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Supplementary material and references:

Additional Comments:

1 Introduction

The FMMLIB package provides fully adaptive implementations of the fast multipole
method (FMM) for the Laplace, Helmholtz and Stokes equations. It is not highly op-
timized, intended rather to be accessible and modifiable with only modest effort. In
particular, the translation operators used in the three-dimensional libraries are based on
rotation and projection – a new, unified, and simple framework discussed briefly in Sec-
tion 3.1. For optimal performance, plane wave-based translation operators should be
used [3, 14]. This, however, would add significant complexity to the code, and would
make the algorithm less transparent to the user and more difficult to modify. Instead, we
provide a fully parallelized code which is reasonably well optimized for performance on
small multi-core systems using OpenMP. Further acceleration could be obtained by pre-
computation and storage in matrix form of many of the modules in the library (formation
of expansions from sources, evaluation of multipole and local expansions, etc.). In addi-
tion to increasing the memory costs, this would generally require a two-pass procedure
and would, again, make the software itself less accessible.

The fast multipole method computes N-body interactions and evaluates layer poten-
tials in O(N logN) time for non-pathological particle distributions. Typically, O(N logN)
work with a small constant is needed to build the adaptive tree data structure on which
the method relies and O(N) work with a larger constant is then required for the compu-
tation itself. In the case of the Helmholtz equation, we assume that the entire computa-
tional domain (the support of the scatterers) is a modest number of wavelengths in size.
This is the “low frequency” regime from the point of view of either scattering theory or
FMM implementation. The high-frequency version of the FMM is a more complex algo-
rithm, and has not been incorporated into this software release. We do, however, provide
a subroutine which is able to evaluate the scattered field at an arbitrary distance from the
scatterers in terms of a single multipole expansion about the center of the computational
domain.
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2 Laplace and Helmholtz point FMM in R2

FMMLIB2D computes sums of the form:

φ(yi)=
N

∑
j=1

qj Gk(yi−xj)+pjnj ·∇xj
Gk(yi−xj), (2.1)

for i=1,··· ,M, as well as up to second derivatives of φ, where

Gk(x)=
i

4
H

(1)
0 (k‖x‖) for k 6=0, G0(x)= log(‖x‖).

xj are the source locations, yi are the target locations, qj is referred to as the charge
strength and pj as the dipole strength. n=(n1,n2) is a vector whose direction determines
the dipole orientation (if present). If all target locations coincide with the source loca-
tions, i.e., N=M and yi = xi for all i=1,··· ,N, then the sums (2.1) are evaluated ignoring
the self-interactions. For k 6=0, we assume that k is in the upper half of the complex plane.
It is designed for scattering calculations, and there are scaling issues that would need to
be incorporated to handle the modified Helmholtz (Yukawa) regime where k is both large
and near the imaginary axis (the code may perform poorly or fail in that regime). Note
also that when k= 0, we omit the − 1

2π scaling of log(‖x‖) that defines the true Green’s
function. There are, in fact, several different routines available when k= 0. Subroutines
with the prefix lfmm2d compute complex-valued sums of the form:

φ(yi)=
N

∑
j=1

qj log(‖yi−xj‖)+pjnj ·∇xj

(

log(‖yi−xj‖)
)

. (2.2)

Subroutines with the prefix zfmm2d compute complex-valued sums of the form:

φ(ξi)=
N

∑
j=1

pj
1

ξi−zj
. (2.3)

Subroutines with the prefix cfmm2d compute complex-valued sums of the form:

φ(ξi)=
N

∑
j=1

qj log(ξi−zj)+pj
1

ξi−zj
. (2.4)

The cfmm2d routines are not intended for novice users, since the complex valued loga-
rithm is a multi-valued function. As a result, the sums (2.4) have to be interpreted care-
fully and the routines are intended for advanced users only. To be more precise, the sums
(2.4) are intended to be evaluated with strictly real-valued charges qj yielding a well-
defined real part of (2.4). Internally, we use two calls to cfmm2d to evaluate the sums
(2.2).
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3 Laplace and Helmholtz point FMM in R3

FMMLIB3D computes sums of the form:

