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Abstract. Long time simulations are needed in the numerical study of the Zeldovich-
Neumann-Döring model, in which the quality resolving the dynamics of the detona-
tion front is crucial. The numerical error introduced from the inappropriate outflow
boundary condition and the mesh resolution are two main factors qualitatively affect-
ing the dynamics of the detonation front. In this paper we improve the numerical
framework in [15] by introducing the Strang splitting method and a new h-adaptive
method with a feature based a posteriori error estimator. Then a cheap numerical ap-
proach is proposed to sharply estimate a time period, in which the unphysical influ-
ence on the detonation front can be avoided effectively. The sufficiently dense mesh
resolution can be guaranteed around the detonation front and in the reaction zone
by the proposed h-adaptive method. The numerical results show that the proposed
method is sufficiently robust even for long time calculations, and the quality dynamics
of the detonation can be obtained by the proposed numerical approach.
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1 Introduction

The time-dependent, nonlinear reactive Euler equations have been playing an important
role in the study of the detonation phenomenon. Since its intrinsic instability, in the high
dimensional study of the detonation, there would be transverse fluctuation appearing
along the detonation front, which can result in very complex dynamics in the following
reaction zone. To well understand the mechanics of this unstable phenomenon would
benefit the practical application of the detonation such as the design of the rotating deto-
nation engine [23].

Although there have been many pioneer works [27,28] for the stability analysis on the
detonation phenomenon, the linearization can not be avoided in most of them. It is the
direct numerical simulation a method on fully resolving the nonlinearity of the governing
equation, which has motivated the works such as [12, 13, 25, 35] for the finite difference
methods, [4] for the finite volume methods, [7] for the finite element methods, [39] for
the discontinuous Galerkin methods, etc. However, the advantages mentioned above
from the direct numerical simulations can be obtained only if the simulations are qual-
ity, i.e., the dynamics of the detonation front is well resolved, and the simulation time is
sufficiently long. Hence, it is demanding on the computational resource, especially for
high dimensional simulations. To improve the efficiency of the implementation, several
acceleration techniques have been applied on the numerical methods. For examples, the
fractional time stepping methods in which the convection process and reaction process
are treated as two independent processes. By combining these two processes with differ-
ent orders, the numerical methods with different numerical accuracy with respect to the
size of the time stepping can be obtained. We refer to [24] for the detail of the splitting
methods, and [31] for the application of the splitting methods in the detonation simula-
tions. The adaptive mesh methods also have been explored in depth on the simulations
of the detonation phenomenon. The adaptive mesh methods optimize the distribution
of the grid points according to some quantity such as the a posteriori error, so that the
higher numerical accuracy can be obtained by using less grid points. This is an attractive
technique for the detonation simulations since the solutions change dramatically only in
a relatively small region, i.e., the detonation front and the following reaction zone, and
the grid points of the mesh can be optimized by locating more points in those trouble
regions. The author may refer to [5, 15, 34, 40] for the applications of the adaptive mesh
methods in the detonation simulations. The author may also refer to [1, 9, 18, 30, 36, 37]
for the successful applications of the adaptive mesh methods in other areas. Finally, with
the development of the hardware, the parallel computing has been widely used to signif-
icantly accelerate the detonation simulations [29, 33].

Besides the efficiency, another issue on accurately resolving the dynamics of the det-
onation front is the outflow boundary conditions. In the ZND model, the detonation
propagates in an infinitely long tube, with a constant velocity. To numerically study the
wave propagation, a classical strategy is to introduce a moving frame with the same ve-
locity, in which a stable detonation would be obtained, or the detonation front would
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fluctuate around its initial position. In this case, a subsonic outflow boundary condition
is needed in the simulation, which means that the pressure boundary condition can not
be extrapolated from inside the domain, otherwise the numerical error would be intro-
duced from the boundary, and this error would catch up with the detonation front in an
sufficiently long time. Our numerical results show that, the detonation dynamics would
be qualitatively affected if the error coincides with the unstable mode of the detonation.
Consequently, it is an important issue to remove or restrain this kind of numerical error.
Besides the non-reflecting boundary conditions [20, 26], to estimate the reliable period
of the observation is another approach to get the reliable solutions. In [19, 22], for some
cases, the upper bounds of the time duration for the reliable observation of the detonation
dynamics are given, by the estimation of the propagation velocity of the error. However,
based on our numerical experiments, it is found that those upper bounds are overesti-
mated by using the aggressive estimation on the velocity, which unexpectedly causes a
too long computational domain for a given time period of the observation. Consequently,
it would also cause the non-ignorable increment on the CPU time since the extra amount
of the mesh grids would be needed in the simulation. The situation is worse for higher
dimensional problems.

In this paper, we propose a numerical approach to deliver a sharp estimation on
the upper bound for time period of the reliable observation for the one-dimensional
ZND models, and further demonstrate that such upper bound can be used in the high-
dimensional problems with the same configuration of the model. It is noted that the
cheap and reliable estimation from one-dimensional problem would result in the consid-
erable saving on the computational resource in the high-dimensional simulations. The
numerical framework in this paper for the two-dimensional reactive Euler equations is
designed following the one in [15], in which the finite volume method is employed for
the spatial discretization of the governing equation, while a second order Runge-Kutta
method is adopted for the temporal discretization. The adaptive mesh method is used for
improving the numerical accuracy and enhancing the implementation efficiency. And the
algorithm is parallelized by OpenMP for the acceleration of the simulations. It is worth to
mentioning that to improve the numerical framework in [15], the Strang splitting method
is used to decouple the convection process and the reaction process, which prevent the
time step constrained by the stiff source term. Moreover, with Strang splitting, the chal-
lenge on solving generalized Riemann problem can be avoided. It is noted that by using
Strang splitting, because of stiff source term, even a stable numerical scheme may lead
to spurious unphysical solutions unless the small chemical time scale is fully resolved
numerically [2, 11]. In the h-adaptive method proposed in this paper, an error indica-
tor, consisting of the information from the pressure and the reaction rate, is designed to
conduct the local refinement of the mesh grids. The numerical results show that both
the region of the detonation front and the reaction zone are partitioned with sufficiently
many grid points, which benefit the implementation of the splitting method well.

