 2 for the case of two subdomains (extension to the multiple subdomains is
straightforward). In practice, mesh partitioning tools, such as METIS [45], can be used to
generate such a non-overlapping partition of Ω. Then the overlapping subdomains Ωk

are obtained by extending Ω̃k to its neighbors by a fixed distance ∆k (or a certain number
of layers of the mesh) and we write Ωk=Ω̃k∪Bk, where Bk is called the associated “buffer
zone”. In the following, we present the proposed LETD algorithm for the single-layer
SWEs. The method, however, can be applied directly to the multilayer case, and will be
tested numerically in Section 5.

The subdomain problems find the subdomain solutions h(k) and u(k) at tn+1 on Ωk,
for k=1,··· ,K, given the solution at tn and appropriate boundary conditions on ∂Ω, such
that




∂h(k)

∂t
+∇·(h(k)u(k))=0, in Ωk×(tn,tn+1),

∂u(k)

∂t
+q(h(k)u

⊥
(k))+∇

(
|u(k)|

2

2
+g(h(k)+b)

)
=G(h(k),u(k)), in Ωk×(tn,tn+1),

h(k)(x,tn)=h(x,tn), u(k)(x,tn)=u(x,tn), in Ωk,
(4.1)

where h(x,t) and u(x,t) denote the global solution constructed from the subdomain so-
lutions:

(h(x,t),u(x,t))=(h(k)(x,t),u(k)(x,t)), if x∈ Ω̃k. (4.2)
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Figure 2: A de
omposition of two overlapping subdomains in one dimension.

Since the information in a hyperbolic system is propagated along the characteristics, we
assume the following relation between the size of buffer zone ∆k and the time step size
∆t= tn+1−tn:

Λmax,n∆t< min
k∈{1,···,K}

∆k, (4.3)

in order to make sure that the subdomain problems provide the same approximation as
the global scheme inside their control regions, where Λmax,n=Λmax(h(·,tn),u(·,tn)) is the
largest wave propagation speed of the system at tn. Under this condition, the solution at
time level tn+1 in the control domain Ω̃k can be completely determined by the solution at
the time level t= tn in its computational domain Ωk. See Fig. 2 for an illustration for the
case of two subdomains using the wave propagation with a constant right-going speed.
In such a situation, it is obvious that the domain of dependence of the solution in Ω̃k at
t= tn+1 is part of its computational domain Ωk if condition (4.3) is satisfied.

The localized ETD method is to solve subdomain problems at each time step using the
TRiSK scheme for the spatial discretization and the ETD-RK schemes for time integration.
Following [37], we define the characteristics time step size ∆tC by ∆tC =1/λmax,n, where
λmax,n is the largest (in absolute magnitude) discrete wave propagation speed of the fully
discrete system at tn. Let ∆tCFL = c∆tc with the Courant number c < 1. For numerical
simulations, we enforce the discrete version of the constraint (4.3):

∆t< min
k=1,···,K

∆k ·∆tCFL . (4.4)

Under this condition, the LETD algorithm reads as follows: for n=0,··· ,M−1,

(1) Given the numerical solution Wn of (3.1) at tn;

(2) Set W(k),n =Wn|Ωk
, for k=1,··· ,K;

(3) Use the TRiSK scheme for the spatial discretization and evolve the semi-discrete sys-
tem with an ETD-RK scheme locally in each Ωk to t= tn+1 with the time step size ∆t
satisfying (4.4);

(4) Update Wn+1 by Wn+1|Ω̃k
=W(k),n+1|Ω̃k

, for k=1,··· ,K.
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Remark 4.1. The solution to the semi-discrete system (2.6) satisfies conservation of total
energy by the construction of the TRiSK scheme (for more details, see [27]). Thus appli-
cation of the ETD or LETD methods to (2.6) results in a numerical scheme in which the
total energy is conserved within time truncation errors. For the conservation of mass, it
has been proved in [37] that the ETD solution of the semi-discrete system (2.6) conserves
mass exactly. In the case of the LETD method with overlapping subdomains, because of
the local matrix exponentials, the LETD solutions in the overlapping region shared by
different subdomains may not be exactly the same. For instance, for the two subdomains
Ω1 and Ω2 as in Fig. 2, W(1),n+1|Ω1∩Ω2

may not exactly match W(2),n+1|Ω1∩Ω2
, though the

difference is very small and in the order of time truncation errors. Note that the same
behavior has been observed for diffusion equations in [22, 24]). However, as we shall
numerically verify in Section 5, the LETD method has the same accuracy as the global
ETD method, and it inherits all desirable conservation properties of the TRiSK scheme,
namely, conservation of mass, total energy and PV for long time horizons.