φ(yi)=
N

∑
j=1

qj Gk(yi−xj)+pjnj ·∇xj
Gk(yi−xj), (3.1)

for i=1,··· ,M, as well as derivatives of φ, where

Gk(x)=
eik‖x‖

‖x‖
,

xj are the source locations, yi are the target locations, qj is referred to as the charge
strength, and pj as the dipole strength. n=(n1,n2,n3) is a vector whose direction deter-
mines the dipole orientation (if present). As in the 2D case, the sums (3.1) are evaluated
ignoring the self-interactions, if all target locations coincide with the source locations, and
we omit the scaling factor 1

4π which is present in the true free-space Green’s function. For
k 6=0, we assume that k is in the upper half of the complex plane with ℜ(k)≥ℑ(k)/10. It
is designed for scattering calculations, and there are scaling issues that would need to be
incorporated to handle the modified Helmholtz (Yukawa) regime where k is nearer the
imaginary axis.

Important note: The charge and dipole strengths are assumed to be complex double
precision numbers for both the Laplace and Helmholtz libraries.

3.1 Translation via projection

The workhorse of classical FMM codes involves the movement of data between boxes
– either from child boxes to their parent (so-called “multipole-to-multipole” translation
operators), from parent boxes to their children (so-called “local-to-local” translation op-
erators), or from a given box B to other boxes at the same level of the spatial hierarchy
that are in B’s “interaction list”. We refer the reader to [3,4,14] for a more detailed discus-
sion. It is well-known that naive translation operators for the FMM require O(p4) work
in three dimensions, where p is the order of the spherical harmonic expansion. Since this
is a dominant factor in the net computational cost of the FMM, there has been a substan-
tial amount of work in reducing the complexity of this step. Plane-wave based schemes,
as in [3, 4, 7, 14], require O(p2) work and are essentially optimal, but require a much
more complicated implementation. We have chosen to use “point-and-shoot” translation
operators in FMMLIB3D, which require O(p3) work, but are more straightforward to un-
derstand. The basic idea is that when translating from a box B to a box C, one first rotates
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the coordinate system so that the z-axis is oriented in the direction from the center of B
to the center of C. This requires O(p3) work. Second, translation is carried out along
the z-axis, again at a cost of O(p3) work. Finally the coordinate system is restored to the
original one through a second rotation. The relevant formulas for these steps are avail-
able in the literature (see, for example, [3–5, 13–15, 19, 20] and the references therein). For
FMMLIB3D, we actually designed a new variant of the point-and-shoot method, which
we refer to as “translation via projection” that also requires O(p3) work [12] but bypasses
the need for complicated analytic expressions for the z-translation (or rotation) steps. For
instance, the incoming multipole expansion for the box C is given by

Uin=
p

∑
n=0

n

∑
m=−n

Bm
n jn(kr)Pm

n (cosθ)eimφ

=
n

∑
m=−n

eimφ
p

∑
n=0

Bm
n jn(kr)Pm

n (cosθ), (3.2)

where, in accordance with conventions in [4], (r,θ,φ) are the local spherical coordinates
of the box C, jn are the spherical Bessel functions of the first kind and order n, and Pm

n

are the normalized associated Legendre functions. For a fixed box radius R, the factors
Bm

n jn(kR) can be easily obtained at a cost of O(p3) by using the spherical harmonic trans-
form algorithm [2]. Unfortunately, the multipole expansion coefficients Bm

n , in general,
can not be recovered from these factors due to possible zeros of jn(kR). To address this
issue, we form the multipole expansion for the radial derivative of the potential Uin

∂Uin

∂r
=

p

∑
n=0

n

∑
m=−n

kBm
n j′n(kr)Pm

n (cosθ)eimφ

=
n

∑
m=−n

eimφ
p

∑
n=0

kBm
n j′n(kr)Pm

n (cosθ), (3.3)

and observe that jn(kR) and kj′n(kR) can not vanish simultaneously. If (3.2) and (3.3) are
linearly combined, then the incoming multipole coefficients will be recovered from the
factors Bm

n (jn(kR)+αkj′n(kR)), where α is the weighting given to (3.3).

