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Abstract. In this paper, a gas-kinetic unified algorithm (GKUA) is developed to in-
vestigate the non-equilibrium polyatomic gas flows covering various regimes. Based
on the ellipsoidal statistical model with rotational energy excitation, the computable
modelling equation is presented by unifying expressions on the molecular collision re-
laxing parameter and the local equilibrium distribution function. By constructing the
corresponding conservative discrete velocity ordinate method for this model, the con-
servative properties during the collision procedure are preserved at the discrete level
by the numerical method, decreasing the computational storage and time. Explicit
and implicit lower-upper symmetric Gauss-Seidel schemes are constructed to solve
the discrete hyperbolic conservation equations directly. Applying the new GKUA,
some numerical examples are simulated, including the Sod Riemann problem, homo-
geneous flow rotational relaxation, normal shock structure, Fourier and Couette flows,
supersonic flows past a circular cylinder, and hypersonic flow around a plate placed
normally. The results obtained by the analytic, experimental, direct simulation Monte
Carlo method, and other measurements in references are compared with the GKUA
results, which are in good agreement, demonstrating the high accuracy of the present
algorithm. Especially, some polyatomic gas non-equilibrium phenomena are observed
and analysed by solving the Boltzmann-type velocity distribution function equation
covering various flow regimes.
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Nomenclature

α energy-dependent deflection-angle exponent

β and θ introduced relaxation parameter

δ non-translational DoF of the gas

η accommodation coefficient of solid wall

λ mean free path

ν collision frequency

σ and ζ discrete velocity indexes in the Vx- and Vy-direction

τ viscous stress tensor

χ temperature exponent of the coefficient of viscosity

ω index of the VHS model

A weight of numerical quadrature rule

etr and erot energies of translational motion and rotational structure

E total energy

f gas molecular velocity distribution function

f ES equilibrium distribution function

f0 gas particle distribution in the (−→r ,
−→
V ) phase space

f1 the rotational energy density distribution

I internal energy parameter

k Boltzmann constant

m gas molecular mass

n particle number density

P pressure

Pr Prandtl number

R gas constant

Tov, Ttr, Trot and Trel overall, translational, rotational and relaxation temperature

Z rotational collision number

Θ opposite of the stress tensor

T corrected tensor
−→qtr,

−→qrot and −→q translational, rotational and total heat flux vector
−→r =(x,y,z)T space position vector−→

U =(U,V,W)T flow velocity vector−→
V =(Vx,Vy,Vz)T molecular velocity vector

1 Introduction

During spacecraft re-entry into atmosphere, various flow regimes can be confronted, e.g.,
the free molecule flow, rarefied transitional flow, slip and continuum flow regimes [1],
where the thermodynamic properties of the gases and the non-equilibrium mechanism
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of flow fields around the spacecraft are quite different [2–4]. Besides, due to the huge
distinctions of the geometrical scales at different positions of the spacecrafts, both con-
tinuum, transitional and rarefied flow regimes may be encountered in one single case of
this flow study [5, 6]. In addition, for the high-speed high-temperature flow field around
the spacecraft during the reentry, different types degrees of freedom (DoF) of the gas
molecules have been excited at a certain extent, such as the translational, rotational, vi-
brational and electronic DOFs, which may arise the energy exchanges, leading some com-
plex chemical and ionization reactions among the molecules and atoms [7]. Correspond-
ingly, the macroscopic dynamics of the gas and the flow states present complex non-
equilibrium phenomena. And according to the multiple scale between the flow character-
istic time and the gas-kinetic characteristic relaxation time, these non-equilibrium flows
can be categorized into the translational-rotational, vibrational-chemical and ionization-
radiation non-equilibrium [8, 9] etc.. In order to study these complex and mixed non-
equilibrium flows correctly, constructing and developing an unified algorithm for high
rarefied to continuum polyatomic gas flows has become more and more necessary and
important in recent years, which may be contributed to the aerospace engineering.

The Boltzmann equation has been seen to describe the molecular transport phenom-
ena for the full spectrum flow regimes and act as the main foundation for the complex
gas dynamic studies [10], which can model the time evolution of the gas molecular veloc-
ity distribution function (VDF) from non-equilibrium to equilibrium state. However, the
analytical solutions of this equation are possible only for some simple problems, and it
may encounter formidable mathematical difficulties for the analysis of the gas dynamic
phenomena covering various flow regimes [11]. For example, the computational cost of
the Boltzmann collision operator is usually of the order of N7

V for the monatomic gases,
where NV is the number of discrete velocity ordinate grid points in each velocity direc-
tion [12]. For the polyatomic gases, the problem becomes more unbearable when the
internal degrees of freedom, such as the rotation and vibration, are considered in the
framework of the Wang-Chang-Uhlenbeck (WCU) equation [13, 14].

One common and feasible strategy to overcome the difficulty of huge amount of the
computational cost is by means of the nonlinear kinetic model equations. In the past
decades, various kinetic model equations have been proposed, e.g., the Bhatnagar-Gross-
Krook (BGK) model [15], Shakhov model [16], and ellipsoidal statistical (ES) model [17],
which resemble the original Boltzmann equation and concern about the various order of
moments, and the mass, momentum, and energy conservation laws. In addition, con-
sidering the excited internal energy levels of the gas molecules, the Rykov model [18]
for the diatomic gases can be seen as the extension of the Shakhov model for monatomic
gas. Andries et al. [19] and Brull et al. [20] extend the ES model into a modified version
for the polyatomic gases, which add the internal energy parameter as an independent
variable into the molecular VDF. Bernard et al. [21] present a new model of BGK type for
polyatomic gases, which incorporates the different relaxation rates of translational, rota-
tional and/or vibrational modes characterizing polyatomic molecules. Dauvois et al. [22]
propose an extension of the ES-BGK model to account for discrete levels of vibrational
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energy in a rarefied polyatomic gas, which contains parameters that allow to fit almost
arbitrary values for the Prandtl number and the relaxation times of rotational and vibra-
tional energies. Based on a system of kinetic ES-BGK equations, Klingenberg et al. [23]
give a consistent kinetic model for a two-component mixture of polyatomic molecules.

Instead of solving the full Boltzmann equation, it may be a more economical and ef-
ficient way for the simulations of the complex gas flows over a wide range of Knudsen
numbers to solves these kinetic model equations using suitable numerical methods. Dur-
ing past decades, various methods have been developed to simulate these flows based
on the kinetic theories, such as the lattice Boltzmann method (LBM) [24–26], the kinetic
flux vector splitting (KFVS) schemes [27], the gas kinetic scheme (GKS) [28–30], the gas-
kinetic unified algorithm (GKUA) [31,32], the moment methods [33], and the unified gas
kinetic scheme (UGKS) [34, 35] etc.

Among these methods, the GKUA have been successfully used to study hypersonic
reentry aerothermodynamics around kinds of space vehicles and micro-scale flows in-
volved in MEMS devices [36, 37]. The GKUA has unified expressions on the molecular
collision relaxing parameter and the local equilibrium distribution function, which are as-
sociated with the macroscopic flow variables, the gas viscosity transport coefficient, the
thermodynamic effect, the molecular power law, molecular models, and the flow state
controlling parameter Kn from various flow regimes. The GKUA is firstly developed
and employed systematically the discrete velocity ordinate method (DVOM) to solve the
unified non-equilibrium VDF equation for three-dimensional complex flows at arbitrary
Mach numbers covering various flow regimes [5]. The VDF equation from the kinetic
models is numerically discretized in the velocity space by the DVOM with the conser-
vation constraints of summation invariants and H-theorem on the Boltzmann equation.
Through the numerical quadrature rules, the macroscopic flow variables can be obtained
by the moments of the VDF over the discrete velocity space. Applying the high-efficiency
integral methods, the discrete velocity ordinate points in the velocity space are not very
fine, and the DVOM with the wide needed truncated velocity interval for the high Mach
number three-dimensional flows have been presented and applied in practice [4]. It has
been indicated from Refs. [38, 39] that the DVOM is different from the conventional dis-
crete velocity ordinate method [40] based on the Maxwell equilibrium distribution for
low-speed flow.

In order to study the non-equilibrium flow of spacecraft re-entry into the atmosphere
covering various flow regimes, the gas-kinetic unified algorithm will be extended and
considered into the simulations of the translational-rotational non-equilibrium flow in
this work. Based on the ES model with rotational energy excitation and regarding the
rotational energy as an independent variable of the molecular VDF, we will develop a
new version of the GKUA for polyatomic gas flows in rotational non-equilibrium state.
Hereby, the remaining part of this paper will be organized as follows. The kinetic mod-
eling of polyatomic gases for the Boltzmann-type velocity distribution function equation
will be given briefly in Section 2, including the explicit expressions of the model in multi-
dimension physical space, and the deterministic technology of the introduced relaxation
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parameters. Numerical procedures of the GKUA will be illustrated in Section 3, includ-
ing the discrete velocity ordinate method, the lower-upper symmetric Gauss-Seidel (LU-
SGS) implicit scheme, and the initialization and boundary condition procedures. Section
4 presents some numerical test cases and the analysis discussions. The last section is the
concluding remarks.

2 Kinetic modelling of polyatomic gases in rotational

non-equilibrium state

Generally, the monatomic gases can be seen as a collection of particles characterized by

their space position −→r =(x,y,z)T and velocity
−→
V =(Vx,Vy,Vz)T, whose relevant mathe-

matical model is then the Boltzmann equation [41],

∂ f

∂t
+
−→
V ·∇−→r f +

−→
F ·∇−→

V
f =Q( f , f ), (2.1)

where f is the molecular VDF depending on the space position −→r , molecular velocity−→
V and time t,

−→
F is the vector of the external force, and Q( f , f ) is a complex integro-

differential term, which describes the binary collision between particles.