5 Numerical experiments

The goal of this section is twofold: first, we investigate the numerical behavior of the
ETD-RK method (in particular, the ETD-RK3 scheme (3.3) is used) on single-layer and
multilayer SWEs, and compare its performance with the standard RK method; second,
we test the LETD method and demonstrate its efficiency over its global counterpart in
the sequential setting. Note that we do not investigate the corresponding performance
of the LETD method in parallel implementation in this paper and would like to leave
it as future work. We shall consider three test cases: the test case of simulating ocean
mesoscale activity (SOMA) [46], the shallow water test case 5 (SWTC5) and test case 6
(SWTC6) from the standard shallow-water test case suite in Williamson et al. [41]. We
use the phipm/IOM2 solver [19] as presented in Subsection 3.2 for matrix exponential
vector products, where we set the initial dimension of Krylov subspace to be m=30, and
the maximum Krylov subspace dimension mmax = 100. We compute the relative errors
between the numerical solution and the reference solution as:

Eh =
maxj=1,···,Nc

|hn(j)−h
re f
n (j)|

maxj=1,···,Nc
|h

re f
n (j)|

, Eu =
maxj=1,···,Ne

|un(j)−u
re f
n (j)|

maxj=1,···,Ne
|u

re f
n (j)|

, (5.1)

where h
re f
n =

(
h

re f
1,n ,··· ,h

re f
Nc,n

)
, and u

re f
n =

(
u

re f
1,n ,··· ,u

re f
Ne,n

)
denote the reference solution at

time tn obtained by RK4 with a small time step size ∆tre f = 0.001∆tC . The physical pa-

rameters used in the test cases are the radius of earth R = 6.37122×106 m, the gravity
acceleration g= 9.80616 m· s−2, and the angular velocity of earth Ω0 = 7.292×10−5 s−1.
All tests are implemented on Dell Precision 5530 with Intel (R) Xeon (R) E-2176M CPU @
2.70 GHz and 32 Gb memory.
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5.1 Single-layer rotating SWEs

Three test cases are considered for studying the proposed algorithms on the single-layer
rotating SWEs: 1) a simplified version of the SOMA test case with a double-gyre circu-
lation, where the same geophysical domain and bathymetry are used, but neither wind
stress nor bottom friction is applied; 2) two test cases of flow on the sphere of earth -
the SWTC5 of zonal flow over an isolated mountain and the SWTC6 of Rossby-Haurwitz
wave.

5.1.1 The SOMA test case

The same geometrical setting as in [37, 46] is considered: the spatial domain is a circular
basin centered at the point xc of latitude θc =35◦ and longitude αc =0◦ with radius 1250
km, lying on the surface of earth. The fluid depth in the basin varies from 2500 m at the
center to 100 m on the coastal shelf. The initial fluid depth is denoted by h0 =−b+η0,

where b<0 represents the bottom topography and η0= η̄e−(x−xc)
2/(2σ2) is a Gaussian-type

function with η̄=2 m and σ=200 km. The initial velocity is chosen as u0 =
g

f (xc)
k×∇η0,

where k is the local vertical unit vector. With such a choice of initial conditions, it can be
shown that geostrophic balance holds, that is, initial velocity satisfies ∇·u0 = 0 and the
pressure gradient g∇η0 balances the Coriolis force f k×u0. The velocity field and initial
sea surface height η0 are shown in Fig. 3.

Figure 3: Initial 
onditions for the SOMA test: the sea surfa
e height measured in meters (left); the velo
ity

�eld measured in meters/se
ond (right).

Remark 5.1. To evolve the semi-linear system (2.7) obtained by the TRiSK scheme, the
normal component of the initial velocity evaluated at the center of every primal edge
e is required. In this test case, the normal velocity at the center of edge e is u0, e = u0 ·
ne =

g
f (xc)

(k×∇η0)·ne =− g
f (xc)

(k×ne)·∇η0 =− g
f (xc)

∇η0 ·te, where te = k×ne is the unit

tangential vector along edge e, and the function η0 is evaluated at the center of edge e.
Therefore, the term ∇η0 ·te is the tangential derivative of η0 evaluated at the center of



X. Meng et al. / Commun. Comput. Phys., 29 (2021), pp. 80-110 93

Table 1: (SOMA) The errors of �uid thi
kness and velo
ity obtained by ETD-RK3 with time steps varying from

∆t=160∆tCFL to ∆t=5∆tCFL on meshes with di�erent resolutions at Day 1.