4 Laplace and Helmholtz layer FMM in R3

FMMLIB3D also provides subroutines designed to evaluate layer potentials

φ(y)=
∫

T
σ(x)

eik‖y−x‖

‖y−x‖
+µ(x)n(x)·∇x

(

eik‖y−x‖

‖y−x‖

)

dx, (4.1)

where T is a closed surface in R3 and y is a target point either on or off surface. In the
present release, the layer potential routines assume the discretization of T consists of N
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flat triangles and that σ(x) and µ(x) are simply constants: σj and µj on the jth triangle,
respectively.

Both single and double layer potentials can be computed as well as their derivatives,
including on-surface principal value and hypersingular integrals. Thus, FMMLIB3D per-
mits the computation of

φ(yi)=
N

∑
j=1

∫

Tj

σj
eik‖yi−x‖

‖yi−x‖
+µjnj ·∇x

(

eik‖yi−x‖

‖yi−x‖

)

dx, (4.2)

for i = 1,··· ,Nt, where Nt denotes the number of targets, as well as ∇φ(yj) if desired.
While straightforward to use, it is important to note that the quadrature is only first-
order accurate.

5 Stokes point FMM in R3

The flow of an incompressible Newtonian fluid at small values of Reynolds number Re
is governed by the Stokes equation

µ∆u=∇p, divu=0, (5.1)

where u is the velocity of the fluid, p is the pressure, and µ is the dynamic viscosity. With-
out loss of generality, we can set the value of viscosity µ=1 and consider the normalized
version of the Stokes equation

∆u=∇p, divu=0. (5.2)

The standard fundamental solutions (Green’s functions) for the Stokes flow are usually
referred to as the stokeslet S and stresslet T, respectively, which correspond to singular
point forces and dipoles embedded in the flow, [8,16,17]. The fast multipole method com-
putes such Stokes N-body interactions in approximately linear time for non-pathological
particle distributions. STFMMLIB3D computes sums of the form

u(ym)=4π
N

∑
n=1

S(ym−xn)fn+T(ym−xn)ν
n gn,

p(ym)=4π
N

∑
n=1

P(ym−xn)fn+Π(ym−xn)ν
n gn,

for m=1,··· ,M, where

Sij(x)=
1

8π

(

δij
1

‖x‖
+

xixj

||x||3

)

, Tijk(x)=
6

8π

xixjxk

||x||5
, (5.3)

Pj=
2

8π

xj

||x||3
, Πjk =

4

8π

(

−
δjk

||x||3
+3

xjxk

||x||5

)

, (5.4)
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fn are referred to as the charge strengths and gn as the dipole strengths, and νn are the
vectors whose directions determine the dipole orientations (if present). More precisely,
the sums computed by STFMMLIB3D are of the form

ui(y
m)=4π

N

∑
n=1

3

∑
j=1

Sij(y
m−xn) f m

j +4π
N

∑
n=1

3

∑
j=1

3

∑
k=1

Tijk(y
m−xn)νn

k gn
j ,

p(ym)=4π
N

∑
n=1

3

∑
j=1

Pj(y
m−xn) f n

j +4π
N

∑
n=1

3

∑
j=1

3

∑
k=1

Πjk(y
m−xn)νn

k gn
j .

In some situations, it is more convenient to consider modifications of the standard
stresslet T and the corresponding pressure tensor Π:

T
(2)
ijk (x)=

2

8π

(

−
xiδjk

||x||3
+3

xixjxk

||x||5

)

, Π
(2)
jk =

4

8π

(

−
δjk

||x||3
+3

xjxk

||x||5

)

, (5.5)

T
(3)
ijk (x)=

2

8π

(

xkδij

||x||3
−

xjδik

||x||3

)

, Π
(3)
jk =0, (5.6)

T
(4)
ijk (x)=

2

8π

(

−
xiδjk

||x||3
+3

xixjxk

||x||5
+

xkδij

||x||3
−

xjδik

||x||3

)

, Π
(4)
jk =

4

8π

(

−
δjk

||x||3
+3

xjxk

||x||5

)

,

(5.7)

that are referred in the literature to as the symmetric part of the Stokes doublet, the rotlet,
and the Stokes doublet, respectively. The STFMMLIB3D routines are able to replace the
standard stresslet T with one of these kernels with a help of a properly set flag.