The extension to polyatomic gases can be achieved by considering the internal energy,
such as the rotational or vibrational energy, which can be expressed as follows [19],

ε int = I2/δ, (2.2)

where I is the internal energy parameter which is non-negative, i.e., I ∈ R
+, and δ is

the measure of excitation of internal energy levels and non-translational DoF of the gas.
Typically, for polyatomic gases, some internal DoF are only partially excited, with the
degree of excitation determined by temperature. Therefore, δ is not an integer, but a
continuous function of temperature, i.e., δ= δ(T), that has integer values only for fully
excited internal DoF.

In this paper, we consider polyatomic gases in which the vibrational degrees of free-
dom are not excited and the rotational degrees of freedom can be treated classically. For
this case, the gas molecule has three translational degrees of freedom and δ rotational
degrees of freedom, where δ= 2 for diatomic and linear polyatomic gases and δ= 3 for
nonlinear polyatomic gases [12].

Hereby, the governing equation of the polyatomic molecular transport phenomena
from full spectrum of flow regimes in the view of micro-mechanics can also be described
by the Boltzmann equation (2.1), where the molecular distribution function is rewritten

as f = f (t,−→r ,
−→
V , I) with (t,−→r ,

−→
V , I)∈R

+×R×R×R
+.
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2.1 Ellipsoidal statistical model with rotational energy excitation

Ignoring the effect of the external forces, the ellipsoidal statistical model equation with
the excitation of internal energy levels (ES-int) for polyatomic gases [19, 20] has the fol-
lowing form, which can be seen as the extension of the ES model for monatomic gas [17],

∂ f

∂t
+
−→
V ·∇−→r f =ν( f ES− f ), (2.3)

where ν is a constant parameter which is called the collision frequency and determined
by the viscosity, and f ES is the equilibrium distribution function, whose specific form is
given by the expression (2.10).

Under the notation

〈〈Ψ f 〉〉=
∫
−→
V∈R3,I∈R+

Ψ f (t,−→r ,
−→
V , I)d

−→
V dI,

the relations between distribution function and macroscopic quantities are defined as

n(−→r ,t)= 〈〈 f 〉〉, (2.4a)
−→
U (−→r ,t)= 〈〈−→V f 〉〉, (2.4b)

E(−→r ,t)= 〈〈
(

1

2

∣∣∣
−→
V
∣∣∣
2
+ I

2
δ

)
f 〉〉= 1

2
n
∣∣∣
−→
U
∣∣∣
2
+ne, (2.4c)

where Ψ is an arbitrary function, n is the particle number density,
−→
U = (U,V,W)T is

the flow velocity, E is the total energy, and e is the specific internal energy, which can be
divided here in two parts, the energy of translational motion etr and the energy associated
with the rotational structure erot,

e=
E

ρ
− 1

2

∣∣∣
−→
U
∣∣∣
2
= etr+erot, etr =

1

2n
〈〈
∣∣∣
−→
V −−→

U
∣∣∣
2

f 〉〉, erot=
1

n
〈〈I

2
δ f 〉〉. (2.5)

The classical equipartition theorem states that in full thermal equilibrium, and with δ
fully excited internal DoF, each DoF contributes an energy of RT/2 to the energy of a
particle [20]. Hence, these energies can be associated with their corresponding tempera-
ture Tov, Ttr and Tint, i.e.,

e=
3+δ

2
RTov, etr =

3

2
RTtr, erot =

δ

2
RTrot, (2.6)

where R is the gas constant, calculated by the fraction of the Boltzmann constant k and
the molecular mass m.

As same as the treatment of the original ES model, we introduce the opposite of the
stress tensor of the following form,

Θ=
1

n
〈〈−→C ⊗−→

C f 〉〉, (2.7)
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where
−→
C =

−→
V −−→

U is the peculiar velocity, and the symbol ⊗ represents the operation of
the tensor product. Another two relaxation parameters β and θ are introduced to define
the relaxation temperature,

Trel = θTov+(1−θ)Trot, (2.8)

and the corrected tensor

T =(1−θ)[(1−β)RTtrId+βΘ]+θRTovId, (2.9)

where Id is the unit tensor. Heretofore, the explicit and specific expression of the equilib-
rium distribution function f ES can be defined as,

f ES=
nΛδ√

det(2πT )(RTrel)
2/δ

exp

(
−1

2

−→
C ·T −1 ·−→C − I2/δ

RTrel

)
, (2.10)

with

Λ−1
δ =

∫

R+
exp(−I2/δ)dI=Γ

(
1+

δ

2

)
=

δ

2
Γ

(
δ

2

)
,

where Γ is the Gamma function, calculated as Γ(1/2)=
√

π, Γ(1)=1 and Γ(1+x)=xΓ(x).
In order to reduce the amount of computations, a considerable method can be realized

according to the fact that the constructed model kinetic equation can be averaged over
the rotational energy parameter I. Using integration with respect to I, we proceed from

the molecular distribution function f (t,−→r ,
−→
V , I) to the new functions,

f0(t,
−→r ,

−→
V )=

∫

R+
f (t,−→r ,

−→
V , I)dI, (2.11a)

f1(t,
−→r ,

−→
V )=

∫

R+
erot f (t,−→r ,

−→
V , I)dI. (2.11b)

Here, f0 is the gas particle distribution in the (−→r ,
−→
V ) phase space and f1 is the rotational

energy density distribution in this space. Correspondingly, the model equation (2.3) can
be transformed into the following forms,

∂ fi

∂t
+
−→
V ·∇−→r fi =ν

(
f ES
i − fi

)
, i=0,1, (2.12)

with

f ES
0 =

n

(2π)3/2
√

det(T )
exp

(
−1

2

−→
C ·T −1 ·−→C

)
, f ES

1 =
δ

2
RTrel f ES

0 .

And the collision frequency ν has the following forms [?], which considers the molecular
interaction and the rarefaction degree of gas flows from rarefied to continuum,

ν=Pr· 4α(5−2ω)(7−2ω)

5(α+1)(α+2)

√
R

2π
·
T

χ− 1
2

re f

nre f
· 1

λre f
· n

Tχ−1
, (2.13)
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Table 1: Characteristic variables of each physical quantity for non-dimensionalizing unified simplified VDF
equation.

Physical Quantity Characteristic variable

Length Lre f Lre f

Density nre f nre f

Temperature Tre f Tre f

Speed cre f

√
2RTre f

Time tre f Lre f /cre f

Collision Frequency νre f 1/tre f

Pressure Pre f
1
ς ·mnre f c2

re f /2

Heat Flux qre f mnre f c3
re f /2

Distribution Function f0,∞ nre f /c3
re f

Distribution Function f1,∞ nre f /2cre f

Opposite of Stress Tensor Θre f c2
re f /2

Corrected Tensor Tre f c2
re f /2

where α is the energy-dependent deflection-angle exponent which denotes the index of
the variable soft sphere (VSS) molecular model [42], ω is the index of the VHS model [43],
Tre f and nre f are the reference temperature and number density, respectively, which are
set as the free-stream values generally, χ is the temperature exponent of the coefficient
of viscosity, λre f is the reference mean free path, Pr is the Prandtl number which has the
following relation with the two additional introduced parameters β and θ,

Pr=
1

1−β+θβ
, (2.14)

and other parameters are as same meaning as mentioned before.

Following the characteristic variables in Table 1, the non-dimensional unified VDF
equations presented in the Cartesian coordinates are of the same expressions as Eq. (2.12),
while

f ES
0 =

n

π
3
2

√
det(T )

exp
(
−−→

C ·T −1 ·−→C
)

, f ES
1 =

δ

2
Trel f ES

0 , (2.15a)

ν=Pr· 2α(5−2ω)(7−2ω)

5(α+1)(α+2)
√

π
· nT1−χ

Kn
, Pr=

1

1−β+θβ
, Kn=

λre f

L
, (2.15b)

Tij=(1−θ)
[
(1−β)Ttr∆ij+βΘij

]
+θTov∆ij , (2.15c)

det(T )=TxxTyyTzz−T 2
xyTzz−T 2

xzTyy−T 2
yzTxx+2TxyTxzTyz, (2.15d)
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−→
C ·T −1 ·−→C =

1

det(T )




C2
x(TyyTzz−T 2

yz)+C2
y(TxxTzz−T 2

xz)+C2
z(TxxTyy−T 2

xy)

+2CxCy(TxzTyz−TxyTzz)+2CxCz(TxyTyz−TxzTyy)

+2CyCz(TxyTxz−TyzTxx)


, (2.15e)

where Kn is the Knudsen number, ∆ij is the Kronecker delta symbol, and the constant
ς is introduced as the dimensionless adjustment parameter in order to unify different
relations of the dimensionless density, temperature and pressure in some previous liter-
atures, which is generally set as unit. All of the variables in the above expressions and in
all following equations are non-dimensional, if it is not mentioned especially.