The rest of the paper is organized as follows. In the next section, the reactive Eu-
ler equations, the numerical framework on solving the equations, as well as h-adaptive
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methods are described in detail. In Section 3, the qualitative influence of the inappro-
priate outflow boundary condition on the dynamics of the detonation front is demon-
strated by numerical examples, and a numerical approach is proposed for avoiding the
issue. In Section 4, the effectiveness of the proposed numerical methods, as well as the
performance of the h-adaptive methods, can be successfully observed from a number of
numerical experiments. Finally, concluding remarks are given and a discussion of future
work is outlined.

2 Numerical discretization

Although Chapman-Jouguet detonation theory works well on the prediction of the det-
onation speed, it gives no information on the internal solution structure in the reaction
zone of the detonation since the assumption of infinitesimal region of the reaction zone.
The theory is improved by Y. B. Zel’dovich [38], J. von Neumann [32], and W. Döring [6]
by considering the finite chemical reaction rate, and the derived model is the well known
ZND detonation model, which is still widely used in the detonation study nowadays. A
brief introduction of the ZND theory can be found in Appendix A. It is noted that to facil-
itate the numerical study of the ZND models, a C++ program [8] is provided on GitHub
for the generation of the one-dimensional ZND results, with given parameters.

In this section, we describe a numerical framework based on the finite volume method
to solve the two-dimensional reactive Euler equations. The following is a brief summary
of the proposed numerical method. First of all, we use Strang splitting strategy to sep-
arate the reaction process from the convection process of the fluid. Then a second order
TVD Runge-Kutta scheme is used to solve ODEs derived from the splitting, while a sec-
ond order Godunov type finite volume method is applied to solve the standard Euler
equations.

2.1 Reactive Euler equations

At first, we need to resort to the following reactive Euler equations to study the multidi-
mensional nature of the detonation,

∂

∂t
U+∇·F(U)=S(U), (2.1)

where U, F(U), and S(U) denote the conservative variable, flux, and source term, re-
spectively. Their expressions are given as follows,

U=









ρ
ρV

E
ρY









, F(U)=









ρV

ρV⊗V+PI

(E+P)V
ρYV









, and S(U)=









0
0
0
ω









, (2.2)
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where V=[u,v]T denotes the velocity vector and ⊗ present the tensor product of velocity
field. We use the following equation to close the above system,

E=P/(γ−1)+ρ‖V‖2/2+ρYQ, (2.3)

where ρ, V , P, E, and Y stand for the density of the mixture, velocity, pressure, total
energy, and the mass fraction of the reactant, respectively. And γ is the ratio of the specific
heat, and Q is the amount of heat released per unit mass in the reaction. Based on the
above assumption on the reaction, we define the reaction rate ω by

ω=−kρY, (2.4)

where k is given by the Arrhenius law

k=Ae−Ea/T. (2.5)

Here A is the preexponential factor, Ea is the activation energy, and T= P/ρ is the tem-
perature.

It is noted that for the x-split Euler equations in two dimension, in which the con-
served quantities and fluxes are given by

U=













ρ
ρu
ρv
E
ρY













, F(U)=













ρu
ρu2+P
ρuv
(E+P)u
ρYu













, (2.6)

there are five eigenvalues, i.e., u−c, u (of multiplicity 3), and u+c. Here, the c=
√

γ P
ρ

is the speed of sound. The numerical methods in this paper are designed for solving the
equations on the unstructured grids, which means that the numerical flux is imposed
along the normal direction to the edge of a given triangle element. Although the equa-
tions will be different from above x-split form, the results are still applicable.

2.2 Strang splitting

Since its good balance between the numerical accuracy and the computational complex-
ity, the second order Strang splitting strategy is always a competitive choice among the
splitting methods. We refer to [24] for a recent review of the splitting methods.

The application of Strang splitting on solving (2.1) is described as follows. First, sup-
pose that the solution at the time tn is denoted by Un. What we want is the solution at
the time tn+1, i.e., Un+1. Let ∆t= tn+1−tn be the step size of the time. In Strang splitting,
the convection-reaction process is split into three independent processes below.
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S1: (Reaction process) By solving the following ODE, we get Ũ.










∂

∂t
Ũ=S(Ũ), on (0,∆t/2],

Ũ(0)=Un.

(2.7)

S2: (Convection process) With the initial condition Ũ, we get ˜̃U by solving the following
Euler equations.











∂ ˜̃
U

∂t
+∇·F( ˜̃

U)=0, on (0,∆t],

˜̃
U(0)= Ũ.

(2.8)

S3: (Reaction process) With the initial condition ˜̃U, we finally get Un+1 by solving the
following ODE











∂

∂t
Un+1=S(Un+1), on (0,∆t/2],

Un+1(0)=
˜̃

U.

(2.9)

Remark 2.1. The numerical error introduced by the above Strang splitting is of O(∆t2).
There are extensions of the splitting schemes for the higher order [24]. However, it can
not be avoided to introduce the negative coefficients in the scheme, which may cause the
stability issue.

