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Abstract. In this paper, we present solutions for the one-dimensional coupled nonlin-
ear Schrödinger (CNLS) equations by the Constrained Interpolation Profile - Basis Set
(CIP-BS) method. This method uses a simple polynomial basis set, by which physi-
cal quantities are approximated with their values and derivatives associated with grid
points. Nonlinear operations on functions are carried out in the framework of differ-
ential algebra. Then, by introducing scalar products and requiring the residue to be
orthogonal to the basis, the linear and nonlinear partial differential equations are re-
duced to ordinary differential equations for values and spatial derivatives. The method
gives stable, less diffusive, and accurate results for the CNLS equations.
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1 Introduction

In 1965, the numerical experiment of Zabusky and Kruskal [1] initiated the development
of the concept of the soliton and inverse scattering theory. Since then, many numerical
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methods have been proposed to elucidate complicated processes by accurately solving the
nonlinear partial differential equations (PDEs). The methods belong essentially to one of
two classes: spectral methods and grid methods. The main difference between these two
methods comes from the methodology in treating the spatial derivatives. With a spectral
method the solution is approximated by some finite linear combination of differentiable
basis functions, each one of which satisfies the boundary conditions. The derivatives in a
spectral method do not suffer from numerical inaccuracies. With a grid method, such as
the finite element method or the finite difference method, the derivatives are approximated
by some differences. It is often difficult to approximate the derivatives with sufficient
accuracy, because the derivatives are estimated by using only the values of the function
on a compact set of grid points. In general, spectral methods give accurate solutions with
a minimum number of discretization points, only if appropriate problem specific basis
functions are applicable. However, a finite difference method is typically more flexible and
easier to implement than a spectral method for systems with complex boundary conditions.
By considering the merits and demerits of each method, it is believed that the method in
which the solution is expanded by a finite number of local differentiable basis functions is
to be preferred.

As far as incorporating only the values at grid points, it seems difficult to improve
grid methods which exemplify the spectral method’s accuracy. Recently, a new numerical
method, the CIP-Basis Set (CIP-BS) method [2–4], has been proposed by generalizing the
concept of the Constrained Interpolation Profile (CIP) method [5, 6] from the viewpoint
of the basis set. The idea of the CIP method is that not only values but also their first
derivatives are treated as independent variables associated with the grid points, and the in-
formation lost inside the grid cell is retrieved by a Hermite type interpolation function [7].
The CIP method has been successfully applied to various complex linear and nonlinear
hydrodynamic problems, covering both compressible and incompressible flow [8], such as
shock wave generation, laser-induced evaporation, and elastic-plastic flow. However, the
methods using matrix operations are advantageous in investigating the characteristics of
the system, and a number of numerical methods for large, sparse systems developed for
the finite difference method or the finite element method can be adopted. With this view,
the CIP-BS method has introduced a polynomial basis set, by which physical quantities
are approximated with their values and derivatives associated with grid points. The gov-
erning equations are discretized into matrix form equations requiring the residuals to be
orthogonal to the basis functions via the same principle as the Galerkin method. The
CIP-BS method, in which the local polynomial basis functions corresponding to the val-
ues and spatial derivatives at each grid point belong to the complete set and the class CK ,
is called the CIP-BSK method. Numerical results in the solution of the linear Schrödinger
equation have demonstrated that accurate solutions are obtained by the method and that
the use of a higher order basis set is essential in increasing accuracy.

The purpose of this paper is to show that the CIP-BS method can be extended for
nonlinear operations on functions in the framework of differential algebra, and can be a
universal solver of nonlinear PDEs by exemplifying the solutions of the one-dimensional