All of the considering macroscopic flow variables, e.g., the number density of the gas

n, the flow velocity
−→
U , the four type temperature Ttr, Trot, Tov and Trel, the pressure P,

the viscous stress tensor τ and the three type heat flux vector −→qtr,
−→qrot and −→q , can be

calculated from the integrated moments of the VDF over the molecular velocity space,

n(−→r ,t)=
∫

R3
f0d

−→
V , (2.16a)

Ui(
−→r ,t)=

1

n

∫

R3
Vi f0d

−→
V , (2.16b)

Ttr(
−→r ,t)=

2

3n

∫

R3

∣∣∣
−→
C
∣∣∣
2

f0d
−→
V , Trot(

−→r ,t)=
2

δn

∫

R3
f1d

−→
V , (2.16c)

Tov(
−→r ,t)=

1

3+δ
(3Ttr+δTrot), Trel(

−→r ,t)= θTov+(1−θ)Trot, (2.16d)

P(−→r ,t)=ςnTov, Θij=
2

n

∫

R3
CiCj f0d

−→
V , τij(

−→r ,t)=−ςnΘij+P∆ij, (2.16e)

qtr,i(
−→r ,t)=

∫

R3
Ci

∣∣∣
−→
C
∣∣∣
2

f0d
−→
V , qrot,i(

−→r ,t)=
∫

R3
Ci f1d

−→
V , qi =qtr,i+qrot,i, (2.16f)

where the subscripts i and j each range from 1 to 3, which are identified with components
along the x, y and z axes, respectively.

If we define the following three vectors,

Ψ=




1 0−→
V 0∣∣∣
−→
V
∣∣∣
2

1


, (2.17)

one can obtain the following expressions by virtue of the relations between the molecular
VDF and the macroscopic flow variables,

∫
−→
V∈R3

Ψ

(
f0

f1

)
d
−→
V =




n

n
−→
U

3
2 nTtr+n

∣∣∣
−→
U
∣∣∣
2
+ δ

2 nTrot


. (2.18)
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From Eq. (2.15), one can obtain the following integral results about the equilibrium dis-
tribution function,

∫
−→
V∈R3

Ψ

(
f ES
0

f ES
1

)
d
−→
V =




n

n
−→
U

n
∣∣∣
−→
U
∣∣∣
2
+

n(Txx+Tyy+Tzz)
2 + δ

2 nTrel


. (2.19)

Through the definitions of the opposite stress tensor Θ and corrected tensor T and cou-
pling with Eq. (2.16c), we have

Θxx+Θyy+Θzz=3Ttr ⇒ Txx+Tyy+Tzz =3[(1−θ)Ttr+θTov]. (2.20)

Therefore, the third term of Eq. (2.19) can be calculated into the following form,

∫
−→
V∈R3

(∣∣∣
−→
V
∣∣∣
2

f ES
0 + f ES

1

)
d
−→
V =n

∣∣∣
−→
U
∣∣∣
2
+

3

2
nTtr+

δ

2
nTrot. (2.21)

Subtracting Eq. (2.18) from the identical relations (2.19) and (2.21), Eq. (2.15) satisfies the
conservation conditions at each of points in physical space and time, i.e.,

∫
−→
V∈R3

Ψ

(
f ES
0 − f0

f ES
1 − f1

)
d
−→
V =0, (2.22)

where Ψ can be seen as the components of the moments on mass, momentum and energy.
The conservation conditions mean that the mass, momentum and energy are conserved
during molecular collisions in this model.

2.2 Determination of the relaxation parameters β and θ

According to Ref. [19], the values of relaxation parameters β and θ should be in the fol-
lowing interval,

−1

2
6β61, 06θ61, (2.23)

when the nonnegative characteristics of the molecular VDFs and the macroscopical tem-
peratures are considered, whose specific mathematical derivations have been presented
in Ref. [20]. Besides, in the Chapman-Enskog expansion to the Navier-Stokes system, the
second viscosity coefficient α and Prandtl number Pr can link with these two relaxation
parameters [19],

α=γ−1− 1−θ

θ
(1−β)

(
5

3
−γ

)
, Pr=

γ

γ−1

Rµ

κ
=

1

1−β+θβ
. (2.24)

When θ approaches zero, the model equation (2.15) can be reduced to the original ES
model for monatomic gases, where a correct Prandtl number 2/3 is obtained by taking
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β =−1/2. For the diatomic or nonlinear polyatomic gases, the experimental values of
the Prandtl number can be found in some references. Hence, considering Eq. (2.14) and
unifying the expression, the first strategy to determine the values of β and θ is given as
follows,

β=−1

2
, θ=1+

Pr−1−1

β
. (2.25)

For the nitrogen or oxygen gas, whose specific heat ratio is 1.4, the value of Prandtl num-
ber is 5/7 approximatively, and this is obtained with β=−0.5 and θ=0.2. This value of θ
corresponds to the empirical law that in a polyatomic gas, one collision of particles out of
five involves an exchange of internal energy, which is widely used in DSMC simulations.

Another strategy is enlighten by the rotational relaxation process in a homogeneous
gas. For a diatomic or nonlinear polyatomic homogeneous gas with different initial trans-
lational temperature Ttr and rotational temperature Trot, the system will evolve into an
equilibrium one with average temperature T, which is a constant value. Intermolecular
collision will relax Trot into the average temperature T with a rate related to the collision
frequency.

Due to the homogeneous space distribution, which exists no molecular convective
movements, the governing equations (2.15) can be reduced as,

d fi

dt
=ν

(
f ES
i − fi

)
, i=0,1. (2.26)

Integrating the above equation over the whole velocity with weighting factors
∣∣−→C

∣∣2 and
1, respectively, the time evolutions of the translational and rotational energies can be
obtained as, 




dTtr

dt
= θν(Tov−Ttr),

dTrot

dt
=ν(Trel−Trot)= θν(Tov−Trot).

(2.27)

Comparing with the relaxation process for a homogeneous gas in Ref. [34] and consider-
ing the definition of the collision frequency, we can derive the following relation for the
accordance,

θ=
1

Z ·Pr
, (2.28)

with

Z=
Z∞

1+(π3/2/2)
√

T∗/Ttr+(π+π2/4)(T∗/Ttr)
,

where the parameter Z is the rotational collision number in the Landau-Teller-Jeans type
relaxation model, the quantity Z∞ has a fixed value, and T∗ is the characteristic tempera-
ture of intermolecular potential. For the nitrogen gas, the values Z∞ =23.0 and T∗=91.5
are utilized, while Z∞ =14.4 and T∗=90.0 for the oxygen. Besides, the parameter Z can
be a constant in some engineering computations, e.g., Z=5.0. The numerical validation
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of the relaxation process for a homogeneous gas using our model will be given in Section
4. Coupling Eq. (2.28) with Eq. (2.14), the second strategy of determination can obtain as
the following form,

β=
Z(1−Pr)

1−Z ·Pr
, θ=

1

Z ·Pr
. (2.29)

2.3 Reduced velocity distribution function equations for the two-dimensional
flows

A considerable reduction in the amount of computations can be achieved through the
accurate integration of the VDFs on the velocity components in some directions with
appropriate weighting factors. For the two-dimensional problems in the space direction
x and y, ∂z(•) = 0 (• represents arbitrary status function). Introducing three reduced
distribution functions of x, y, Vx, Vy and t with the following forms,

g0(x,y,Vx,Vy,t)=
∫

R

f0(x,y,Vx,Vy,Vz)dVz, (2.30a)

g1(x,y,Vx,Vy,t)=
∫

R

V2
z f0(x,y,Vx,Vy,Vz)dVz, (2.30b)

g2(x,y,Vx,Vy,t)=
∫

R

f1(x,y,Vx,Vy,Vz)dVz, (2.30c)

the modelling equations (2.15) can be transformed and integrated with respect to Vz with
weighting factors 1 and V2

z of the following forms,

∂gi

∂t
+Vx

∂gi

∂x
+Vy

∂gi

∂y
=ν

(
GES

i −gi

)
, i=0,1,2, (2.31)

with

GES
0 =

n

π

√(
TxxTyy−T 2

xy

) exp

[
− (Vx−U)2Tyy−2(Vx−U)(Vy−V)Txy+(Vy−V)2Tyy

TxxTyy−T 2
xy

]
,

GES
1 =

Tzz

2
GES

0 , GES
2 =

δTrel

2
GES

0 ,

Θxx=
2

n

∫

R2
V2

x g0(x,y,Vx,Vy,t)dVxdVy−2U2,

Θyy=
2

n

∫

R2
V2

y g0(x,y,Vx,Vy,t)dVxdVy−2V2,

Θzz=
2

n

∫

R2
g1(x,y,Vx,Vy,t)dVxdVy,

Θxy=Θyx =
2

n

∫

R2
VxVy g0(x,y,Vx,Vy,t)dVxdVy−2UV,

Tjk =(1−θ)
[
(1−β)Ttr∆jk+βΘjk

]
+θTov∆jk , ( j,k= x,y,z).
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Correspondingly, the macroscopic flow variables for the two dimensional gas dynamics
can be obtained by the following expressions,

n(x,y,t)=
∫

R2
g0 dVxdVy, (2.32a)

Ui(x,y,t)=
1

n

∫

R2
Vi g0 dVxdVy, (2.32b)

Ttr(x,y,t)=
2

3n

∫

R2

[(
V2

x +V2
y

)
g0+g1

]
dVxdVy−

2

3

(
U2+V2

)
,

Trot(x,y,t)=
2

δn

∫

R2
g2 dVxdVy, Tov(x,y,t)=

3Ttr+δTrot

3+δ
,

Trel(x,y,t)= θTov+(1−θ)Trot,

(2.32c)

P(x,y,t)=ς·nTov, τ ij(x,y,t)=−ς·nΘij+P∆ij, (2.32d)

qtr,i(x,y,t)=
∫

R2
Vi

[
(V2

x +V2
y )g0+g1

]
dVxdVy−2Ui

∫

R2
V2

i g0 dVxdVy

−2Uj

∫

R2
ViVj g0 dVxdVy+nUi

(
U2+V2− 3

2
Ttr

)
, (2.32e)

qrot,i(x,y,t)=
∫

R2
Vi g2 dVxdVy−

δ

2
nUiTrot, (2.32f)

qi(x,y,t)=qtr,i+qrot,i. (2.32g)

3 Numerical procedures of GKUA

In this section, the numerical procedures of GKUA for the governing equations (2.15)
will be presented in detail, including the constructions and applications of the conserva-
tive discrete velocity ordinate method (CDVOM) and the lower-upper symmetric Gauss-
Seidel (LU-SGS) implicit scheme, and the computational modeling of the gas-kinetic
boundary conditions.