Remark 2.2. If we combine the last reaction process of the current propagation step to the
first reaction process of the next propagation step, Strang splitting will have no difference
to the first order splitting scheme, except for the first and the last propagation steps. This
can be used to accelerate the simulations.

In the following subsections, we give detailed discussion on the numerical methods
for the reaction process and the convection process, respectively.

2.3 Second order Runge-Kutta scheme for reaction process

To balance the stability and the numerical accuracy, the second order Runge-Kutta scheme
is used to solve the ODEs in the reaction process as follows.











U
1
2 =U

(m)+
1

2
∆̃tS(U(m)),

U
(m+1)=U

(m)+∆̃tS(U
1
2 ),

(2.10)

where ∆̃t is the sub-time step size for the partition in [0,∆t/2]. For the partition with
M subintervals, we have ∆t= 2M∆̃t, and U(m) represents the conserved quantity at the
sub-time m∆̃t for m=0,1,2,··· ,M−1.



Y. Di, G. Hu, R. Li and F. Yang / Commun. Comput. Phys., 29 (2021), pp. 445-471 451

In the general cases, the time scale of for the reaction process is several orders of
magnitude faster than that for the convection process, which introduces very severe nu-
merical stiffness in the simulations [14]. There are many excellent methods in the market
to resolve this stiffness problem, such as the random projection method in [2]. In our
work, we solve the above ODEs directly with the sufficiently small time steps. Several
acceleration techniques are proposed to enhance the efficiency, based on the following
observation.

It is noted that although the amount of ODEs is equal to the number of the elements
in the mesh, which could be dramatically large especially in the high dimensional prob-
lems, each ODE is solved completely independently. This is a perfect scene for the use of
parallelization. The only issue is the possibly bad balancing of the work load in the case
that considerably many ODEs from the reaction zone are assigned to one single process-
ing. In our work, the OpenMP parallelization is used to handle those ODEs. To resolve
the possible bad balancing of the work load, the computational domain is split into a
number of subdomains, in which each single subdomain occupies equal part of the re-
action zone. This can be done trivially for the problems in this paper. However, for the
general cases, the partition of the subdomains needs to be designed carefully.

2.4 Second order finite volume solver for convection process

In the Strang splitting method, the convection process of the conserved quantities is gov-
erned by Euler equation (2.8), for which there are many mature solvers in the market. In
this paper, we follow [15] to use a Godunov type finite volume method for (2.8). Please re-
fer to [15] for the detail of the numerical discretization. We briefly summarize the method
here, with related numerical issues.

There are three steps in the framework of a Godunov finite volume method, i.e., re-
construction, evolvement, and reaveraging. Three key components in the algorithm are
a stable and efficient temporal discretization, a quality solution reconstruction method,
and a reliable and efficient Riemann solver.

To match the numerical accuracy of the Strang splitting method, O(∆t2), we use the
TVD second order Runge-Kutta method for the temporal discretization of the Euler equa-
tions. To guarantee the stability of the simulation, the size of the time step ∆t is chosen
by

∆t=α
∆h

‖V‖+c
,

where c is the local speed of the sound, and ∆h is the size of the current mesh, which is
the size of the smallest cell in the mesh.

Solution reconstruction is an important step on delivering high order numerical
method. In this paper, following [15], we use non-oscillatory 1-exact reconstruction in
each governing cell to obtain a linear variation of the conserved quantity. On a given
mesh of the computational domain T , the non-oscillatory 1-exact reconstruction for a
governing cell K∈T can be briefly summarized as follows. First of all, several reaction
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stencils of K are generated from K itself, its Neumann neighbors. Then on each recon-
struction stencil, a candidate gradient of the reconstructed quantity is obtained based on
the cell average and barycenter of each governing cell from the reconstruction stencil.
Finally, a convex linear combination of all candidates is used as the final linear variation
of the reconstructed quantity in the governing cell K. For the detail of the non-oscillatory
k-exact reconstruction, we refer to [15–17] and references therein.

When the left and right states of the conserved quantity on a quadrature point are
obtained, it is a Riemann solver who gives an approximation of the flux in the Euler
equations. There are many quality choices for the Riemann solver, we refer to [31] for a
comprehensive review. In this paper, we follow [31] to use HLLC flux as the numerical
flux.

In propagation of the system from tn to tn+1, the simulation of convection process
will take a considerably large part of the whole CPU time. Hence, the improvement of
the efficiency on solving Euler equations will significantly improve the efficiency of the
proposed algorithm for reactive Euler equations, and we resort to the OpenMP paral-
lelization for the purpose. It is noted that the application of OpenMP on solver is trivial
since there is no data race at all in all important components of the algorithm such as
the solution reconstruction, calculation of the HLLC flux, and the update of the cell av-
erages. The numerical results in the last section effectively show the acceleration of the
simulation with the help of OpenMP.

2.5 h-adaptive on simulations

Quality results from the detonation simulations are demanding on the computational
resources, because of the requirement on the sufficiently long simulation time, and the
restriction on the size of the time steps. Hence, the efficiency is a crucial issue on the
practical simulations. In this paper, we mainly adopt h-adaptive methods to partially
resolve the efficiency issue.

The strategy we used in this paper for the acceleration of the simulations is the h-
adaptive method. The idea of the adaptive mesh methods is local refinement of the mesh
grids when needed, while keep the mesh grids coarse elsewhere. In [15], an h-adaptive
method has been introduced in the detonation simulations. Briefly, the Hierarchy Geom-
etry Tree (HGT) is used to efficiently handle the refinement and coarsening of the mesh
grids, the numerical tests in [15] show the effectiveness of the above h-adaptive method.