STFMMLIB3D is also able to evaluate gradients of the velocities u. Formulas for the
strain ε and stress σ tensors, can then be obtained from partial derivatives of the preced-
ing formulas for velocities with respect to each component xi:

ε ij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (5.8)

σij =−δij p+

(

∂ui

∂xj
+

∂uj

∂xi

)

, (5.9)

and the vorticity ω and the stress t vectors are

ω=∇×u, t=σ ·n, (5.10)

where n is a unit direction vector.

In addition to the standard fundamental solutions for the Stokes equations, it is some-
times convenient to be able to evaluate second derivatives of harmonic functions. Cal-
culations of this type arise, for example, in evaluating pressure gradients (∆S=∇P), in
hydrodynamic interactions for spheres (Rotne-Prager-Yamakawa tensor), in evaluating
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stresslets, rotlets, and Stokes doublets, etc. The additional harmonic (Laplace) routines
available in the STFMMLIB3D library compute sums of the form:

φ(ym)=
N

∑
n=1

qn G(ym−xn)+pn
ν

n ·∇xn G(ym−xn)+hn
η

n ·∇xn∇xn G(ym−xn),

for m = 1,··· ,M, where G(x) = 1/||x||, qn are referred to as the charge strengths, pn as
the dipole strengths, hn as the quadrupole strengths, and νn, ηn are the vectors whose
directions determine the dipole and quadrupole orientations, respectively (if present).
We use a non-standard way to represent the quadrupole orientation tensor, and take
advantage of the symmetry to express it as a six-dimensional vector. More precisely, the
sums computed are of the form

φ(ym)=
N

∑
n=1

qn G(ym−xn)+pn (νn
1 ·∂xn

1
+νn

2 ·∂xn
2
+νn

3 ·∂xn
3
)G(ym−xn)

+hn (ηn
1 ·∂

2
xn

11
+ηn

2 ·∂
2
xn

22
+ηn

3 ·∂
2
xn

33
+ηn

4 ·∂
2
xn

12
+ηn

5 ·∂
2
xn

13
+ηn

6 ·∂
2
xn

23
)G(ym−xn).

5.1 Stokes FMM via harmonic potentials

STFMMLIB3D makes use of the fact that the Stokeslet and Stresslet summation formulas
can be written in terms of four harmonic functions, so that the harmonic FMMLIB3D
routines can be used in “black-box” fashion, [17, 18].

6 Software installation and numerical examples

Software implementing the various point and layer potential FMMs discussed above is
available at the Courant Mathematics and Computing Laboratory website [9–11]. All
timing tests were performed on a 16-core Intel(R) Xeon(R) CPU E5-2687W workstation at
3.1 GHz with 128GB RAM, using Intel Fortran compiler 14.0.2.

The results of numerical experiments are summarized in Tables 1-13. In all tables, the
first column represent the number of sources (and, if requested, the targets) for which
all calculations are done. The second, third, and forth columns contain the CPU times
required by the algorithm using OpenMP on one, four, or fifteen cores, respectively. The
last columns contain the average relative L2 error obtained at the source and target loca-
tions. As it is customary in the FMM literature [1,3], due to excessive computation times,
we used the direct algorithm to evaluate the potentials at a subset of 100 source (target)
locations, and used the resulting data to estimate the relative errors. Similarly, due to
large computational constants associated with the layer potentials, we used a smaller
number of sources and targets in Tables 9-12. As expected, the CPU time for the FMM al-
gorithm grows linearly with the number of elements N and the use of OpenMP typically
accelerates the scheme by an additional factor of about 8-10 while using 15 cores.
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6.1 Sample drivers for FMMLIB2D

In the FMM2D/examples directory, the file lfmm2dpart driver.f contains a sample
driver for lfmm2dparttarg. It creates a random distribution of source points on the unit
circle centered at the origin and a random distribution of target points on a distinct unit
circle, centered at (3,0). The code then computes the potential, gradient, and second