∆t

∆tCFL

32 km 16 km 8 km

Eh Eu Eh Eu Eh Eu

160 1.03e-07 - 8.50e-05 - 8.46e-08 - 4.25e-05 - 9.60e-09 - 7.19e-06 -

80 5.74e-08 [0.84] 4.90e-05 [0.80] 1.39e-08 [2.61] 9.12e-06 [2.22] 1.75e-09 [2.46] 1.20e-06 [2.59]

40 8.65e-09 [2.73] 8.13e-06 [2.59] 1.84e-09 [2.92] 1.59e-06 [2.52] 1.78e-10 [3.30] 1.53e-07 [2.96]

20 8.10e-10 [3.42] 6.61e-07 [3.62] 2.07e-10 [3.15] 1.88e-07 [3.08] 2.39e-11 [2.90] 1.66e-08 [3.21]

10 6.43e-11 [3.66] 6.71e-08 [3.30] 1.89e-11 [3.45] 2.04e-08 [3.20] 2.24e-12 [3.41] 1.44e-09 [3.53]

5 5.75e-12 [3.48] 5.93e-09 [3.50] 1.63e-12 [3.54] 1.45e-09 [3.81] 2.04e-13 [3.46] 1.27e-10 [3.50]

Table 2: (SOMA) The average CPU time for ea
h time stepping and total CPU time obtained by ETD-RK3

with time steps varying from ∆t=160∆tCFL to ∆t=5∆tCFL during one day's simulation. The simulation time

is measured in se
onds.

∆t

∆tCFL

32 km 16 km 8 km

time/step total time time/step total time time/step total time

160 0.43 5.98 3.50 101.49 14.52 842.32

80 0.20 5.55 1.52 86.70 8.19 949.62

40 0.15 8.11 0.85 95.58 3.94 909.46

20 0.15 16.27 0.77 173.43 3.56 1642.59

10 0.15 31.94 0.77 347.59 3.70 3412.09

5 0.15 63.85 0.77 696.82 3.71 6849.96

edge e, which can be simply approximated by using the finite difference scheme. This
technique is also used in other test cases in this section.

The ETD-RK3 (3.3) is used for time integration. During the simulations, we only
update the Jacobian matrix once every 10 time steps in order to improve the efficiency.
Three quasi-uniform meshes of different resolutions are considered in our simulations:

1) 32 km resolution with 8,521 cells, 25,898 edges, and 17,378 vertices;

2) 16 km resolution with 30,217 cells, 91,285 edges and 61,069 vertices;

3) 8 km resolution with 120,953 cells, 364,124 edges and 243,172 vertices.

The numerical errors for ETD-RK3 on three meshes subject to different time step sizes
are listed in Table 1, and the corresponding simulation time is listed in Table 2. It is
observed that (i) as the time step size decreases successively, the ETD-RK3 converges at
the optimal rate on all the meshes; (ii) as the time step size increases, the total CPU time
decreases as fewer steps are needed for completing simulations. However, for large time
step sizes, the CPU time per step increases significantly since more inner steps are used in
matrix exponential evaluation; consequently, the total CPU time may not monotonically
decrease.
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Figure 4: (SOMA) Errors in �uid thi
kness h versus total CPU time for the one-day simulations on meshes with

32 km resolution (left), 16 km resolution (middle) and 8 km resolution (right).

To further analyze the performance of the ETD-RK3 scheme, we compare it with the
standard RK3 scheme. In Fig. 4, we plot the numerical errors in h versus the total sim-
ulation time based on the data in Tables 1-2 together with the results obtained by RK3
simulations over the same time interval. We see that for the mesh with 32 km resolu-
tion, the ETD-RK3 is more efficient than RK3; for the mesh with 16 km resolution, when
the error is larger than 10−8, RK3 is more efficient than ETD-RK3, whereas for an error
threshold less than 10−8, ETD-RK3 becomes more efficient; for the mesh with 8 km res-
olution, when the error threshold is less than 8×10−10 or so, ETD-RK3 is more efficient
than RK3. In addition, as the mesh becomes finer, the computational time for ETD-RK3
increases quickly due to the evaluation of matrix exponential vector products becomes
more expensive.

This observation motivates the study of localized ETD-RK schemes. We first divide
the spatial domain using METIS. Fig. 5 provides an illustration for partitioning the mesh
with a 32 km resolution into 2, 4 and 8 non-overlapping subdomains, which represent
the control regions of subdomains. We then add a buffer zone including 10 layers of
neighboring cells to each control region, which yields the computational domain in each
subdomain problem. During one step of the simulations, all the subdomain problems
are solved by ETD-RK3 individually with time step ∆t = 10∆tCFL , then information on
the overlapping zone is exchanged, and the global solution is advanced to next time
level. We consider different numbers of subdomains, and compute the errors in fluid
thickness and velocity on the three meshes after a one-day simulation as shown in Ta-
ble 3. The associated CPU time is displayed in Table 4. Obviously, when the number
of subdomains equals one, the LETD-RK3 coincides with the global ETD-RK3 scheme.
It can be seen from Table 3 that the numerical accuracy of LETD-RK3 is identical to its
global counterpart. This is expected as the size of buffer zone and time step size satisfy
the relation (4.4) in our computational setting. The benefit of LETD-RK schemes can be
deduced from Table 4. On the mesh of the 32 km resolution, the total CPU time consumed
by LETD-RK3 with 32 subdomains is about six times of that of global ETD-RK3 scheme,
while on the mesh of the 8 km resolution, the total CPU time of LETD-RK3 using 32 sub-
domains is almost identical to that of global ETD-RK3 scheme. Note that these results
are obtained with sequential computing but the subdomain problems can be solved nat-
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Figure 5: The primal mesh of 8521 
ells and subdomains de
omposed by METIS. Top-left: the 
omputational