By using HGT, there are two more steps for implementation of h-adaptive methods,
i.e., the generation of the error indicator for each element, and the update of the solution
from the old mesh to the new mesh.

2.5.1 Error indicator

In [15], a skew Gaussian distribution depending on the location of the detonation front is
used to generate the indicator for the adaptive refinement of the mesh girds. However,
it depends on the knowledge of the position of the detonation front, and there is no
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flexibility for such adaptivity to resolve the fine structure of the reaction in the reaction
zone.

In this paper, instead of using skew Gaussian distribution, we design a heuristic error
indicator with the two quantities, i.e., the gradient of the pressure and the reaction rate.
The error indicator in an element K at the time tn is written by

Indn
K=

(

∫

K
(|∇pn|2+(wn)2)dx

)1/2

. (2.11)

The reason of using the two quantities is obvious. The gradient of the pressure will effec-
tively mark the region of the detonation front, while the fine structure of the solution in
the reaction zone can be well resolved with the help of the contribution from the reaction
rate in the error indicator. To describe the mesh adaptivity process for the propagation of
the solutions between two adjacent time instants, we use Un, Un+1 to denote the solutions
on the time tn and tn+1, respectively, and use Tn and Tn+1 to denote the corresponding
meshes. First of all, with a given ∆t, the solutions propagate on the mesh Tn from tn to
tn+1 by using the Strang splitting method described in last section. Let us use Ũn+1 to
denote the corresponding solutions at the time tn+1. Then the following quantity will be
calculated in each element.

IndK=
∫

K
(|∇ p̃n+1−∇pn|2+(w̃n+1−wn)2dx)1/2. (2.12)

It is easy to see that the above quantity indicates the variation of the gradient of the
pressure, and the reaction rate between two time instants. In our simulations, if the
quantity ∑K IndK is greater than a given tolerance, it means that the variation of the two
quantities is too large during the time propagation. In this case, we will give up the
solution Ũn+1, and repropagate the solution Un with a reduced time step ∆t/2. This
process will be repeated till the tolerance is satisfied. Then, the distribution of the error
indicator of the solution Ũn+1 from (2.11) will be calculated, and the mesh Tn will be
locally refined to get the mesh T̃n+1. It is noted that only mesh refinement is implemented
here. Then a conserved interpolation introduced in [15] is implemented for the solution
Un, and we get the updated solution Ũn on the mesh T̃n+1. Finally, the Strang splitting
method will be implemented again, and the solution Un+1 on the Tn+1= T̃n+1 is obtained.
In the practical implementation, after 4 to 5 propagation steps, the distribution of the
error indicators of the solution Un+1 on the T̃n+1 will be calculated, and the mesh will be
locally refined and/or coarsened to get Tn+1, and the updated Un+1.

With the above adaptivity process, the detonation front as well as the reaction zone
can always be resolved well during the dynamics.

2.5.2 Solution interpolation

For the solution updated from the old mesh to the new mesh, we need to take care of
two things, i.e., conservation of the cell average and the high resolution of the numerical
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solution. With the HGT data structure, this process could be realized easily. Let To and
Tn denote the old mesh and new mesh, respectively. From the property of the HGT
data structure, there are following three relations between each two elements from two
meshes, i.e., for Ko ∈To and Kn ∈Tn, we have the following relations,

Ko ≺Kn, Ko ≻Kn, Ko =Kn.

Here Ko≺Kn means Ko is a child of the element Kn, and Ko≻Kn means Ko is the parent
element of Kn, and Ko = Kn means that two elements is the same node in the HGT. Sup-
pose that the relation between two elements Ko and Kn is known, the solution updated
from Ko to Kn will be implemented as follows in this paper:

• Ko ≺Kn : Un+=Uo∗|Ko|/|Kn |;

• Ko ≻Kn : Un =Uo(
−→
X Kn

);

• Ko =Kn : Un =Uo,

where |K| means the area of the element K, and
−→
X K means the barycenter of the element

K. Uo means the reconstructed solution. After updating all solution, we have to rebuild
the auxiliary information like reconstruction patches and least-square matrices.

3 Boundary condition and reliable period

Briefly, the scene We are interested in is the free propagation of the detonation wave
along an infinitely long channel. In the simulations, with the assumption that the det-
onation propagates with a constant velocity, we actually attach a moving frame on the
detonation front, and impose the appropriate boundary conditions on the inflow and
outflow boundaries. It is noted that since the instability of the detonation phenomenon,
the dynamics of the detonation front is complicated. However, the mean velocity of the
detonation front still agrees with the constant velocity well. Hence, the moving frame
configuration works very well generally.

In two-dimensional cases, the computational domain is a rectangle, in which the up-
per and lower boundaries are the solid walls, and the right and left boundaries belong
to the inflow and outflow boundaries, respectively, according to the discussion in above
sections. Since the governing equations describe the in-viscid reaction flows, the slip wall
boundary conditions can be trivially imposed on the upper and lower boundaries. For
the inflow boundary on the right edge of the domain, since the detonation phenomenon
studied in this paper are all strong detonations, the supersonic inflow boundary condi-
tions are used, and the flow status outside the domain will be the same to the unburnt
status of the reactant.

The nontrivial issue is the boundary condition imposed on the left edge of the com-
putational domain. Since they are strong detonation phenomenon, the subsonic outflow
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boundary conditions are needed. This means that all quantities on the left side of the
outflow boundary can be determined by the ones from inside of the domain, except for
the pressure. Hence, if the pressure is not given accurately on the left side of the outflow
boundary, the numerical error would propagate towards the detonation front, and the
dynamics of the detonation front would be affected after a sufficiently long time. For
a stable detonation case, the perturbation introduced from the inappropriate boundary
conditions would only slightly and quantitatively affect the dynamics of the detonation
front. However, for the unstable detonation phenomenon, the dynamics of the detona-
tion front would be affected qualitatively, which makes the simulations unreliable.