Table 1: Laplace particle FMM in R2, lfmm2dpart, self and target evaluation; CPU times (in seconds) for
computing the Laplace potential, gradient, and second derivatives on 1, 4, and 15 cores, respectively; the
relative L2 errors for self and target potentials; complex-valued charges and dipoles randomly distributed on a
unit circle, the precision parameter iprec = 4 (12 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.16393E+00 0.71320E-01 0.83323E-01 0.46637E-14 0.19465E-14

100000 0.12463E+01 0.45248E+00 0.26063E+00 0.78264E-14 0.86886E-14

1000000 0.12538E+02 0.43906E+01 0.19226E+01 0.20800E-13 0.20692E-13

Table 2: Laplace particle FMM in R2, lfmm2dpart, self evaluation; CPU times (in seconds) for computing the
Laplace potential, gradient, and second derivatives on 1, 4, and 15 cores, respectively; the relative L2 errors for
self potential; complex-valued charges and dipoles randomly distributed on a unit circle, the precision parameter
iprec = 4 (12 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot)

10000 0.13305E+00 0.53702E-01 0.64474E-01 0.46691E-14

100000 0.10162E+01 0.35395E+00 0.17123E+00 0.80473E-14

1000000 0.10048E+02 0.32991E+01 0.12728E+01 0.20576E-13

Table 3: Helmholtz particle FMM in R2, hfmm2dpart, self and target evaluation; CPU times (in seconds) for
computing the Helmholtz potential, gradient, and second derivatives on 1, 4, and 15 cores, respectively; the
relative L2 errors for self and target potentials; complex-valued charges and dipoles randomly distributed on a
unit circle, k=20, the precision parameter iprec = 4 (12 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.30586E+00 0.10494E+00 0.88889E-01 0.52505E-14 0.71748E-14

100000 0.26139E+01 0.84250E+00 0.44690E+00 0.12803E-13 0.86788E-14

1000000 0.25685E+02 0.82447E+01 0.38303E+01 0.16638E-13 0.21756E-13

Table 4: Helmholtz particle FMM in R2, hfmm2dpart, self evaluation; CPU times (in seconds) for computing
the Helmholtz potential, gradient, and second derivatives on 1, 4, and 15 cores, respectively; the relative L2
errors for self potential; complex-valued charges and dipoles randomly distributed on a unit circle, k= 20, the
precision parameter iprec = 4 (12 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot)

10000 0.25523E+00 0.80805E-01 0.72309E-01 0.53536E-14

100000 0.21407E+01 0.64547E+00 0.31610E+00 0.13693E-13

1000000 0.21107E+02 0.62151E+01 0.26586E+01 0.16785E-13
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derivatives at all source and target points. The file hfmm2dpart driver.f contains a sam-
ple driver for hfmm2dparttarg. It creates the same distribution of sources and targets,
and sets the Helmholtz parameter to k=20. Sample test and timing drivers for the MAT-
LAB routines can be found in the matlab directory in files: test lfmm2dpart direct.m,
test hfmm2dpart direct.m, and timings lfmm2dpart.m, timings hfmm2dpart.m, re-
spectively.

6.2 Sample drivers for FMMLIB3D

In the FMM3D/examples directory, the file lfmm3dpart driver.f contains a sample
driver for lfmm3dparttarg. It creates a random distribution of source points on the
unit sphere centered at the origin and a random distribution of target points on a dis-
tinct unit sphere, centered at (0,0,2). The code then computes the potential and field
at all source and target points. The file hfmm3dpart driver.f contains a sample driver
for hfmm3dparttarg. It creates the same distribution of sources and targets, and sets the

Table 5: Laplace particle FMM in R3, lfmm3dpart, self and target evaluation; CPU times (in seconds) for
computing the Laplace potential and field on 1, 4, and 15 cores, respectively; the relative L2 errors for self
and target potentials; complex-valued charges and dipoles randomly distributed on a unit sphere, the precision
parameter iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.61539E+00 0.20607E+00 0.12182E+00 0.37863E-06 0.10149E-05