domain; top-right: two subdomains; bottom-left: four subdomains; bottom-right: eight subdomains.

Table 3: (SOMA) The errors of �uid thi
kness and velo
ity by the LETD-RK3 s
heme on meshes with di�erent

resolutions and di�erent number of subdomains at Day 1.

No. of 32 km 16 km 8 km

subdomains Eh Eu Eh Eu Eh Eu

1 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

2 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

4 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

8 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

16 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

32 6.4298e-11 6.7118e-08 1.8907e-11 2.0411e-08 2.2431e-12 1.4377e-09

Table 4: (SOMA) The CPU time for ea
h time stepping and total CPU time of LETD-RK3 during a one day's

simulation on meshes with di�erent resolutions and di�erent number of subdomains. The simulation time is

measured in se
onds.

No. of 32 km 16 km 8 km

subdomains time/step total time time/step total time time/step total time

1 0.15 31.94 0.77 347.59 3.70 3412.09

2 0.17 37.12 0.74 335.76 2.63 2429.60

4 0.21 46.55 0.80 362.21 2.84 2622.96

8 0.33 72.86 0.94 422.73 3.17 2924.95

16 0.48 106.08 1.15 519.51 3.69 3403.89

32 0.83 181.36 1.50 679.98 4.28 3954.93
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Figure 6: (SOMA) Snapshots of sea surfa
e height with unit of m (left) and the velo
ity with unit of m · s−1

(right) at T=15 days using ETD-RK3 with time step ∆t=10∆tCFL.

Figure 7: (SOMA) Evolution of the relative 
hanges in total energy (left) and mass (right) for T=15 days by

ETD-RK3 and LETD-RK3 using the time step size ∆t=10∆tCFL.

urally in parallel, thus we expect that the CPU time could be significantly reduced when
the LETD-RK schemes are combined with parallel computing, especially for meshes with
fine resolutions.

Finally, we consider 15-day-long simulations. Here, we only present the results ob-
tained on the 16-km-resolution mesh because the behaviors of the schemes on other
meshes are similar. The numerical solutions at T = 15 days obtained by ETD-RK3 are
shown in Fig. 6. The LETD-RK3 with 8 subdomains achieves the same results. The evo-
lution of the relative changes in total energy and mass obtained both schemes is plotted
in Fig. 7, which shows that both schemes have good conservation properties.

5.1.2 The SWTC5: Zonal flow over an isolated mountain

We now consider the SWTC5 in [27, 41] on the single-layer configuration. The physical
domain is the whole sphere of earth, and the initial state consists of a zonal flow imping-
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Figure 8: (SWTC5) The bottom topography b (left), and the initial surfa
e height dh=h+b (right).

ing on an isolated mountain located around the longitude αc=3π/2 and latitude θc=π/6.
The height of the mountain is given by

hs =hs0(1−r/a), (5.2)

where hs0=2000 m, a=π/9, r2=min{a2,(α−αc)
2+(θ−θc)

2}, with α and θ being longitude
and latitude, respectively. The initial horizontal velocity in the longitudinal and latitudi-
nal directions is (u,v) = (ũ0cosθ,0), where ũ0 = 20 m/s. Note that the initial horizontal
velocity u0 can also be defined by the stream function, i.e., u0=k×ψ, where ψ=−Rũ0sinθ
is the stream function, see [41]. The initial fluid thickness is

h=h0−hs0 −
1

g

(
R Ω0ũ0+

ũ2
0

2

)
sin2θ, (5.3)

where R=6371.22 km is the radius of earth, and h0 =5960 m. The bottom topography b
and the initial surface height dh=h+b are shown in Fig. 8.

Two resolutions are considered for the quasi-uniform mesh used in the simulations:

1) 60 km resolution with 163,842 cells, 491,520 edges and 327,680 vertices;

2) 30 km resolution with 655,362 cells, 1,966,080 edges and 1,310,720 vertices.