3.1 Conservative Discrete velocity ordinate method

The discrete velocity ordinate method (DVOM) in the gas kinetic theory has been pre-
sented to remove the VDFs’ continuous dependency on the velocity space. Here, we use
Eq. (2.31), i.e., the two-dimensional flow, as an example. Using the DVOM in the Vx and
Vy velocity spaces, Eq. (2.31) can be transformed into hyperbolic conservation forms at
each of the discrete velocity ordinate points Vxσ,Vyζ (σ=1,2,.. .,Nxσ; ζ=1,2,.. . ,Nyζ),

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

=S , (3.1)
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with

Q=




g0σ,ζ(x,y,t)

g1σ,ζ(x,y,t)

g2σ,ζ(x,y,t)


, F=VxσQ, G=VyζQ, S=−νQ+ν




GES
0σ,ζ(x,y,t)

GES
1σ,ζ(x,y,t)

GES
2σ,ζ(x,y,t)


.

Here gi σ,ζ(x,y,t) and GES
i σ,ζ(x,y,t) correspond to the values of gi and GES

i at the discrete ve-

locity ordinate points
(
Vxσ,Vyζ

)
, and the subscript σ and ζ represent the discrete velocity

ordinate grid indexes in the Vx- and Vy-direction, respectively.

When the discrete distribution functions gi σ,ζ(x,y,t) are obtained by solving Eq. (3.1),
the considered macroscopic flow variables at any time in any position of the physical
space can be updated by the appropriate quadrature rules. For example, the gas density
by Eq. (2.32a) can be calculated by one numerical quadrature rule as follows,

n(x,y,t)=
Nxσ

∑
σ=1

Nyζ

∑
ζ=1

Aσ Aζ ·g0(x,y,t;Vxσ,Vyζ). (3.2)

Here the coefficients Aσ, Aζ , Vxσ and Vyζ are the weights and discrete velocity ordinates,
respectively, which are decided by the quadrature rules.

In the past decades, various quadrature rules have been adopted in the GKUA for
vast flow simulations successfully, including the Gauss-Hermite, the composite Newton-
Cotes, the multi-subinterval Gauss-Legendre and the Gauss-Chebyshev quadrature rules.
The specific values of the weights and discrete ordinates, and the comparisons of differ-
ent quadrature rules using in the GKUA can be found in our previous paper [31]. From
the comparison, it has been found that the Gauss-Hermite integral methods are the best
options for simulating low Mach number flows, which use the least nodes to obtain re-
sults with enough computed precision. And the Gauss-Chebyshev rule is actually the
most appropriate integration method for some high Mach number complex flows cov-
ering various flow regimes. When one rule obtain enough computed precision, it is no
need to increase the DVO number or enlarge the discrete velocity space.

However, the equilibrium state GES
i are constructed by the macroscopic flow vari-

ables, i.e.,
−→
W=(n,U,V,Ttr,Tint,Θij)

T, which are calculated by using the numerical quadra-
ture rules, so that the collision conservative constraints (2.22) might not satisfy, leading
to a numerical source term. Generally, the conservative method, whose treatments can
vanish the numerical source term, maintains the conservation property of the collision
integral on a given molecular velocity grid, and do not produce non-physical sources of
mass, momentum and energy and therefore in the limit of small Knudsen numbers the ki-
netic solution approaches the solution of macroscopic flow equations away from bound-
aries [44]. For the non-conservative method, it will need very fine molecular velocity
meshes to keep the numerical source term small when the Knudsen number decreases.
Hence, we develop a corresponding CDVOM here, enlightened by Ref. [44].
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Recalling the conservative condition (2.22), the numerical source term can be written
as,

ε=
Nxσ

∑
σ=1

Nyζ

∑
ζ=1

Aσ Aζ ·Ψ·




GES
0 −g0

GES
1 −g1

GES
2 −g2


, (3.3)

where

Ψ=




1 0 0
Vx 0 0
Vy 0 0

V2
x +V2

y 1 1


.

Considering the effects of the opposite of the stress tensor Θ in equilibrium state GES
i , we

can introduce

Υ=




V2
x 0 0

Vx Vy 0 0
V2

y 0 0

0 1 0




and have the following relations,

∫

R2
Υ




g0

g1

g2


dVx dVy=




n
(

1
2 Θxx+U2

)

n
(

1
2 Θxy+UV

)

n
(

1
2 Θyy+V2

)
n
2 Θzz


, (3.4)

and

∫

R2
Υ




GES
0

GES
1

GES
2


dVx dVy =




n
(

1
2Txx+U2

)

n
(

1
2Txy+UV

)

n
(

1
2Tyy+V2

)
n
2Tzz


. (3.5)

Hence, applying the quadrature rule on Eqs. (3.4) and (3.5), and coupling with Eq. (3.3),
one can obtain the following new numerical source term,

H=
Nxσ

∑
σ=1

Nyζ

∑
ζ=1

Aσ Aζ ·
(

Ψ

Υ

)
·




GES
0 −g0

GES
1 −g1

GES
2 −g2


−R, (3.6)

where
R=

(
0,0,0,0,Txx−Θxx,Txy−Θxy,Tyy−Θyy,Tzz−Θzz

)T
.

In order to preserve the conservative properties, one should minimize the expression (3.6)
into zero, which can be solved by using the Newton-Raphson method for nonlinear sys-
tem equations with multi-variables. The iterative formula can be expressed as the follow-
ing form,

M
(−→

Ws
)(−→

Ws+1−−→
Ws

)
=−H

(−→
Ws

)
⇒−→

Ws+1=
−→
Ws−M−1

(−→
Ws

)
H
(−→

Ws
)

, (3.7)
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where the matrix M = ∂H/∂W is the Jacobian matrix, the subscript s denotes the s-th
iterative step.

However, due to the complex expressions of M that contains the differential and nu-
merical integration calculations, we can give the approximate M(∗) by integrating the

expression first and then differentiating, as well as its inverse matrix M−1
(∗),

M(∗)=




1 0 0 0 0 0 0 0
U n 0 0 0 0 0 0
V 0 n 0 0 0 0 0

δ
2 Tint+

3
2 Ttr+U2+V2 2nU 2nV 3n

2
δn
2 0 0 0

1
2 Θxx+U2 2nU 0 0 n

2 0 0 0
1
2 Θxy+UV nV nU 0 0 n

2 0 0
1
2 Θyy+V2 0 2nV 0 0 0 n

2 0
1
2 Θzz 0 0 0 0 0 0 n

2




, (3.8a)

M−1
(∗)=

1

n




n 0 0 0 0 0 0 0
−U 1 0 0 0 0 0 0
−V 0 1 0 0 0 0 0

1
3

[
δΘxx−δTint−3Ttr−2(δ−1)U2+2V2

]
4
3 (δ−1)U − 4

3 V 2
3 − 2

3 δ 0 0 0
2U2−Θxx −4U 0 0 2 0 0 0

−Θxy+4UV−2UV −2V −2U 0 0 2 0 0
2V2−Θyy 0 −4V 0 0 0 2 0
−Θzz 0 0 0 0 0 0 2




.

(3.8b)

3.2 Explicit and implicit schemes

Based on the cell-centered finite volume method (FVM), the Runge-Kutta explicit and
LU-SGS implicit scheme is constructed to solve the discrete hyperbolic conservation equa-
tion (3.1) directly.

At one discrete velocity ordinate point (Vxσ,Vyζ), for one control volume ΩI,J of grid
central-type element (see Fig. 1), the integral type of Eq. (3.1) is of the following form,

∂QI,J

∂t
+

1

ΩI,J

∮

∂Ω

−→F ·−→n ds=SI,J , (3.9)

with −→F =
(

Vxσ
−→
i +Vyζ

−→
j
)
QI,J , SI,J =−νQI,J+ν

(
GES

0 ,GES
1 ,GES

2

)T

I,J
,

where −→n is the normal vector on boundaries of the control volume, and QI,J is the aver-
age value of Q in ΩI,J .

The second term in the left hand side of Eq. (3.9) can be rewritten as

1

ΩI,J

∮

∂Ω

−→F ·−→n ds=
1

ΩI,J

(
HI+ 1

2 ,J−HI− 1
2 ,J+HI,J+ 1

2
−HI,J− 1

2

)
, (3.10)
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Figure 1: Control volume ΩI,J of grid central-type element.

with
AI+ 1

2 ,J =
[(

Vxσ nx+Vyζ ny

)
∆s

]
I+ 1

2 ,J
, HI+ 1

2 ,J =AI+ 1
2 ,JQI+ 1

2 ,J .

Applying the Steger-Warming flux vector splitting (FVS) method, the fluxes at the in-
terface of the control volume can be split as positive and negative fluxes, which can be
expressed of the follows,

HI+ 1
2 ,J =H+

I+ 1
2 ,J
+H−

I+ 1
2 ,J

=A+
I+ 1

2 ,J
QL

I+ 1
2 ,J
+A−

I+ 1
2 ,J
QR

I+ 1
2 ,J

, (3.11)

where

A±
I+ 1

2 ,J
=

1

2

(
AI+ 1

2 ,J±
∣∣∣AI+ 1

2 ,J

∣∣∣
)

.

