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Abstract. In this paper we develop a deterministic numerical method for solving the
Boltzmann transport equation for semiconductors based on a transport-collision time-
splitting method. Transport phases are solved by means of accurate flux-balance meth-
ods while collision steps are computed in the original k-grid. Numerical experiments
are shown allowing for a discussion of this method with respect to other present in the
literature.
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1 Introduction

The semi-classical Boltzmann transport equation (BTE) is a mesoscopic description of the
transport/collision of charged particles in an electronic device and is given by
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where f(t,x,k) measures the probability density of finding an electron at time ¢ in position
x with wave vector k. The parameter 7 is the Planck constant divided by 27t and g is the
positive elementary charge.
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The band structure of the semiconductor crystal is described by the energy-band func-
tion which can be approximated by a parabolic function given by

1h2H2

5 (1.2)

e(k) =

where m* is the effective electron mass. In a first step, we shall consider the most impor-
tant scattering mechanisms in Si: acoustic phonon scattering, in its elastic approximation,
and optical phonon scattering with a single frequency w. Therefore, the structure of the
collision operator [20, 24] is
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where 1, is the occupation number of phonons

1
Mg =——F———" (1.5)
exp (kBTL ) 1
kg is the Boltzmann constant and T}, the lattice temperature. The kernel K is
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where E, is the deformation potential, u; is the sound velocity and py is the crystal den-
sity. The kernel K is
Dik’

= Shon (1.7)

where w is the frequency and D;k is the optical coupling constant. The self-consistent
electrostatic field is computed through Poisson’s equation

A= T1o(t,2) = Np ()], (L8)

where p is the electron density

o(t,x) = /IR k), (1.9)