100000 0.57365E+01 0.16259E+01 0.65051E+00 0.65374E-06 0.94945E-06

1000000 0.55084E+02 0.15367E+02 0.58204E+01 0.70074E-06 0.11390E-05

Table 6: Helmholtz particle FMM in R3, hfmm3dpart, self and target evaluation; CPU times (in seconds) for
computing the Helmholtz potential and field on 1, 4, and 15 cores, respectively; the relative L2 errors for self
and target potentials; complex-valued charges and dipoles randomly distributed on a unit sphere, k=1+.1i, the
precision parameter iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.17493E+01 0.51668E+00 0.26894E+00 0.18719E-06 0.12647E-05

100000 0.16354E+02 0.48285E+01 0.19766E+01 0.28700E-05 0.80072E-06

1000000 0.17412E+03 0.50511E+02 0.18975E+02 0.23781E-07 0.10640E-05

Table 7: Laplace particle FMM in R3, lfmm3dpart, self and target evaluation; CPU times (in seconds) for
computing the Laplace potential on 1, 4, and 15 cores, respectively; the relative L2 errors for self and target
potentials; complex-valued charges randomly distributed on a unit sphere, the precision parameter iprec = 1 (3
digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.35813E+00 0.12353E+00 0.80815E-01 0.67558E-07 0.25475E-06

100000 0.32408E+01 0.94223E+00 0.38952E+00 0.69363E-07 0.19598E-06

1000000 0.31128E+02 0.88007E+01 0.33091E+01 0.70526E-07 0.27832E-06
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Table 8: Helmholtz particle FMM in R3, hfmm3dpart, self and target evaluation; CPU times (in seconds) for
computing the Helmholtz potential on 1, 4, and 15 cores, respectively; the relative L2 errors for self and target
potentials; complex-valued charges randomly distributed on a unit sphere, k= 1+.1i, the precision parameter
iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.68473E+00 0.22920E+00 0.15869E+00 0.17307E-06 0.17746E-06

100000 0.70423E+01 0.21784E+01 0.10148E+01 0.17364E-06 0.12472E-06

1000000 0.71567E+02 0.21520E+02 0.90982E+01 0.17417E-06 0.15986E-06

Table 9: Laplace layer FMM in R3, lfmm3dtria, self and target evaluation; CPU times (in seconds) for computing
the Laplace potential and field on 1, 4, and 15 cores, respectively; the relative L2 errors for self and target
potentials; flat triangulation of a unit sphere, complex-valued single and double layer, the precision parameter
iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

2880 0.15278E+01 0.44817E+00 0.20770E+00 0.60037E-06 0.21845E-04

11520 0.64024E+01 0.18415E+01 0.79300E+00 0.72089E-06 0.38454E-05

Table 10: Helmholtz layer FMM in R3, hfmm3dtria, self and target evaluation; CPU times (in seconds) for
computing the Helmholtz potential and field on 1, 4, and 15 cores, respectively; the relative L2 errors for self
and target potentials; flat triangulation of a unit sphere, complex-valued single and double layer, k=1+.1i, the
precision parameter iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

2880 0.29545E+01 0.81850E+00 0.34847E+00 0.27091E-05 0.14158E-05

11520 0.11593E+02 0.31844E+01 0.11267E+01 0.67729E-05 0.81338E-07

Table 11: Laplace layer FMM in R3, lfmm3dtria, self and target evaluation; CPU times (in seconds) for
computing the Laplace potential on 1, 4, and 15 cores, respectively; the relative L2 errors for self and target
potentials; flat triangulation of a unit sphere, complex-valued single layer, the precision parameter iprec = 1 (3
digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

2880 0.89785E+00 0.27776E+00 0.16465E+00 0.24975E-07 0.50104E-05

11520 0.36576E+01 0.10650E+01 0.45428E+00 0.21279E-07 0.16857E-05

Helmholtz parameter to k = 1+0.1i. The file lfmm3dtria driver.f contains a sample
driver for lfmm3dtriatarg. The file hfmm3dtria driver.f contains a sample driver for
hfmm3dtriatarg and hfmm3dtriampftarg.