Here, we can use the reconstruction method to obtain the values of QL
I+ 1

2 ,J
and QR

I+ 1
2 ,J

.

For example, using the classical 2nd order MUSCL implementation with minmod lim-
iter [45], one can obtain

QL
I+ 1

2 ,J
=QI,J+

(
XI+ 1

2
−XI

)
minmod

(QI+1,J−QI,J

XI+1−XI
,
QI,J−QI−1,J

XI+1−XI

)
,

QR
I+ 1

2 ,J
=QI+1,J−

(
XI+1−XI+ 1

2

)
minmod

(QI+2,J−QI+1,J

XI+2−XI+1
,
QI+1,J−QI,J

XI+1−XI

)
,

(3.12)

where X represents the coordinate, and

minmod(a,b)=
sgn(a)+sgn(b)

2
·min(|a| ,|b|), sgn(a)=





1,

0,

−1,

a>0,

a=0,

a<0.

The controlling equation (3.9) can rewritten as the following form,

∂QI,J

∂t
=RHS, (3.13)
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with

RHS=− 1

ΩI,J

(
HI+ 1

2 ,J−HI− 1
2 ,J+HI,J+ 1

2
−HI,J− 1

2

)
+SI,J .

As an explicit temporal scheme, the improved Euler, or second-order Runge-Kutta, method
can be utilized to solve the above equation and update the values of VDF at this discrete
velocity ordinate point (Vxσ,Vyζ) for all physical cell,

Q∗
I,J =Q(n)

I,J +dt·RHS
(
Q(n)

I,J

)
,

Q(n+1)
I,J =

1

2

[
Q(n)

I,J +Q∗
I,J+dt·RHS

(
Q∗

I,J

)]
.

(3.14)

For the explicit time step, according to Ref. [46], one can obtain

∆t=CFL·min


 ΩI,J

max
σ,ζ

(ΛI+ΛJ)I,J


, (3.15)

where the subscript (I, J) represents the value at the (I, J)-th grid cell, and Λ is the spectral
radii of the convective flux Jacobians, which has the following form,

ΛI =
1

2

{
AI− 1

2 ,J+AI+ 1
2 ,J

}
, ΛI =

1

2

{
AI,J− 1

2
+AI,J+ 1

2

}
,

where the CFL number is the adjusting coefficient determined by the complexity of the
problem and the change of computational residual, which is set to 0.9 generally. The
discretized velocity domain becomes to be larger for hypersonic complex flows, the time
step should be controlled in the actual computation.

In order to improve the computational efficiency, we can construct the implicit tem-
poral scheme based on the LU-SGS, as the following procedures. At t(n+1) time level, the
controlling equation (3.9) becomes

∂Q(n+1)
I,J

∂t
+

1

ΩI,J

∮

∂Ω

−→F (n+1) ·−→n ds−S (n+1)
I,J =0. (3.16)

Adding RHS
(
Q(n)

I,J

)
at the both sides of the above equation, one can obtain

∂Q(n+1)
I,J

∂t
+

1

ΩI,J

∮

∂Ω

(−→F (n+1)−−→F (n)
)
·−→n ds−

(
S (n+1)

I,J −S (n)
I,J

)
=RHS

(n)
I,J . (3.17)

For the solution of stationary flow problems, the first-order accurate in time is applied
since it requires less computer memory,

∆QI,J

∆t
+

1

ΩI,J

∮

∂Ω
An∆QI,J ds−Aν∆QI,J =RHS

(n)
I,J , (3.18)
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where ∆QI,J=Q(n+1)
I,J −Q(n)

I,J , An=A·−→n , A=∂
−→F /∂Q=(Vxσ

−→
i +Vyζ

−→
j ), and Aν=−ν(1−

∂QES/∂Q). According to the first-order accurate in time [47], the local equilibrium VDF
can be seen as constant between these two time level, leading the approximate expression
Aν≈−ν.

Similarly, using the FVS method, one can obtain
∮

∂Ω
An∆QI,J ds=

∮

∂Ω

(
A+

n ∆QI,J+A−
n ∆QI,J

)
ds

=
(
A+

I+ 1
2 ,J

∆QI,J+A−
I+ 1

2 ,J
∆QI+1,J

)
−
(
A+

I− 1
2 ,J

∆QI−1,J+A−
I− 1

2 ,J
∆QI,J

)

+
(
A+

I,J+ 1
2

∆QI,J+A−
I,J+ 1

2

∆QI,J+1

)
−
(
A+

I,J− 1
2

∆QI,J−1+A−
I,J− 1

2

∆QI,J

)
. (3.19)

If defining the following terms,

αI,J =ΩI,J

(
1

∆t
+ν

)
+A+

I+ 1
2 ,J
−A−

I− 1
2 ,J
+A+

I,J+ 1
2

−A−
I,J− 1

2

,

αI+1,J =A−
I+ 1

2 ,J
, αI,J+1=A−

I,J+ 1
2

,

αI−1,J =−A+
I− 1

2 ,J
, αI,J−1=−A+

I,J− 1
2

, bI,J =ΩI,J RHS
(n)
I,J ,

and assuming the node numbers at the X- and Y-directions are Nx and Ny respectively,
Eq. (3.17) can be rewritten of the following form,

M∆Q=b, (3.20)

where

∆Q=
(

∆Q1,1,∆Q1,2,··· ,∆Q1,Ny ,∆Q2,1,··· ,∆QNx ,Ny

)T
,

b=
(

b1,1,b1,2,··· ,b1,Ny ,b2,1,··· ,bNx,Ny

)T
,

Mk,l =





αI,J , k= l=(I−1)∗Ny+ J,

αI+1,J , k=(I−1)∗Ny+ J, l= I∗Ny+ J,

αI,J+1, k=(I−1)∗Ny+ J, l=(I−1)∗Ny+ J+1,

αI−1,J , k=(I−1)∗Ny+ J, l=(I−2)∗Ny+ J,

αI,J−1, k=(I−1)∗Ny+ J, l=(I−1)∗Ny+ J−1,

0, otherwise,

(16 k, l 6Nx∗Ny).

The above equation is a five-diagonal linear equation system, which can be solved by the
approximate LU decomposition method. Introducing the decomposition M=D+L+U,
where the matrix D is the diagonal of M, L its strict lower part, and U its strict upper
part, we have the following approximate expression,

b=(D+L+U)∆Q≈ (D+L)D−1(D+U)∆Q. (3.21)
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Hence, Eq. (3.20) can be solved by two steps,

(D+L)·∆Q∗=b, (3.22a)

(D+U)·∆Q=D∆Q∗. (3.22b)

In conclusion, the numerical procedures of the implicit LU-SGS scheme for Eq. (3.9) can
be expressed as follows:

Step 1. Calculating the right side term RHS
(n)
I,J by Eq. (3.13).

Step 2. Scanning upwards. From Eq. (3.22a), one can obtain

αI,J∆Q∗
I,J−A+

I− 1
2 ,J

∆Q∗
I−1,J−A+

I,J− 1
2

∆Q∗
I,J−1 =ΩI,J RHS

(n)
I,J

⇒ ∆Q∗
I,J =

(
ΩI,J RHS

(n)
I,J +A+

I− 1
2 ,J

∆Q∗
I−1,J+A+

I,J− 1
2

∆Q∗
I,J−1

)
/αI,J . (3.23)

Step 3. Scanning downwards. From Eq. (3.22b), one can obtain

αI,J∆QI,J+A−
I+ 1

2 ,J
∆QI+1,J+A−

I,J+ 1
2

∆QI,J+1 =αI,J∆Q∗
I,J

⇒ ∆QI,J =∆Q∗
I,J−

(
A−

I+ 1
2 ,J

∆QI+1,J+A−
I,J+ 1

2

∆QI,J+1

)
/αI,J . (3.24)

Step 4. Advancing in time and updating VDF at this discrete velocity ordinate point

(Vxσ,Vyδ),

Q(n+1)
I,J =Q(n)

I,J +∆QI,J . (3.25)

The time step ∆t in the implicit scheme is less strict than that of the explicit schemes.
Hence, for the implicit scheme, the CFL number can be set as 0.9 initially and equably
increased to one set value with the time step growing to a certain number.

In addition, one flag of the program end is whether the value of the residual error is
lower than the given accuracy ε0 or not. We use the root-mean-square deviation of the
macroscopic flow variables as the residual error, which is defined as follows,

ε=
1

∆t

√√√√ 1

MxMyMz

Mx

∑
i=1

My

∑
j=1

Mz

∑
k=1

(
E(n+1)−E(n)

E(n)

)2

, (3.26)

where E represents one macroscopic flow variable, Mx, My and Mz are the node numbers
of the three physical dimensions, respectively, and the superscripts (n) and (n+1) denote
the two time levels. Generally, we use the density, and set ε0=10−5.

Furthermore, the initialization procedures are the beginning of the numerical simu-
lations, which are important to reduce unnecessary memory waste and guarantee the
processes running smoothly. As same as our previous works, we initialize the molecu-
lar VDFs f0 and f1 with the equilibrium distribution functions f ES

0 and f ES
1 , respectively.
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Generally, the flow variables are initializing by the given properties in the whole flow
field.

However, one inevitable problem occurred in this procedure is the unknown value
of the corrected tensor T , which is the moment of the VDFs over the molecular velocity
space, like the density, flow velocity and temperature, while do not have an unambiguous
physical meanings comparing with other flow properties.

