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Abstract. In this paper, we will develop a fast iterative solver for the system of linear
equations arising from the local discontinuous Galerkin (LDG) spatial discretization
and additive Runge-Kutta (ARK) time marching method for the KdV type equations.
Being implicit in time, the severe time step (∆t =O(∆xk), with the k-th order of the
partial differential equations (PDEs)) restriction for explicit methods will be removed.
The equations at the implicit time level are linear and we demonstrate an efficient,
practical multigrid (MG) method for solving the equations. In particular, we numer-
ically show the optimal or sub-optimal complexity of the MG solver and a two-level
local mode analysis is used to analyze the convergence behavior of the MG method.
Numerical results for one-dimensional, two-dimensional and three-dimensional cases
are given to illustrate the efficiency and capability of the LDG method coupled with
the multigrid method for solving the KdV type equations.
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1 Introduction

In this paper, we apply the multigrid (MG) solver to solve the system of algebraic equa-
tions arising from the local discontinuous Galerkin (LDG) spatial discretization and ad-
ditive Runge-Kutta (ARK) time marching method for the KdV type equations containing
third derivatives terms

ut+ f (u)x+uxxx=0, (1.1)
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and the fifth-order KdV type equations

ut+ f (u)x+g(ux)xx+uxxxxx=0, (1.2)

in Ω∈R
d(d≤3), where f (u)≥0 and g(p) are arbitrary (smooth) functions.

The LDG methods for these two types of equations were derived by Yan and Shu [18,
19], which were high order accurate, stable and flexible for arbitrary h and p adaptivity.
In these two papers, time discretization was by the explicit Runge-Kutta method with a
suitably small ∆t for stability (∆t=O(∆x3) for Eq. (1.1) and ∆t=O(∆x5) for Eq. (1.2)).
Usually, it is not necessary to choose such a small time step for the purpose of accuracy
and is purely an artifact of the explicit time discretization technique. Therefore, implicit
methods should be used to improve the computational efficiency.

The discontinuous Galerkin (DG) method is a class of finite element methods using
completely discontinuous basis functions, which are usually chosen as piecewise poly-
nomials. Reed and Hill [10] first introduced the DG method in 1973, in the framework of
neutron linear transport. For PDEs containing higher order spatial derivatives, the DG
method can also be applied directly, Liu and Yan [9] developed direct DG methods for
diffusion problems. Then, Bona et al. constructed conservative DG methods for the gen-
eral KdV equation in [3]. The first LDG method was constructed by Cockburn and Shu
in [4] as an extension of the Runge-Kutta DG method to general convection-diffusion
problems. The idea of the LDG method is to rewrite the equations with higher order
derivatives as a first order system, then apply the DG method to the system. The LDG
techniques have been developed for various high order PDEs including the convection
diffusion equations [4], nonlinear one-dimensional and two-dimensional KdV type equa-
tions [16, 18]. More details about the LDG methods for high-order time dependent PDEs
can be found in the review paper [17].

Xia et al. [14] explored the ARK method to solve the stiff ordinary differential equa-
tions (ODEs) resulting from an LDG spatial discretization to PDEs with higher order spa-
tial derivatives and found that it was an efficient time discretization method. The implicit
method requires to solve system of linear equations at each time step. The efficiency of
the method highly depends on the efficiency of the solver for the linear systems. In [14],
the resulting linear system of algebraic equations were solved by direct linear solver in
LAPACK, which was not efficient for high-dimensional problems. Other traditional iter-
ative methods such as Gauss-Seidel method suffer from slow convergence rates for large
scale problems. Thus, we devote to developing an iterative fast solver for the system of
linear equations.

The multigrid (MG) method was originally applied to simple boundary value prob-
lems, e.g. second-order boundary value problem. Then, the MG method was extended
to solve time-dependent PDEs with even-order spatial derivatives and found that it was
an efficient method. Recently, the MG method coupled with the DG spatial discretization
for the compressible Naiver-Stokes equation [7,11] and the Euler equation [1,2] had been
studied. In [12,13], the MG method was introduced to solve the system of algebraic equa-
tions arising from the higher order DG discretization of advection dominated flows. Guo


