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Abstract. Mesh adaptation is studied from the mesh control point of view. Two
principles, equidistribution and alignment, are obtained and found to be necessary and
sufficient for a complete control of the size, shape, and orientation of mesh elements.
A key component in these principles is the monitor function, a symmetric and positive
definite matrix used for specifying the mesh information. A monitor function is defined
based on interpolation error in a way with which an error bound is minimized on a mesh
satisfying the equidistribution and alignment conditions. Algorithms for generating
meshes satisfying the conditions are developed and two-dimensional numerical results
are presented.

Key words: Mesh adaptation; anisotropic mesh; equidistribution; alignment; error analysis; finite
element.

1 Introduction

Many partial differential equations (PDEs) arising from science and engineering have a
common feature that they have a small portion of the physical domain where small node
separations are required to resolve large solution variations. Examples include problems
having boundary layers, shock waves, ignition fronts, and sharp interfaces in fluid dynam-
ics, the combustion and heat transfer theory, and groundwater hydrodynamics. Numerical
solution of these PDEs using a uniform mesh can be formidable when the systems involve
more than two spatial dimensions since the number of mesh nodes required may become
large. To improve efficiency and accuracy of numerical solution it is natural to put more
mesh nodes in regions of large solution variation than the rest of the physical domain.
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With this basic idea of mesh adaptation, the number of mesh nodes required can be much
smaller; thus significant economies are gained.

Essential to mesh adaptation is the ability to control the size, shape, and orientation
of mesh elements throughout the domain. Traditionally, research has been concentrated
on isotropic mesh adaptation where mesh elements are adjusted only in size according to
an error estimate or indicator while their shape is kept close to being equilateral; e.g., see
books [2,15,27,52] and references therein. However, isotropic meshes often tend to use too
many elements in regions of large solution error. This is especially true when problems
have an anisotropic feature that the solution changes more significantly in one direction
than the others. Full benefits of mesh adaptation can only be taken by simultaneously
adjusting the size, shape, and orientation of mesh elements according to the behavior of
the physical solution. This often results in an anisotropic mesh, a mesh having elements
of large aspect ratio.

The well-known equidistribution principle [11, 20] has been playing an important role
in mesh adaptation. It entails finding a mesh which evenly distributes an error density
among the mesh elements. The principle has been serving as a guideline in developing mesh
adaptation strategies, and most existing adaptive mesh algorithms are more or less related
to it. Unfortunately, it is known [49] that the equidistribution principle is insufficient to
determine an anisotropic mesh in multi-dimensions. Great effort has been made in the
last decade to develop multi-dimensional generalizations of the equidistribution principle
and/or other principles for anisotropic mesh adaptation; e.g., see [4, 19, 32, 37, 41, 42, 50].
Given a physical domain Ω ⊂ <n (n ≥ 1), an adaptive mesh thereon can be gener-
ated as the image of a logical or computational mesh under a coordinate transformation
x = x(ξ) : Ωc → Ω, where Ωc is the computational domain artificially chosen for the pur-
pose of mesh generation. Denote by J = (∂x)/(∂ξ) the Jacobian matrix of the coordinate
transformation and J = det(J) its determinant. Motivated by a discrete constrained opti-
mization problem, Steinberg and Roache [50] define x = x(ξ) by minimizing the functional
∫

Ωc
J2dξ subject to the global implicit constraint

∫

Ωc
Jdξ = |Ω|, with intention to keep

element volume constant. These ideas of relating mesh adaptation functionals to equidis-
tribution and using global implicit constraints are studied extensively by Knupp and Ro-
bidoux [42]. Upon studying linear interpolation error on triangular elements, D’Azevedo
and Simpson [19] suggest that the coordinate transformation be chosen to minimize the
gradient of interpolation error and thus to satisfy

J
T H(v)T H(v)J = cI, in Ωc (1.1)

where c is a constant and H(v) denotes the Hessian of a function v. Huang and Sloan [37]
choose the coordinate transformation such that the function, when transformed into the
new coordinate, has the same change rate at every point and in every direction. This
results in

J
T

(

I + ∇v∇vT
)

J = cI in Ωc (1.2)

for some constant c. Huang [32] generalizes the ideas of [19, 37] to the case with an
arbitrary n × n symmetric and positive definite matrix M = M(x) (named a monitor