Unfortunately, since the unpredictability of the dynamics of the product flow around
the outflow boundary, there is no general method to give the accurate pressure. The
extrapolation technique is popular on handling this issue. It can be seen clearly from the
following numerical results that the unstable detonation simulations would be affected
qualitatively.

With the parameters Ea=50.0, Q=50.0, γ=1.2, two specific cases with different over-
driven factors, i.e., f =1.5 and f =1.6, were studied in detail for the time interval of the
reliable observation in [19]. The inequality

L≥CT

was given in the paper where T was the desired maximum time for the observation,
and L was the corresponding minimum length of the computational domain, and C was
a coefficient depending on the detonation velocity and the quantity u+c where c is the
sound speed. Although the numerical experiments in [19] confirmed this estimation well,
the drawback is also obvious. For example, for the case when f =1.6, the inequality was
given as L≥ 1.88T, with the parameter C= 1.88. This result was also adopted in [22]. It
is noted that in the calculation of the parameter C, the quantity |u|+c is used to estimate
the velocity of the error propagation. Hence, the parameter C is actually over estimated.
We repeat the simulation from [19] in a longer region [0,300], and the results are shown
in Fig. 1. It can be observed that regular fluctuation is destroyed starting from around
t = 200, which means that L ≥ 1.5T is needed for the reliable results on the detonation
front. This is obviously sharper than that in [19].

The drawback of the over estimation is that the domain size, hence the total amount
of the mesh grids will increase, and the simulation efficiency will be slowed down, espe-
cially for the high dimensional simulations. In this paper, the above issue is overcame by
the following strategy. First of all, with the given configuration of the problem, the ZND
solutions of the detonation are derived by the procedure introduced in Appendix 5. Then
the solution is used as the initial condition to solve the one-dimensional reactive Euler
equations. With a priori knowledge on the stability of the detonation from, for example,
the linear stability analysis, the inconsistent behavior of the numerical solution on the
detonation front can be observed at some time instant. It is this time which suggests the
time interval for the reliable observations, and the parameter C in the relation L≥CT can
be obtained accordingly, and this results can be used in the high dimensional simulations
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Figure 1: Nonphysical increment of the maximum pressure can be observed after t=200.

with the same initial conditions. Since the estimation on the parameter C is done in the
one-dimensional case, the extra computational load can be ignored, compared with the
one in the high dimensional case.

4 Numerical tests

In this section, we will show some numerical results about the reliable period and h-
adaptive simulations. In the following, a variable with subscript u denotes its unburnt
status, while the subscript b for its complete burnt status. For example, ρu denotes the
density of the unburnt gas at the downstream side of the tube (x=+∞), while ρb denotes
the density of the completely burnt gas at the upstream side of the tube (x=−∞). The
initial value is derived from ZND detonation theory which is introduced in Appendix.
It is noted that a library is provided for the generation of the ZND results, people may
download it from [8].

Physically, the preexponential parameter A in (2.5) represents the frequency of col-
lisions in the correct orientation. Mathematically, this parameter gives us a chance to
unify the half-reaction length L1/2, which is a characteristic length for the simulations of
detonation. It is derived from ODE (A.7) that

L1/2=
∫ 1

1
2

−
m

w
dY. (4.1)

To unify L1/2, the preexponential factor A needs to be chosen as

A=−m
∫ 1

1
2

1
/(

e−
Ea
T ρY

)

dY. (4.2)
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4.1 One-dimensional ZND solutions verification for the observation period

Example 4.1. With the initial state ρu = 1.0, Pu = 1.0, uu = 0.0, the parameters Ea = 50.0,
Q= 50.0, f = 1.8, γ= 1.2, and initial preexponential parameter A= 200.0, the profiles of
the solutions are given in Fig. 2.

First of all, we use the parameters in Example 4.1 to setup the reactive Euler equations
(2.1). In Example 4.1, the preexponential factor A= 200 is used first. Then the formula
(4.2) gives A≈145.69 which unifies the half-reaction length L1/2.

In the numerical results, two observations can be made. The first one is the numerical
convergence. It is noted that the pressure on the Neumann point is around 75.78 with the
configuration given in Example 4.1, while the corresponding results of four simulations
can be read from Fig. 3. Since L1/2 has been unified, there are 20, 40, 80, 160 mesh grids in
L1/2 in four simulations, respectively. It can be seen obviously that with the refinement of
the mesh grids, the amplitude of oscillation will become smaller and the absolute distance
between the pressure on the detonation front and the reference value get closer.

The second observation is the nonphysical oscillation appeared with the time evolu-
tion. This can be explained by the extrapolation boundary condition used in the simu-
lation at the outflow boundary. Since it is subsonic flow through the outflow boundary,
the interior pressure on the domain boundary should be determined by the exterior one,
which is unfortunately unavailable. So the extrapolation technique is used in our simula-
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Figure 2: The profiles of mass fraction Y (top left), pressure (top right), temperature (bottom left), and reaction
rate w (bottom right) from Example 4.1.
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Figure 3: Maximum pressure curves obtained from simulations with the configuration given by Example 4.1.
The numbers of grid points in L1/2 are, from top to bottom, 20, 40, 80, 160 with L= 300, respectively. The
reliable period is 182 in this case

tions to setup the outflow boundary condition. This improper treatment introduced the
numerical error, which finally caused the nonphysical oscillation.