The concrete initial value of the tensor T can be calculated by some flow variables,
which can be proofed in the following derivation processes. For the conciseness of our
derivation procedures given in this paper, we take the two-dimensional flow as an exam-
ple. Firstly, the VDFs are initialized with their equilibrium states,

g0=GES
0 =

n

π

√(
TxxTyy−T 2

xy

) exp

[
− (Vx−u)2Tyy−2(Vx−u)(Vy−v)Txy+(Vy−v)2Tyy

TxxTyy−T 2
xy

]
,

g1=GES
1 =

Tzz

2
g0, g2=GES

2 =
δTrel

2
g0. (3.27)

With the following notations,

D=TxxTyy−T 2
xy, p=

D

Tyy
, q=

D

Txx
, r=

D

2Txy
, (3.28)

the expression of g0 can be rewritten as

g0 =
n

π
√

D
exp

[
− (Vx−u)2

p
− (Vy−v)2

q
+
(Vx−u)(Vy−v)

r

]
. (3.29)

For the definition of the tensor Θ, it can be calculated as

Θxx=
2

n

∫

R2
(Vx−u)2 g0dVxdVy=

2

n
· n

π
√

D
·4π

√
qr3

(
p

4r2−pq

)3/2

=Txx,

Θyy=
2

n

∫

R2

(
Vy−v

)2
g0dVxdVy=

2

n
· n

π
√

D
·4π

√
pr3

(
q

4r2−pq

)3/2

=Tyy,

Θxy=Θyx =
2

n

∫

R2
(Vx−u)

(
Vy−v

)
g0dVxdVy =

2

n
· n

π
√

D
·2πr2

(
pq

4r2−pq

)3/2

=Txy,

Θzz=
2

n

∫

R2
f1dVxdVy=

2

n
· Tzzn

2
=Tzz. (3.30)

As all four type temperatures have been set as T0, i.e., Ttr = Trot = Tov = Trel = T0, and
recalling the definition of T below Eq. (2.31), one can obtain

T =




T0 0 0
0 T0 0
0 0 T0


. (3.31)

The same conclusion can be deduced in the one- and three-dimensional flows, which are
omitted here for the sake of the conciseness of this paper.
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3.3 Boundary condition procedures

Instead of using the macroscopic flow variables, the boundary conditions of the GKUA
are numerically implemented on the VDFs directly, as our algorithm focuses on the time
evolution of the molecular VDFs explicitly at each points in the physical and velocity
space. Without loss of generality, we use the two-dimensional flow case as an exam-
ple, and the situations of the three-dimensional flow can be extended by following the
derivation processes.

3.3.1 Solid wall boundary

For the solid wall boundary, it is under the assumption that the gas molecules striking
the surface are subsequently emitted with the equilibrium VDF partly accommodating to

the velocity
−→
U w =(Uw,Vw) and wall temperature Tw, coupling with the specular reflec-

tion, which is characterized by the accommodation coefficient η. In practical terms, the
procedures can be described as follows:

Define Cn =
−→
C ·−→n , where −→n is the outward unit vector normal to the wall surface.

When Cn > 0 in the wall cells, for the equilibrium VDF fully accommodation boundary,
the reflected VDFs from the wall surface can be written as the equilibrium states. From
the discussions in the last part, we can find that the corrected tensor T = T0 ·Id at the
equilibrium state. Hence, one can obtain that Txx = Tyy = Tzz = Tw and Txy = 0 for the
reflected VDFs. The expression of the reflected VDFs can be simplified as

g+0,e =
nw

πTw
exp

[
− (Vx−uw)2+(Vy−vw)2

Tw

]
, g+1,e =

Tw

2
g+0,w, g+2,e =δg+1,w, (3.32)

where nw is the number density of the diffused molecules. Considering the conservation
of the mass flux normal to the wall surface, which means that the incident molecules
equals the reflected ones at any time,

∫

Cn>0
Cn ·g+0,edVxdVy+

∫

Cn<0
Cn ·g−0,edVxdVy =0, (3.33)

one can obtain

nw=−
√

π

Tw

∫

R2
(Cn−|Cn|)g−0,edVxdVy. (3.34)

Once the number density of molecules diffused from the solid surface nw has been calcu-
lated, the reflected VDFs can be obtained by Eq. (3.32).

For the specular reflection wall boundary, it has the expression

gi,s(
−→
C )= gi

(−→
C −2(−→n ·−→C )−→n

)
. (3.35)

And the reflected velocity distribution functions can be obtained by

gi,w =ηgi,e+(1−η)gi,s. (3.36)
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We set η = 1 at the computations in the remaining part of this article, if it has not been
mentioned specifically.

When Cn 6 0, the discrete VDFs at the wall cells can be interpolated by the second-
order upwind-difference method with the values at the adjacent grids.

3.3.2 Inlet, outlet and far-field boundaries

The VDFs for outgoing molecules through the inlet or outlet boundary are numerically
interpolated by the second-order difference approximation according to the upwind na-
ture of the interior point scheme. For incoming molecules from outside, the VDFs are
set as an equilibrium distribution with prescribed free stream properties when it is along
upstream boundary ahead of the body. And the VDFs do not have gradient along the
outward direction in the downstream boundary.

For the far-field boundary, we utilize the characteristics conditions to treat the VDFs
at the boundary.

3.3.3 Periodic boundary

For the periodic boundary condition, it assumes that the entrance and exit boundaries
are connected, which means the molecular velocity distribution functions of the outside
fictitious nodes are copied from the functions of the interior nodes, which is illustrated in
Fig. 2.

Figure 2: Schematic diagram of the periodic boundary condition. The arrow lines represent the replication
processes.

3.3.4 Symmetrical boundary

For the symmetrical boundary condition, the VDF f r in the fictitious cells can be ex-
pressed by that of the interior flow field,

f r(−→r ,
−→
V ,t)= f

(−→r −2
(−→n ·−→r

)−→n ,
−→
V −2

(−→n ·−→V
)−→n ,t

)
, (3.37)

where −→n is the unit vector normal to the symmetrical line and pointing to the interior of
the flow field.

In addition, the flow chart of the GKUA with implicit FVM scheme is shown in Fig. 3.
The right upper dashed box represents the selection process of a suitable quadrature rule
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Figure 3: Flowchart of the GKUA.
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for the current simulation. We estimate the maximum values of the flow velocity and
temperature in the flow-field, set an initial DVO interval by the ”3σ” principle, obtain
the macroscopic flow variables by integrating the VDF over DVO space, and check the
accuracy. If the accuracy is enough, the initial procedure of the GKUA codes is com-
pleted. If not, the initial DVO interval should be extended, following the increase of the
DVO number, and the previous procedures will be repeated until the enough accuracy is
obtained.

It should note that a uniform truncated velocity space is applied at the every physical
cell in the flow field, as well as the number of DVO, and Eq. (3.9) is solved at every
discrete velocity ordinate point (Vxσ,Vyδ).

4 Numerical simulations and discussion

In this section, some selected computational examples, including the Sod Riemann prob-
lem in broad range of Knudsen numbers, the rotational relaxation in a homogeneous gas,
the normal shock structure calculations, the planar Fourier and Couette flows, the flow
around a circular cylinder and the hypersonic flow pasting a re-entry plate placed nor-
mally, are solved and analyzed. These examples can be used to validate the feasibility
and accuracy of the new version GKUA for the polyatomic gas flow simulations in rota-
tional non-equilibrium state, covering various flow regimes. All numerical simulations
are conducted on a personal computer with Intel(R) Core(TM) i7-7700 CPU @ 3.6 GHz
and single thread.

4.1 Sod Riemann problem

The one-dimensional Riemann problem can be described by the way where a diaphragm
located at x = 0.5 divides a one-dimensional flow field into two regions, each in a con-
stant equilibrium state at t = 0. Here, we investigate the Sod Riemann problem with
the monatomic and diatomic gases, respectively, in order to test the compatibility of our
algorithm for polyatomic gases presented in this paper.

The initial conditions for the Sod Riemann problem [48] are given as,

(ρ,P,U)=

{
(1.0,1.0,0.0)

(0.125,0.1,0.0)

when 0.06x60.5,

when 0.5< x61.0.
(4.1)

The simulation is performed on a uniform mesh with N=1001 until final time t=0.2. The
time step is determined by Eq. (3.15), and the CFL number is set as 0.9.

Firstly, in order to compare the CDVOM and DVOM in the present algorithm, the
composite Simpson quadrature rule has been applied with different number of the DVO
nodes. In this comparison, we use the Ar gas at Kn=10−4, whose parameters are set as
γ= 5/3, Pr= 2/3, and δ= 10−5. Three cases of DVO nodes, i.e., 61, 27, and 21, are uni-
formly distributed in an interval [−7.5,7.5], whose uniform spacing ∆Vx = 0.25, 0.5769,
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(a) Flow velocity (b) Temperature

Figure 4: Comparisons between the original and conservative DVOM of the Sod shock-tube problem using
monatomic gas.

and 0.75, respectively. Fig. 4 presents the computed density and velocity profiles by us-
ing the DVOM and CDVOM, as well as the analytical solutions. It can be found that the
numerical simulation results with enough integral nodes match with the analytical solu-
tions well. And the conservative method can obtain the same accurate results with fewer
nodes than that of the original one. Following the increase of ∆Vx, the simulation profiles
gradually deviate. The CDVOM results are more accurate than the DVOM results at the
same node. For the case of N = 21, the results of CDVOM almost agree with the cases
with more nodes, while the original one is diverging. This phenomenon is caused by
that the velocity grids are not fine enough to accurately evaluate the moment integrals of
the distribution function for flow variables and the compatibility condition of the discrete
collision integral is not well preserved by the nonconservative calculations of collision in-
tegral. To sum up, the present CDVOM are better than the original method in the aspect
of the storage space and whole computational time, which is utilized at the remaining
computational results of this paper if it is not mentioned especially.