The numerical errors obtained by using the ETD-RK3 scheme on two different meshes
at T = 1 day are listed in Table 5, which shows that the ETD-RK3 scheme achieves the
expected accuracy in time. The associated CPU time is presented in Table 6. As for
the SOMA test case, we compare the performance of the ETD-RK3 and standard RK3
schemes. Fig. 9 displays the errors in fluid thickness versus the total simulation time
according to the data in Tables 5-6 together with the RK3 results for a one-day simulation.
It is observed that for an error threshold less than 10−5, the ETD-RK3 is more efficient
than RK3.
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Table 5: (SWTC5) The errors in �uid thi
kness and velo
ity obtained by ETD-RK3 with time steps varying

from ∆t=160∆tCFL to ∆t=5∆tCFL on meshes with two di�erent resolutions at Day 1.

∆t

∆tCFL

60 km 30 km

Eh Eu Eh Eu

160 4.45e-04 - 2.15e-03 - 1.80e-04 - 1.89e-03 -

80 1.82e-04 [1.29] 1.53e-03 [0.49] 1.19e-04 [0.59] 1.05e-03 [0.85]

40 6.31e-05 [1.53] 5.47e-04 [1.48] 3.64e-05 [1.71] 3.05e-04 [1.78]

20 1.05e-05 [2.59] 1.01e-04 [2.43] 4.72e-06 [2.95] 4.20e-05 [2.86]

10 8.69e-07 [3.59] 7.92e-06 [3.68] 3.49e-07 [3.76] 3.31e-06 [3.66]

5 6.19e-08 [3.81] 6.25e-07 [3.66] 2.56e-08 [3.77] 2.47e-07 [3.74]

Table 6: (SWTC5) The average CPU times for ea
h time stepping and total CPU time during a one day's

simulation obtained by ETD-RK3 with time steps varying from ∆t=160∆tCFL to ∆t=5∆tCFL. The simulation

time is measured in se
onds.

∆t

∆tCFL

60 km 30 km

time/step total time time/step total time

160 15.79 236.84 80.23 2406.95

80 5.82 168.77 31.91 1882.59

40 3.39 193.24 19.00 2223.15

20 2.93 334.25 16.45 3850.44

10 3.00 680.90 16.60 7752.87

5 2.91 1317.53 16.44 15338.13

Figure 9: (SWTC5) The error in �uid thi
kness vs. the total CPU time for one-day simulations on meshes with

60 km resolution (left) and 30 km resolution (right).

Next we investigate the performance of the LETD-RK3 scheme when the time step
∆t= 10∆tCFL and the size of buffer zone is 10. The LETD-RK3 approximation errors in
fluid thickness and velocity on two different mesh resolutions at T = 1 day are listed in
Table 7 where different number of subdomains are used. The results indicate that the
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Table 7: (SWTC5) The errors of �uid thi
kness and velo
ity with the LETD-RK3 s
heme on meshes with

di�erent resolutions and di�erent number of subdomains at Day 1.

No. of 60 km 30 km

subdomains Eh Eu Eh Eu

1 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

2 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

4 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

8 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

16 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

32 8.6921e-07 7.9254e-06 3.4875e-07 3.3109e-06

Table 8: (SWTC5) The average CPU time for ea
h time stepping and total CPU time of LETD-RK3 during a

one day's simulation on meshes with di�erent resolutions and di�erent number of subdomains. The simulation

time is measured in se
onds.

No. of 60 km 30 km

subdomains time/step total time time/step total time

1 3.00 680.90 16.60 7752.87

2 2.88 654.82 15.77 7363.72

4 2.85 647.00 14.13 6600.15

8 3.21 729.03 13.40 6256.18

16 3.54 804.89 13.55 6329.23

32 4.10 931.67 15.27 7132.86

LETD-RK3 is able to provide the same accurate results as the global ETD-RK3. Moreover,
the corresponding simulation time presented in Table 8 supports the same observation
as in the SOMA testcase, that is, the simulation time could be significantly saved if the
LETD-RK3 is implemented in parallel, especially on high-resolution meshes.

Finally, we run 15-day-long simulations using the ETD-RK3 and the LETD-RK3 with 8
subdomains, respectively. For the mesh of 60 km resolution, the surface height snapshot
at day 15 is shown in Fig. 10, together with the time evolution of relative changes in
total energy and mass. It is seen that both ETD-RK3 and LETD-RK3 schemes are able to
conserve the total energy and mass along the time.

5.1.3 The SWTC6: Rossby-Haurwitz wave

In this subsection, we are concerned with the numerical simulation of zonal wavenumber
4 Rossby-Haurwitz wave which admits the formation of Rossby wave. The physical
domain is the sphere of earth, and the two meshes presented in the SWTC5 test case are
used. A detailed description of this test case can be found in [41], and we refer to [47–
49] for an exhaustive discussion on the physical and numerical phenomena of Rossby-
Haurwitz waves. The reader is referred to [32] and the references therein for the use of
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Figure 10: (SWTC5) Fluid height at day T=15 on the mesh with the 60 km resolution (top); time evolution

of relative 
hanges in total energy (bottom-left) and mass (bottom-right) in the ETD-RK3 and LETD-RK3

simulations using time step size ∆t=10∆tCFL.

a high-order upwind finite volume scheme to simulate the equatorial Rossby waves on a
planar domain.