A more interesting observation is that the in the simulation with domain [0,300], the
nonphysical oscillation appears around t=182, while it is t=245 for the domain [0,400],
and t=320 for the domain [0,500]. It is noted that the positions of the leading shock are
280, 380, and 480, respectively. This indicates the relation

L>1.62T,

which means that to generate a reliable solution at the time T, the length of the computa-
tional domain should be at least 1.62T.

As a comparison, according to [19], there are theoretical analysis about the relation
between time and length of domain. The |u|+c wave associated with the first point pre-
sumably containing data that have not been updated and thus are corrupted, eventually
intercepts the shock. For f =1.8 this interception occurs at time

T=
L

u+c−s
+

L

s
=

L

2.9
+

L

9.136
,

where s is the speed of detonation front. In the end, the theoretical analysis gives a much
looser estimation than the numerical results, i.e.,

L>2.201T,
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Figure 4: Maximum pressure curves obtained from simulations with the configuration given by Example 4.1.
The numbers of grid points in L1/2 are, from top to bottom, 80, 400, 500 with L = 300, respectively. The
reliable periods are 182, 245, 320, respectively, in this case.

which indicates that a longer region is needed, to ensure that no corrupted |u|+c waves
will be able to catch up with the shock within the computational time of interest. From
this comparison, it is noted that considerable computational resources can be saved with
the help of the proposed numerical approach, by using a shorter domain.

4.2 One-dimensional four-mode oscillation

Example 4.2. With the initial state ρu = 1.0, Pu = 1.0, uu = 0.0, the parameters Ea = 27.8,
Q=50.0, f =1.0, γ=1.2, and initial preexponential parameter A=56.2266.

With the above configuration, bifurcation to a four-mode oscillation should be ob-
served [21]. In this example, two main factors affecting the formation of the bifurca-
tion structures, i.e., the mesh resolution and the order of the numerical scheme, will be
demonstrated clearly by the numerical experiments.

For the above purpose, three simulations are implemented. The first two are imple-
mented with the proposed numerical framework without the solution reconstruction,
which means that the piecewise constant approximation is used in the spatial discretiza-
tion. From Fig. 5 (left and middle subfigures), it can be seen clearly that the importance
on the mesh resolution, i.e., the dynamics of the detonation front with different mesh
resolutions are qualitatively different, and it is the mesh with high resolution who gives
the reliable results.
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Figure 5: Maximum pressure curves obtained from simulations with the configuration given by Example 4.2
in [21]. The left are results with piecewise constant approximation, and with the numbers of grid points in L1/2

40 and 80, respectively. The right one is the results with piecewise linear approximation, and the number of
grid points in L1/2 is 80.

The third simulation is devoted to highlighting the importance of the high order nu-
merical methods. In this simulation, the same numerical framework to the previous two
simulations is used, except for the using of the non-oscillatory 1-exact solution recon-
struction. The advantage of using high order numerical methods is quite obvious, i.e.,
with 80 grid points in the half reaction zone, the four-mode bifurcation obtained from the
simulation agrees with the one from [21] so much better.

4.3 Cell structure simulations

Example 4.3. With the initial state ρu = 1.0, Pu = 1.0, uu = 0.0, the parameters Ea = 20.0,
Q=2.0, f =1.1, γ=1.2, and initial preexponential parameter A=1.13437e+06.

The simulation with the configuration given by Example 4.3 has been studied in sev-
eral papers, see [3, 10, 15]. In our simulations, the length of the computational domain is
chosen as 80.0, and the initial position of the detonation front is 70.0. In these simulation,
we will show how to apply the concept about reliable period of observation in numerical
simulations.

4.3.1 One-dimensional approximation of reliable period

To estimate a time period of the reliable observation, the numerical experiments in Ex-
ample 4.1 are reimplemented, with the given parameters in Example 4.3. In Fig. 6, the
figure shows the different reliable period in meshes with different domain length. After
we zoom in the maximum pressure curve obtained from the mesh size 0.0125, an appar-
ent jump can be observed around t= 171,249,347,433 respectfully. Similar to the results
showed in Fig. 3, this jump can be explained by the numerical error introduced from the
subsonic outflow boundary.
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Figure 6: Maximum pressure curves obtained from simulations with the configuration given by Example 4.3.
The length of the computational domain are, from top to bottom, 40, 60, 80, 100, respectively, and the number
of the mesh grids in L1/2 is 80. The reliable periods are 171, 249, 347, 433, respectively, in this case

As a result, in the one-dimensional simulations with the parameters given in Exam-
ple 4.3, and with the domain length 80.0 and the initial detonation front position 70.0,
the time period for the reliable observation of the dynamics of the detonation front is
approximately [0,340]. In the following simulations, we consider the dynamics of the
detonation in a real two-dimensional domain. The domain [0,10]×[0,80] with x= 70 as
the initial position of the detonation front.

4.3.2 Simulations with two-dimensional uniform refined mesh

In the first simulation, the simulations are implemented on three successively refined
meshes. The records of the maximum pressure obtained from first three simulations are
showed in Fig. 7 and the pressure distribution for each simulation at t≈200 are showed in
Fig. 8. From Fig. 7, the intrinsic instability of the multi-dimensional detonation is showed
obviously, i.e., with the quality right triangle mesh, the periodic pulsation structure even-
tually appears, no matter how small the mesh size is. More importantly, from all three
results, it can be seen that nonphysical oscillation appear around t=340, which coincides
with the prediction from the one-dimensional results very well. In Fig. 8 the pressure at
t≈200 obtained from three successively refined meshes are showed. At this time, the pe-



462 Y. Di, G. Hu, R. Li and F. Yang / Commun. Comput. Phys., 29 (2021), pp. 445-471

4

5

6

7

4

5

6

7

0 100 200 300 400 500 600
t

4

5

6

7

Figure 7: The records of the maximum pressure obtained from simulations on three two-dimensional meshes,
which have 25600, 102400, 409600 cells. The vertical line at t≈340 denotes the reliable period.