For the diatomic gas simulations, we choose the nitrogen (N2) gas, where the ratio of
specific heats γ=1.4 and Pr=0.72. Other parameters are set as α=1, ω=0.5, β=−0.5 and
θ=1/3. The modified Gauss-Hermite quadrature rule with 32 discrete velocity ordinate
points is applied for the simulations to evaluate the macroscopic flow moments over the
velocity space, and the reference temperature is set as Tre f = 273K. Fig. 5 presents the
density, flow velocity, temperature and pressure profiles obtained by the present GKUA
at different Knudsen numbers, as well as the Riemann theoretic result that solve the Euler
equations in continuum flow regime. It can be observed that the numerical simulation
results of Kn=10−5 agree with the theoretical solutions well, which shows the accuracy
and feasibility of the present algorithm in solving the continuum diatomic gas flows.
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(a) Density (b) Flow velocity

(c) Temperature (d) Pressure

Figure 5: Macroscopic flow variable profiles of the Sod Riemann problem at time t=0.2 for the N2 gas.

Besides, we can find that when the Knudsen number becomes bigger, i.e., from Kn=10−5

to Kn=0.01, the thicker is the shock and expansion wave. For the rarefied flow of Kn=0.1,
there only exists strong disturbance without the shock or expanding wave. It can be
indicated from the varying distributions in Fig. 5 that the gas flow intuitively change
with the multi-scale characteristics covering various flow regimes from the continuous
flow of Kn=10−5 to the rarefied flow of Kn=0.1.

In addition, an interesting phenomenon is shown in Fig. 6, which gives the profiles
of the translational temperature Ttr, the rotational temperature Trot and the overall tem-
perature Teq under different Knudsen numbers. It can be observed that the distributions
of Ttr and Trot agree with the profile of Teq when the value of Knudsen number is small,
representing the continuum flow regime, while differences among these three profiles of
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(a) Kn=10−5 (b) Kn=0.001

(c) Kn=0.01 (d) Kn=0.1

Figure 6: Profiles of the three type temperatures Ttr, Trot and Tov under different Kn at time t=0.2.

temperature occur when the flow regime changes from the continuum to the rarefied. In
the transition flow, e.g., Kn = 0.001 and Kn= 0.01, the these three profile tendencies of
temperature are the same at the expanding wave part, and have deviation at the shock
transition zone. While in the rarefied flow, i.e., Kn= 0.1, the distinctions among Ttr, Trot

and Teq are quite obvious, even the profile tendencies of the translational and internal
temperatures become different, reflecting the strong non-equilibrium effects in the rar-
efied gas flows.

Furthermore, the comparisons of the flow variables between the monatomic and di-
atomic gases for the Sod Riemann problem in the continuum regime are presented in
Fig. 7. Here, the modified Gauss-Hermite quadrature rule with 48 DVO points is applied
for the monatomic gas simulation, while the diatomic case uses 32 DVO points, due to the
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(a) Flow velocity (b) Temperature

Figure 7: Comparisons of the flow variables between the monatomic and diatomic gases of the Sod shock-tube
problem at time t=0.2.

different needed integral interval. It can be found that the gaseous medium and the ratio
of specific heats have impact on the flow structure and the profiles of the macroscopic
variables.

4.2 Rotational relaxation in a homogeneous gas

In the case with constant mean collision frequency ν and rotational collision number Z,
leading to constant relaxation parameter θ, the analytical solutions of Eq. (2.27) can be
obtained as the following forms,





Ttr =
3Ttr(0)+δTrot(0)+δe−θνt [Ttr(0)−Trot(0)]

3+δ
,

Trot =
3Ttr(0)+δTrot(0)−3e−θνt [Ttr(0)−Trot(0)]

3+δ
,

(4.2)

where Ttr(0) and Trot(0) are the initial values of the translational temperature Ttr and
rotational temperature Trot, respectively. Recalling the definition of the mean collision
frequency (2.13), it can be a constant value only for the Maxwell molecule with χ=1. For
other type molecules, e.g., the hard sphere with χ= 0.5 and the nitrogen with χ= 0.72,
there exist no exact analytical solutions.

In order to test the present algorithm for the rotational relaxation procedures in a
homogeneous gas, the comparisons between the GKUA results and the analytical solu-
tions (4.2) for different Z are presented in Fig. 8, using the Maxwell molecules. The mean
collision time (m.c.t.) is calculated using the overall temperature Tov in all cases to nor-
malize the time. The initial state is set as Ttr(0) = 500K, Trot(0) = 0K, and without lost
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Figure 8: Rotational relaxation in a homogeneous gas.

generality, the non-dimensional number density is ñ = 1.0 and the Knudsen number is
fixed at Kn=1.0. The simulation is performed on a uniform mesh with N=500 until final
time t=50.0. The time step is determined by Eq. (3.15), and the CFL number is set as 0.9.
The modified Gauss-Hermite quadrature rule with 32 discrete velocity ordinate points is
applied for the simulations to evaluate the macroscopic flow variables over the velocity
space, and the reference temperature is set as Tre f =273K.

From Fig. 8, it can be observed that the GKUA results match well with the analytical
solutions in these three cases, and the value of Z has an impact on the speed of the relax-
ation to the equilibrium state. With the increase of Z, the process slows down, while the
final equilibrium states are the same.

4.3 Normal shock structure calculations

In the case of the normal shock wave, there is no stream speed in the plane of the wave,
and the transition is from a supersonic upstream (state 1) flow to a subsonic downstream
(state 2) flow. The shock Mach number Ms is defined as the ratio of the wave speed to the
sound speed in the upstream gas. The upstream state is chosen as the reference state with
ρ1=1, T1=1 and U1=Ms

√
γP1/ρ1, and the downstream state can be calculated through

the Rankine-Hugoniot conditions,

ρ2

ρ1
=

U2

U1
=

M2
s

1+ γ−1
γ+1 (M2

s −1)
,

P2

P1
=

2γ

γ+1
M2

s −
γ−1

γ+1
, T2=

P2

ρ2
. (4.3)
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The length scale is normalized by the mean free path λ1 in front of the shock wave, which
is of the following form,

λ1=
16

5

√
γ

2π

µ1

ρ1a1
, (4.4)

where µ is viscosity, and a is the speed of sound. The flow region is extended over a
distance −x16x6x2, and the discontinuity between upstream and downstream states is
set at x=0 as the initial condition. Besides, in order to describe the profiles of the density
and temperature, we introduce the following two terms,

dρ=
ρ−ρ1

ρ2−ρ1
=

n−n1

n2−n1
, dT=

T−T1

T2−T1
. (4.5)

The simulation is performed on the interval x ∈ [−35,35], which is divided into a
uniform mesh with N=350, until the final non-dimensional time t=200 or the residual
error is less than 10−12. The time step is determined by Eq. (3.15), and the CFL number
is set as 0.9. The composite Newton-Cotes numerical quadrature rule is employed to
evaluate the macroscopic flow variables over the velocity space, whose interval is Vx ∈
[−15,30] and discrete with 361 points. The reference temperature is set as Tre f = 273K,
and the Knudsen number is set as Kn=1.0.

In order to describe the non-equilibrium flow properties in the interior of a normal
shock wave and demonstrate the reliability of the present algorithm in solving the shock
problems, we use the Argon gas on behalf of the monatomic gas to simulate this problem.
The ratio of specific heats γ=5/3 and Pr=2/3. Other parameters are set as α=1, ω=0.5,
β=−0.5 and θ=0, and the excited internal energy levels DoF δ is set as δ=10−5.

Fig. 9 shows the measured density and temperature profiles for Mach numbers Ms =
1.55, 2.05, 3.8, 9.0 corresponding to the viscosity-temperature index χ= 0.8077 with the
comparison of the results of the DSMC and the Mott-Smith moment method [49], respec-
tively. From Fig. 9, it can be observed that the present GKUA solutions of the shock pro-
files for the low Mach number Ms=1.55, the intermediate Mach number Ms=2.05,3.8 are
in good agreement with the DSMC results and the Mott-Smith moment method results,
while the temperature distribution of the high Mach number Ms=9.0 has deviation from
other two methods, which may be caused by the differences among three computable
models. Besides, it can be shown that the Mott-Smith moment method fits well to de-
scribe the density distribution for the structure of shock waves, however, it is difficult
to give the temperature distribution since temperature is a more sensitive quantity as a
higher moment of the velocity distribution function, and the Mott-Smith theory is better
for lower that than for higher Mach number flow. It can be confirmed from the present
computations in Fig. 9 over the range of Mach numbers Ms ∈ [1.55,9.0] that the density
profiles are nearly symmetric on the point of the intermediate density between the up-
stream and downstream states. While as the shock becomes stronger, a marked asymme-
try and overshoot phenomena has arisen in the temperature profiles, which reveals the
severe rarefied non-equilibrium effects existing in the strong shock waves.
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(a) Ms =1.55 (b) Ms =2.05

(c) Ms =3.8 (d) Ms =9.0

Figure 9: Comparisons of the GKUA, DSMC and Mott-Smith theory results for the normal shock structures at
different Mach numbers in Argon gas.