The initial velocity field u0 is non-divergent and takes the form of u0=k×∇ψ [41,49],
where k is the local unit vertical vector, and ψ is the stream function defined by

ψ=ω0R2(cos4θ cos4α−1)sinθ. (5.4)

Furthermore, the initial fluid thickness is given by

h=h0+(R2/g )(A(θ)+B(θ) cos4α+C(θ)cos8α ), (5.5)

where

A(θ)=(ω0(ω0+2Ω0)/2)cos2θ+(ω2
0/4)cos6 θ (5cos4 θ+26cos2 θ−32),

B(θ)=(ω0(ω0+Ω0)/15)(26−25cos2θ)cos4 θ, C(θ)=(ω2
0/4)(5cos2 θ−6)cos8 θ,
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Figure 11: (Rossby-Haurwitz) Contour plot of the initial �uid thi
kness (left), and its 
ontour plot on day 15

(right) obtained by ETD-RK3 s
heme with ∆t=10∆tCFL.

with R being the radius of earth, Ω0 the angular velocity of earth, θ and α the latitude and
longitude, respectively. The other two parameters are ω0=7.848×10−6 s−1 and h0=8000
m. In this test case, the bottom topography b is flat, and is set to be b= 0 m. In Fig. 11
(left), we show the contour plot of the initial fluid thickness on mesh resolution of 60 km
in the latitude-longitude coordinate system. It can be seen from the figure that the initial
thickness field is a perfect four-wavelength zonal pattern. We also present the contour
plot of fluid thickness obtained from ETD-RK3 scheme with ∆t= 10∆tCFL on day 15 in
Fig. 11 (right). It can be observed that the simulation is stable, and the wave propagates
steadily eastwards and its initial structure of the wave number four could be maintained
with only minor vacillations after a 15-day simulation.

The numerical errors obtained by using the ETD-RK3 scheme on two different meshes
at T = 1 day are listed in Table 9, which shows that the ETD-RK3 scheme achieves the
expected accuracy in time. The associated CPU time is presented in Table 10. As for
the two previous test cases, we compare the performance of the ETD-RK3 and standard
RK3 schemes. Fig. 12 displays the errors in fluid thickness versus the total simulation
time according to the data in Tables 9-10 together with the RK3 results for a one-day
simulation. It is observed that for the 60-km-resolution mesh with an error threshold less
than 6×10−6, and for the 30-km-resolution mesh with a threshold less than 1.0×10−4, the
ETD-RK3 is more efficient than RK3.

Next we investigate the performance of the LETD-RK3 scheme when the time step
∆t= 10∆tCFL and the size of buffer zone is 10. The LETD-RK3 approximation errors in
fluid thickness and velocity on two different mesh resolutions at T = 1 day are listed in
Table 11 where different number of subdomains are used. The results indicate that the
LETD-RK3 is able to provide the same accurate results as the global ETD-RK3. Moreover,
the corresponding simulation time presented in Table 12 supports the same observation
as in the last two test cases, that is, the simulation time could be significantly reduced
if the LETD-RK3 is implemented in parallel, especially when a high-resolution mesh is
used.

To verify that the ETD-RK3 and LETD-RK3 can conserve both the mass and total
energy, we run 15-day-long simulations using these two schemes with time step size
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Table 9: (Rossby-Haurwitz) The errors in �uid thi
kness and velo
ity obtained by ETD-RK3 with time steps

varying from ∆t=160∆tCFL to ∆t=5∆tCFL on meshes with two di�erent resolutions at Day 1.

∆t

∆tCFL

60 km 30 km

Eh Eu Eh Eu

160 1.80e-04 - 5.25e-04 - 2.78e-04 - 5.67e-04 -

80 1.16e-04 [0.64] 6.22e-04 [-] 1.92e-04 [0.53] 4.67e-04 [0.28]

40 1.09e-04 [0.09] 3.97e-04 [0.65] 1.09e-04 [0.82] 3.67e-04 [0.35]

20 4.31e-05 [1.33] 1.42e-04 [1.48] 4.06e-05 [1.42] 1.05e-04 [1.80]

10 3.76e-06 [3.52] 1.76e-05 [3.00] 4.80e-06 [3.08] 8.42e-06 [3.64]

5 2.61e-07 [3.85] 1.30e-06 [3.75] 3.65e-07 [3.72] 6.31e-07 [3.74]

Table 10: (Rossby-Haurwitz) The average CPU times for ea
h time stepping and total CPU time during a

one day's simulation obtained by ETD-RK3 with time steps varying from ∆t=160∆tCFL to ∆t=5∆tCFL. The

simulation time is measured in se
onds.