6.3 Sample drivers for STFMMLIB3D

In the STFMM3D/examples directory, the file stfmm3dpart dr.f contains a sample
driver for stfmm3dparttarg. It creates a random distribution of source points on the
unit sphere centered at the origin and a random distribution of target points on a distinct



Z. Gimbutas and L. Greengard / Commun. Comput. Phys., 18 (2015), pp. 516-528 527

Table 12: Helmholtz layer FMM in R3, hfmm3dtria, self and target evaluation; CPU times (in seconds) for
computing the Helmholtz potential on 1, 4, and 15 cores, respectively; the relative L2 errors for self and target
potentials; flat triangulation of a unit sphere, complex-valued single layer, k= 1+.1i, the precision parameter
iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

2880 0.17459E+01 0.49066E+00 0.25870E+00 0.56620E-07 0.39769E-07

11520 0.67373E+01 0.18582E+01 0.70807E+00 0.66320E-07 0.34791E-07

Table 13: Stokes particle FMM in R3, stfmm3dpart, self and target evaluation; CPU times (in seconds) for
computing the Stokes potential (i.e., the velocity field and pressure), and the velocity gradient on 1, 4, and
15 cores, respectively; the relative L2 errors for self and target potentials; real-valued single forces randomly
distributed on a unit sphere, the precision parameter iprec = 1 (3 digits).

N T(1 core) T(4 cores) T(15 cores) E(pot) E(pottarg)

10000 0.22757E+01 0.90660E+00 0.65632E+00 0.61481E-06 0.94692E-05

100000 0.17700E+02 0.70828E+01 0.51069E+01 0.14095E-05 0.71472E-05

1000000 0.20701E+03 0.85321E+02 0.60980E+02 0.14330E-05 0.39816E-05

unit sphere, centered at (1,0,−2). The code then computes the velocity field, pressure
and velocity gradient at all source and target points.
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[7] E. Darve and P. Havé, Efficient Fast Multipole Method for Low-Frequency Scattering, J.
Comput. Phys., 197 (2004), 341–363.

[8] J. Happel and H. Brenner (1973). Low Reynolds Number Hydrodynamics, 2nd ed., Noord-
hoff International Publishing, Leyden, Netherlands.

[9] Z. Gimbutas and L. Greengard (2012). FMMLIB2 - Fast Multipole Method (FMM) library for
the evaluation of potential fields governed by the Laplace and Helmholtz equations in R2,
http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html.

[10] Z. Gimbutas and L. Greengard (2012). FMMLIB3 - Fast Multipole Method (FMM) library for
the evaluation of potential fields governed by the Laplace and Helmholtz equations in R3,
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html.

[11] Z. Gimbutas and L. Greengard (2012). STFMMLIB3 - Fast Multipole Method (FMM)
library for the evaluation of potential fields governed by the Stokes equations in R3,
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html.

[12] Z. Gimbutas and L. Greengard, Translation of multipole expansions via projection, in prepa-
ration.

[13] L. Greengard and J. Huang, A New Version of the Fast Multipole Method for Screened
Coulomb Interactions in Three Dimensions, J. Comput. Phys., 180 (2002), 642–658.

[14] L. Greengard and V. Rokhlin, A New Version of the Fast Multipole Method for the Laplace
Equation in Three Dimensions, Acta Numerica (1997), 229–269.

[15] N. A. Gumerov and R. Duraiswami, Recursions for the computation of multipole translation
and rotation coefficients for the 3-D Helmholtz equation, SIAM J. Sci. Comput., 25 (2003),
1344–1381.

[16] C. Pozrikidis (1992). Boundary integral and singularity methods for linearized viscous flow.
Cambridge University Press, Cambridge.

[17] A.-K. Tornberg and L. Greengard, A fast multipole method for the three-dimensional Stokes
equations. J. Comput. Phys., 227 (2008), 1613–1619.

[18] H. Wang, T. Lei, J. Li, J. Huang, Z. Yao, A parallel fast multipole accelerated integral equation
scheme for 3D Stokes equations. Int. J. Num. Meth. Eng., 70 (2007), 812–839.

[19] C. A. White and M. Head-Gordon, Rotating around the quartic angular momentum barrier
in fast multipole method calculations, J. Chem. Phys. 105 (1996), 5061–5067.

[20] Y. Xu, Electromagnetic scattering by an aggregate of spheres, Appl. Opt., 34 (1995), 4573–
4588.