Figure 8: The pressure distributions obtained from simulations on three successively refined meshes, which have
25600, 102400, 409600 cells at t≈200.

riodic pulsation structure has been formed already, and the numerical convergence can
be observed from the results successfully, i.e., with the refinement of the mesh grids, the
resolution of the solution becomes higher.

On the other hand, the propagation of the numerical error from the outflow boundary
can be observed clearly in Fig. 9, i.e., the motion of a wired line towards the detonation
front shows clearly in the figure. When we consider the dynamics of the detonation in
Example 4.3 in a real two-dimensional domain, it is well known that cellular structure
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Figure 9: The pressure distributions obtained from simulations on mesh with 409600 cells at t≈200,250,300,340.
There are lines at x≈15,30,42,53 respectively.

can be observed in the numerical solution, which means that the nontrivial dynamics of
the solution appears along the transverse direction on the detonation front. Although the
dynamics of the detonation in two-dimensional simulations is quite different from that
in the one-dimensional cases, we would like to mention that [0,340] is still a reliable time
period for the reliable observation of the detonation dynamics, based on the observation
that the estimated velocity of the detonation from ZND theory still works very well in the
two-dimensional simulations. Hence, it is reasonable to say that the velocities of the error
propagation along the x-axis in both one-dimensional and two-dimensional simulations
are approximately equal.

This example shows that to predict a relation between the domain size and the max-
imum observation time, and then using this relation to guide the high dimensional sim-
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ulations, is an effective approach towards the efficient simulations of the reactive Euler
equations. In the next example, based on this approach, we introduce the effectiveness of
the h-adaptive method on further saving computational resources.

4.3.3 Simulations with two-dimensional h-adaptivity

In this subsection, the adaptive module of the proposed method is tested. For the conve-
nience on the comparison, the parameters from the above subsection are still used here.

The results obtained from the simulation are showed in Fig. 10. It can be seen that in
the adaptive method, there are 47926 mesh grids in the domain, and the records of the
maximum pressure from the adaptive method almost duplicate that from the uniform
mesh which has 409600 mesh grids. This is reverified by the pressure in Fig. 10 that they
coincide with the ones showed in Fig. 8 very well. In this case, around 90% mesh grids
are saved with the help of the adaptive method to reach almost the same accuracy. Fig. 10
shows the distribution of the mesh grids in the whole domain. It can be observed that
with the indicators generated by (2.11), most mesh grids are located around the leading
shock region and the reaction region, which guarantee the numerical accuracy of the
simulations. There are only a small amount of the mesh grids in other regions, which
improves the efficiency on the simulation.

Remark 4.1. It can be observed that besides the mesh grids in the reaction zone, the
mesh grids in the following region are also refined locally, which forms a long tail in
Fig. 10 (top one). This is due to the component with the gradient of the pressure in the
error indicator (2.11), which helps effectively on resolving the cell structure caused by the
transverse fluctuation on the detonation front.

In the last example, a wider domain [0,40]×[0,60] is used with the same other con-
figuration. It can be seen from Fig. 11 that multiple cell structures successfully formed

Figure 10: The mesh grids (top), as well as the pressure distribution (bottom), obtained from simulations on
adaptive refined meshes(47926 cells) at t≈200, with the width of the domain 10.
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Figure 11: The mesh grids (left), as well as the pressure distribution (right), obtained from simulations on
adaptive refined meshes(47926 cells) at t≈70, with the width of the domain 60.

with 308823 cells. It is worth to mentioning that there are only 2 cells in the half reaction
zone for the initial mesh. It is our h-adaptive mesh method which helps effectively on
resolving those small structures.

5 Conclusion

In this paper, to study the quality dynamics of the detonation front, an adaptive finite vol-
ume method is proposed for the reactive Euler equations. The numerical discretization
includes fractional time stepping technique, a second order TVD RungeKutta method for
the temporal discretization, and a finite volume method with linear solution reconstruc-
tion for the spatial discretization. To restrain the potential numerical oscillation intro-
duced by the high order solution reconstruction, a non-oscillatory k-exact reconstruction
is employed. To enhance the efficiency of the algorithm, both the h-adaptive methods
and the OpenMP parallelization are introduced in this work.

With the proposed numerical method, two main factors affecting the dynamics of the
detonation, i.e., the mesh resolution and the treatment of the subsonic outflow bound-
ary condition, are studied in detail. An effective approach for estimating the relation
between the domain size and the maximum observation period in time is proposed, with
the help of the quality one-dimensional simulations. Numerical experiments show suc-
cessfully that the estimation on the maximum observation time instant by our approach
is much sharper than the one from the previous theoretical analysis. Numerical results
also successfully show the effectiveness of the proposed h-adaptive method on saving
the computational resources.
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The importance of the high order numerical methods has been demonstrated in our
numerical experiments. However, it is nontrivial to raise the order of our current nu-
merical framework since the application of the Strang splitting technique. Furthermore,
the application of the viscosity into the model will make the simulations more physi-
cal. However, the viscosity will bring solid difficulties on developing quality numerical
methods since the existence of the boundary layer, etc. Last but not least, the quality sim-
ulation of the propagation of the detonation wave in the complex domain is necessary in
the practical applications. We will focus on the above issues in our forthcoming papers.
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Appendix A: ZND detonation theory

In numerical study of detonation phenomenon with reactive Euler equations, numerical
solution of one-dimensional ZND model is often used as the initial condition. Below we
briefly introduce the ZND model as well as the derivation of the solution.