∆t

∆tCFL

60 km 30 km

time/step total time time/step total time

160 6.72 194.92 38.25 2256.75

80 4.20 239.18 22.13 2611.04

40 3.58 408.46 17.07 4011.69

20 3.20 729.45 16.81 7884.24

10 3.21 1460.47 16.86 15798.29

5 3.28 2983.39 17.09 32011.47

Figure 12: (Rossby-Haurwitz) The error in �uid thi
kness vs. the total CPU time for one-day simulations on

meshes with 60 km resolution (left) and 30 km resolution (right).

∆t = 10∆tCFL , and with 8 subdomains for LETD-RK3. We show the time evolution of
relative changes in total energy and mass on the 60-km-resolution mesh in Fig. 13. It is
seen that both ETD-RK3 and LETD-RK3 schemes are able to conserve the total energy
and mass along the time.
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Table 11: (Rossby-Haurwitz) The errors of �uid thi
kness and velo
ity with the LETD-RK3 s
heme on meshes

with di�erent resolutions and di�erent number of subdomains at Day 1.

No. of 60 km 30 km

subdomains Eh Eu Eh Eu

1 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

2 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

4 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

8 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

16 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

32 3.7584e-06 1.7605e-05 4.8029e-06 8.4171e-06

Table 12: (Rossby-Haurwitz) The average CPU time for ea
h time stepping and total CPU time of LETD-RK3

during a one day's simulation on meshes with di�erent resolutions and di�erent number of subdomains. The

simulation time is measured in se
onds.

No. of 60 km 30 km

subdomains time/step total time time/step total time

1 3.21 1460.47 16.86 15798.29

2 3.11 1413.58 15.68 14689.70

4 3.10 1408.75 14.55 13629.56

8 3.55 1614.23 13.65 12792.73

16 4.31 1961.10 13.78 12915.68

32 5.18 2355.03 15.68 14690.31

Figure 13: (Rossby-Haurwitz) Time evolution of relative 
hanges in total energy (left), and mass (right) in the

ETD-RK3 and LETD-RK3 simulations with ∆t=10∆tCFL.

5.2 Multilayer SWEs for the SOMA test case

Next, we investigate the numerical performance of the global and localized ETD-RK3
schemes on a three-layer shallow water model for the SOMA test case. The same ge-
ometrical domain is considered. The initial interfaces of the three-layer configuration
locate at η0

1 = 0 km, η0
2 =−25/3 km, and η0

3 =−50/3 km, and the layer densities are set
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Table 13: (Three layers SOMA) The errors in �uid thi
kness and velo
ity obtained by ETD-RK3 with time steps

varying from ∆t=160∆tCFL to ∆t=10∆tCFL on two meshes with di�erent resolutions at Day 1.

∆t/∆tCFL
32 km 16 km

Eh Eu Eh Eu

160 6.19e-09 - 3.95e-05 - 1.88e-09 - 9.38e-06 -

80 1.17e-09 [2.41] 1.56e-05 [1.34] 2.05e-10 [3.20] 2.46e-06 [1.93]

40 2.70e-10 [2.11] 2.40e-06 [2.70] 2.95e-11 [2.80] 3.07e-07 [3.01]

20 2.76e-11 [3.29] 2.92e-07 [3.04] 4.14e-12 [2.83] 4.08e-08 [2.91]

10 3.72e-12 [2.89] 3.81e-08 [2.94] 5.10e-13 [3.02] 5.19e-09 [2.98]

Table 14: (Three layers SOMA) The average CPU time for ea
h time stepping and total CPU time obtained

by ETD-RK3 with time steps varying from ∆t=160∆tCFL to ∆t=10∆tCFL during a one day's simulation. The

simulation time is measured in se
onds.

∆t/∆tCFL
32 km 16 km

time/step total time time/step total time

160 1.64 19.72 9.02 270.46

80 0.97 22.36 4.70 277.13

40 0.67 30.75 3.06 360.51

20 0.68 62.87 2.98 701.41

10 0.67 122.38 2.93 1377.93

as ρ=(1025,1027,1028) kg/m3. In order to make the model more realistic for the ocean
modeling, the forcing and bi-harmonic smoothing terms are introduced [37, 46]:

(1) Surface wind stress fw = τw
ρ1h1

, which is added to the top layer only;

(2) Bottom friction fb = −cb
|ub|ub

hb
represents the interaction between the flow and the

bottom topography, which appears in the bottom layer only. Here, ub is the velocity
of bottom layer and we choose cb =1.0×10−3 following [37, 46];

(3) Artificial diffusion fd =−ǫ∆2uk, which is introduced to every layer in order to over-
come the accumulation of turbulent energy in long term simulations.

