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Abstract. In this paper we develop a deterministic numerical method for solving the
Boltzmann transport equation for semiconductors based on a transport-collision time-
splitting method. Transport phases are solved by means of accurate flux-balance meth-
ods while collision steps are computed in the original k-grid. Numerical experiments
are shown allowing for a discussion of this method with respect to other present in the
literature.
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1 Introduction

The semi-classical Boltzmann transport equation (BTE) is a mesoscopic description of the
transport/collision of charged particles in an electronic device and is given by

∂ f

∂t
+

1

h̄
∇kε·∇x f − q

h̄
E·∇k f =Q[ f ], (1.1)

where f (t,x,k) measures the probability density of finding an electron at time t in position
x with wave vector k. The parameter h̄ is the Planck constant divided by 2π and q is the
positive elementary charge.
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The band structure of the semiconductor crystal is described by the energy-band func-
tion which can be approximated by a parabolic function given by

ε(k)=
1

2

h̄2

m∗ |k|
2, (1.2)

where m∗ is the effective electron mass. In a first step, we shall consider the most impor-
tant scattering mechanisms in Si: acoustic phonon scattering, in its elastic approximation,
and optical phonon scattering with a single frequency ω. Therefore, the structure of the
collision operator [20, 24] is

Q[ f ](t,x,k) =
∫

R3

[
S(k′,k) f (t,x,k′)−S(k,k′) f (t,x,k)

]
dk′

=
∫

R3
S(k′,k) f (t,x,k′)dk′− f (t,x,k)

∫

R3
S(k,k′)dk′

=Q+[ f ]−Q− [ f ] (1.3)

with

S(k,k′)=K
[
(nq+1)δ(ε(k′)−ε(k)+ h̄ω)+nqδ(ε(k′)−ε(k)− h̄ω)

]
+K0δ(ε(k′)−ε(k)), (1.4)

where nq is the occupation number of phonons

nq =
1

exp
(

h̄ω
kBTL

)

−1
, (1.5)

kB is the Boltzmann constant and TL the lattice temperature. The kernel K0 is

K0 =
kBTLE2

ac

4π2h̄ul
2ρ0

, (1.6)

where Eac is the deformation potential, ul is the sound velocity and ρ0 is the crystal den-
sity. The kernel K is

K =
Dtk

2

8π2h̄ρ0ω
, (1.7)

where ω is the frequency and Dtk is the optical coupling constant. The self-consistent
electrostatic field is computed through Poisson’s equation

∆Φ=
q

ǫ
[ρ(t,x)−ND(x)], (1.8)

where ρ is the electron density

ρ(t,x)=
∫

R3
f (t,x,k)dk, (1.9)