In ZND model, the detonation process is considered as the convection of the mix-
ture together with the transformation of the mixture from the reactant to the product.
Hence, the governing equations consist of the conservation laws and the balance laws. In
this paper, for the reaction process, we assume that there are only reactant and product
species, and that the reaction is irreversible. Then in one-dimensional case, the reactive
Euler equations are given by

∂

∂t
ρ+

∂

∂x
(ρu)=0, (A.1a)

∂

∂t
(ρu)+

∂

∂x
(ρu2+P)=0, (A.1b)

∂

∂t
(E)+

∂

∂x
(u(E+P))=0, (A.1c)

∂

∂t
(ρY)+

∂

∂x
(ρuY)=ω. (A.1d)
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In the following, we assume that a detonation wave is propagating with a constant veloc-
ity s along the x-direction of a tube, and that the flow is steady with respect to a coordinate
system moving with the wave. With the given unburnt state of the solutions and param-
eters, the task now is to determine the velocity s and the burnt state of the solutions, and
this can be done by ZND theory as follows.

First of all, a traveling wave coordinate ξ = x−st is introduced, and the above equa-
tions (A.1) can be transferred to the following ordinary differential equations

−s
d

dξ
(ρ)+

d

dξ
(ρu)=0, (A.2a)

−s
d

dξ
(ρu)+

d

dξ
(ρu2+P)=0, (A.2b)

−s
d

dξ
(E)+

d

dξ
(u(E+P))=0, (A.2c)

−s
d

dξ
(ρY)+

d

dξ
(ρuY)=ω. (A.2d)

By introducing the specific volume V=1/ρ, it can be derived from (A.2a) and (A.2b) the
so-called Rayleigh line

P(V)=−m2(V−Vu)+Pu, (A.3)

where m=ρu(s−uu) is the mass flux. Then the Hugoniot curve can be derived from (A.2),
by using the equation of state, and the quantity enthalpy h=E−ρu2/2+PV, as follows

P(V,Y)=

(

2Q(1−Y)−PuV+
γ+1

γ−1
PuVu

)

/

(

γ+1

γ−1
V−Vu

)

. (A.4)

Fig. 12 shows a classical process of a strong ZND detonation. Briefly, the reactant gas
is compressed by the leading shock, and the reactant state changes from (Vu,Pu) (solid
circle point) to the Neumann point (solid square point) along the Hugoniot curve (dashed
one) in Fig. 12. Then the reaction process starts, and the reactant state changes from
the Neumann point (solid square point) to the point (Vb,Pb) (solid triangle point) along
the upper dashed Rayleigh line. It is noted that the minimum velocity for a detonation
wave is the speed of Chapman-Jouguet (CJ) detonation. Similarly, the CJ detonation
corresponds to two process showed in Fig. 12, i.e., the leading shock changes the reactant
state from the point (Vu,Pu) (solid circle point) to the Neumann point (star point) along
the Hugoniot curve (dashed one), then the chemical reaction changes the reactant state

from the Neumann point (star point) to the final state (VCJ
b ,PCJ

b ) (solid diamond point).
Hence, with given ρu, uu, Pu, as well as the parameter γ, Q, and f , the detonation

velocity s as well as the mass flux m are obtained as follows. First of all, the mass flux of
CJ detonation, mCJ , is defined by

m2
CJ =γ

Pu

Vu
+(γ2−1)

Q

V2
u

(

1+

√

1+
2γPuVu

(γ2−1)Q

)

. (A.5)
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Figure 12: Hugoniot curve and Rayleigh line from ZND theory.

Then the velocity of CJ detonation wave is given by

sCJ =
ρuuu+mCJ

ρu
. (A.6)

To define a strong detonation, an over-driven factor f is introduced to build the relation
between the strong detonation speed s and the CJ detonation speed sCJ as s2= f s2

CJ . From
(A.1a), (A.1d), and (A.2a), the following ODE equation can be derived for the distribution
of the mass fraction Y in the domain,











d

dξ
Y=−

ω

m
, ∀ξ<0,

Y(0)=1.

(A.7)

By product rule of the calculus, (A.2d) gives

−sY
dρ

dξ
−sρ

dY

dξ
+Y

dρu

dξ
+ρu

dY

dξ
=w. (A.8)

Then replacing the first term on the left side of the above equation by (A.2a), it follows
that

−Y
dρu

dξ
−sρ

dY

dξ
+Y

dρu

dξ
+ρu

dY

dξ
=w. (A.9)

After the simplification, we have the following ODE for Y

dY

dξ
=

w

ρ(u−s)
=−

w

m
, (A.10)
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with the initial condition Y(0)=1.
Finally, with the mass fraction Y, all other quantities are given by

P(Y)=
m2vu+Pu

γ+1
+

1

γ+1
β(Y), (A.11a)

V(Y)=
γ(m2Vu+Pu)

m2(γ+1)
−

1

m2(γ+1)
β(Y), (A.11b)

u(Y)= s−mV(Y), (A.11c)

where β(Y) is given by

β(Y)=
√

(m2Vu−γPu)2−2(γ2−1)m2Q(1−Y). (A.12)

It is noted that the final state of the solutions can be read from the above functions with
Y=0.

Remark A.1. A library for the one-dimensional ZND simulations has been released, peo-
ple may check out the library from the git repository from [8].
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