The same grids are used in all the layers. Two resolutions, 32 km and 16 km, are
considered in the test. The total numbers of DOFs are triple of the corresponding single
layer cases. As in the single-layer case, we first test the (global) ETD-RK3 scheme, and
only update the Jacobian once every 10 time steps. The numerical errors on two meshes
are listed in Table 13, and the associated simulation times are recorded in Table 14. The
numerical results show that the ETD-RK3 scheme achieves the expected accuracy in time.

We further compare its performance with the standard RK3 scheme. In Fig. 14, we
plot the error in fluid thickness versus the total simulation time according to Tables 13-
14 and the results obtained by RK3 for the one-day simulations. It is seen that for the
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Figure 14: (Three layers SOMA) The errors in �uid thi
kness h as a fun
tion of total CPU time for a variety of

time step sizes at T=1 day. Left: 32 km resolution; right: 16 km resolution.

Table 15: (Three layers SOMA) The errors of �uid thi
kness and velo
ity with the LETD-RK3 s
heme on

meshes with di�erent resolutions and di�erent number of subdomains at Day 1.

No. of 32 km 16 km

subdomains Eh Eu Eh Eu

1 3.7166e-12 3.8106e-08 5.0997e-13 5.1863e-09

2 3.7170e-12 3.8107e-08 5.1009e-13 5.1879e-09

4 3.7167e-12 3.8109e-08 5.0971e-13 5.1850e-09

8 3.7172e-12 3.8108e-08 5.1010e-13 5.1856e-09

16 3.7170e-12 3.8110e-08 5.0965e-13 5.1887e-09

32 3.7170e-12 3.8108e-08 5.1013e-13 5.1894e-09

same error threshold, ETD-RK3 is more efficient than RK3; and the total simulation time
of ETD-RK3 increases when mesh becomes finer. Hence, we next investigate the perfor-
mance of LETD-RK3 scheme with the time step ∆t=10∆tCFL and the size of buffer zone
to be 10.

The LETD-RK3 approximation errors in fluid thickness and velocity on these two
different meshes at T= 1 day are listed in Table 15 in which the number of subdomains
varies. It shows that the number of subdomains does not affect the accuracy of the LETD-
RK3. Based on the simulation time listed in Table 16, we can deduce that the LETD-RK
scheme would lead to great efficiency if implemented in parallel.

Finally, we consider 15-day-long simulations: the snapshots of sea surface height and
the velocity at T = 15 days in the top layer using the ETD-RK3 scheme on the 16-km-
resolution mesh with time step size ∆t=10∆tCFL are shown in Fig. 15 and the time evo-
lution of the relative change in mass during the 15-day simulations using the ETD-RK3
and the LETD-RK3 schemes with 8 subdomains is displayed in Fig. 16. In this test case,
the total energy is not conserved any more due to the appearance of additional forcing
terms. But the ETD-RK3 and LETD-RK3 schemes are able to preserve the total mass.
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Table 16: (Three layers SOMA) The average CPU time for ea
h time stepping and total CPU time of LETD-

RK3 during a one day's simulation on meshes with di�erent resolutions and di�erent number of subdomains.

The simulation time is measured in se
onds.

No. of 32 km 16 km

subdomains time/step total time time/step total time

1 0.67 122.34 2.93 1377.93

2 0.68 124.99 2.40 1130.12

4 0.87 159.48 2.66 1250.76

8 1.23 225.90 3.15 1479.82

16 1.64 300.90 3.79 1781.78

32 2.17 397.04 4.98 2342.92

Figure 15: (Three layers SOMA) Snapshots of sea surfa
e height (left), and the velo
ity (right) at T=15 days

using ETD-RK3 with time step ∆t=10∆tCFL on the 16-km-resolution mesh.

Figure 16: (Three layers SOMA) Evolution of the relative 
hanges in total mass using the ETD-RK3 and

LETD-RK3 s
hemes with time step ∆t=10∆tCFL on the 16-km-resolution mesh.
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6 Conclusions

The ETD-RK and LETD-RK methods have been investigated and compared in this pa-
per for simulating the rotating shallow water equations of one layer or multiple layers.
Comparing with the standard RK scheme of the same order, the ETD-RK scheme is more
efficient when error thresholds are small. To further speed up the ETD simulations, we
have developed a localized ETD method; different from the global ETD method, this ap-
proach first solves subdomain problems of smaller sizes using the ETD method for time
integration, and then exchanges information in the overlapping areas. Numerical results
show that the localized ETD can achieve the same accuracy and efficiency as the global
ETD, but has the great potential to be efficiently implemented in parallel computing due
to its natural scalability, which will be the focus of our future study.
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