For the diatomic gases, we choose the nitrogen gas, where the viscosity-temperature
index χ=0.74. Other parameters are set as α=1, ω=0.5 and β=−0.5. The parameter θ
is a changing variable in different Mach numbers, for Ms = 1.53, θ = 0.333; for Ms = 2.0,
θ=0.333; for Ms=2.8, θ=0.319; for Ms=6.1, θ=0.306; for Ms=10.0, θ=0.273, which are
determined by the rotational collision number Z given in Ref. [49].

Fig. 10 shows the density profiles obtained by the present GKUA, experiment and
DSMC for different Mach numbers, from which it can be indicated that the GKUA so-
lutions are in agreements with the experiment and DSMC results, which are presented
in Ref. [49]. Besides, the translational, rotational and overall temperature profiles ob-
tained by the present GKUA, experiment and DSMC are presented in Fig. 11, which
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(a) (b)

Figure 10: Density profiles under different Mach numbers for the diatomic gases. (a) GKUA solutions and the
DSMC results; (b) GKUA solutions and the experiment results.

(a) Ms =2.8 (b) Ms =10.0

Figure 11: Translational, rotational and overall equilibrium temperature profile comparisons among the GKUA,
experiment and DSMC results.

are in agreements with each other. Besides, it can be observed that at high Mach num-
ber, the translational temperature in the shock structure goes up earlier in comparison
with the DSMC results, which indicates that the wider domain of thermodynamic non-
equilibrium including thermal conductivity and viscosity exists in the close upstream for
stronger shock wave flow, and the more significant asymmetric distribution exists in the
profiles of the translational temperature for higher Mach number.
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4.4 Planar Fourier and Couette flows

The planar Fourier and Couette flows are encountered in micro-motors, comb mecha-
nisms, and micro-bearings [28]. For the planar Fourier flows, we consider the nitrogen
gas between two parallel plates a distance L apart. The normalized temperature of the
lower plate at Yl=0 is Tl=2T0/3, while that of the upper plate at Yu=L is Tu=4T0/3. The
temperature exponent of the viscosity coefficient is χ=0.74, and other parameters are set
as α=1, ω=0.5, β=−0.5 and θ is determined by Eq. (2.29), where the rotational collision
number is set as Z=2.226.

The simulation is performed on the rectangle domain [0,1]×[−0.05,0.05], which are
meshed with 100×10, until the residual error is less than 10−12. The time step is de-
termined by Eq. (3.15), and the CFL number is set as 0.9. The modified Gauss-Hermite
integral rule with 24×24 DVO points is applied in this simulation. The diffusive reflec-
tion boundary conditions are utilized at the upward and downward plates, while the
characteristics-based boundary conditions are used at the inlet and outlet parts of the
domain. Two different Knudsen numbers Kn=0.1 and Kn=1.0 are tested here.

Fig. 12 shows the resulting density and translational temperature profiles (the rota-
tional temperatures are not shown because they are very close to the translational ones)
in this planar Fourier flow. Excellent agreement among the results of the GKUA, model
in Ref. [12] and the DSMC simulations can be seen.

The planar Couette flow configuration is the same as for the planar Fourier flow
above, although the two plates now have the same temperature T0, and the top plate
moves in X-direction with a speed Vm while the bottom plate moves in the opposite
direction at the same speed. In the simplest case, the Couette flow can be used as a proto-
type flow to model such flows driven by a moving plate. In this simulation, we consider

(a) Density (b) Translational temperature

Figure 12: Comparisons of the normalized variables between the GKUA, model in Ref. [12] and DSMC simula-
tions for planar Fourier flows with nitrogen gases at Kn=0.1 and Kn=1.0.
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(a) Tangential velocity (b) Temperature

Figure 13: Comparisons between the GKUA (lines), model in Ref. [12] (double dot dash lines) and DSMC
simulations (circles) for planar Couette flows with methane gases at Kn=1.0.

the methane gas with the temperature exponent of the viscosity coefficient χ=0.84. Other
parameters are set as α=1, ω=0.5, β=−0.5, and θ is determined by Eq. (2.29), where the
rotational collision number is set as Z=2.023. Good agreement among the results of the
present GKUA, the numerical model in Ref. [12] and the DSMC simulations can be seen
in Fig. 13.

4.5 Supersonic flows past a circular cylinder

In this part, the steady supersonic flow past a circular cylinder at the free-stream Mach
number Ma= 2.0 and Knudsen number Kn= 0.1 is simulated by the present algorithm.
In order to validate the compatibility and accuracy of the present algorithm for this sim-
ulation, the present GKUA results are compared with the DSMC results. All DSMC sim-
ulation results are obtained by the DS2V software [50]. Here, due to symmetry, only half
plane on the cylinder is considered and symmetry boundary conditions are employed in
the simulations.

In this case, the cylinder radius has a value of 0.01m, the far-field boundary is set
0.1m, and the computational domain is meshed with 61×61 quadrilateral cells, as shown
in Fig. 14, coupling with the types of boundaries. The simulated gas is chosen as the
nitrogen N2, where the molecular reference diameter is d = 4.17×10−10 m and the tem-
perature exponent of the viscosity coefficient is χ = 0.74. The free-stream has a veloc-
ity U∞ = 673.7394m/s with temperature T∞ = 273K and molecule number density n∞ =
1.2944×1021 /m3. The cylinder has a cold surface with a constant temperature Tw =273K
with diffusive reflection boundary condition. The rotational collision number Z = 5 in
this case. Other parameters are set as α = 1, ω = 0.5, Pr = 0.72, β and θ is determined
by Eq. (2.29). The modified Gauss-Hermite quadrature rule with 24×24 discrete velocity
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Figure 14: Computational grid system of the supersonic flows past a circular cylinder at Kn=0.1.

ordinate points is applied for the simulations to evaluate the macroscopic flow moments
over the velocity space. The simulation is performed until the residual error of the den-
sity is less than 10−4 or the final time t= 105. The LU-SGS implicit scheme is applied in
this simulation. The time step is determined by Eq. (3.15), and the CFL number is set as
0.5 initially, and equably increased to 50.

Fig. 15 presents the flow variables along central symmetric line in front of the stag-
nation point at Kn= 0.1. It can be found that the GKUA results match well with DSMC
solutions in all macroscopic flow variable distributions, which demonstrates the feasibil-
ity of the present algorithm for the diatomic gas flow simulations. Besides, the program
operates about 3.0 hours, and the required RAM of the distribution functions is 47.461Mb
with double precision.

In addition, the contour lines of the dimensional macro-variables for the monotonic
(Ar) and diatomic (N2) gases under Kn=5×10−4, which represents the continuum flows,
are compared in Fig. 16. For the simulation of N2 gas, it uses nearly 11.5 CPU hours,
while 12 hours as the Ar gas. The required RAMs of the distribution functions for these
two gases are the same as the first case.

It can be observed that the position of the shock wave for the N2 gas flow is closer to
the surface than it in the Ar gas flow, and the overall temperature of N2 is quite lower
than the Ar case in the region behind the shock wave. These phenomena may be caused
by the excitation of the internal energy. For the diatomic gas, we think the rotational
degrees of freedom are excited fully, which converts partial translational energy into in-
ternal energy. While there only considers the translational energy in the monotonic gas,
leads to a higher temperature distribution in the region behind the shock wave than the
diatomic gas case.
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(a) Density (b) U-velocity

(c) Translational temperature (d) Rotational temperature

(e) Overall temperature (f) Pressure

Figure 15: Dimensional macro-variable distributions along central symmetric line in front of the stagnation point
at Ma=2.0 and Kn=0.1 with N2 gases obtained by GKUA (line) and DSMC (red circle).
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(a) Density (b) Overall temperature

(c) U-velocity (d) V-velocity

(e) Pressure (f) Mach number

Figure 16: Dimensional macro-variable contours for the supersonic flows past a cylinder at Ma = 2.0 and
Kn=5×10−4 for N2 (up) and Ar (down) gases.



182 W.-Q. Hu et al. / Commun. Comput. Phys., 30 (2021), pp. 144-189

4.6 Hypersonic flow around a flat plate placed normally

Due to the hypersonic velocity, the reentry flight environment of the space vehicles in-
cludes shock-shock interactions and shock-boundary interactions that cause high heat
transfer and pressure on the body of the spacecraft. Strong thermal non-equilibrium is
associated with these flows. It is important to study the physical flow around spacecraft
in a hypersonic rarefied environment in order to understand flow phenomenon and to
design a real size vehicle.

The hypersonic rarefied gas flow past an spacecraft-like solar panel (strip) is a fun-
damental problem in reentry aerodynamics. Here, the flow around a reentry flat plate
placed normally for the diatomic gas will be simulated by the present gas-kinetic unified
algorithm, where highly non-equilibrium between translational and rotational tempera-
tures appears around the plate.

The inflow nitrogen gas has a velocity U∞ = 610.526m/s with the temperature T∞ =
12.81K, whose Mach number is Ma=8.3666, correspondingly. The ratio of the wall tem-
perature to the total temperature is set as Tw/To = 2/3, which can obtain that the di-
mensionless wall temperature Tw = 10.0. The viscosity-temperature index χ= 0.74, and
other parameters are set as α = 1, ω = 0.5, β =−0.5 and θ is determined by Eq. (2.29).
Due to symmetry, only half plane on the flat plate is considered and symmetry bound-
ary conditions were employed, where the computational domain is meshed with 63×51
quadrilateral cells, as shown in Fig. 17, coupling with the types of boundaries. The Gauss-
Chebyshev integral rule is applied in this simulation, where the domain in velocity space
(Vx,Vy)∈ [(−15,15)×(−12,12)] is discretized with 70×50 mesh points.

Fig. 18 presents the distributions of the dimensionless density, translational and rota-
tional temperatures on the deceleration line y=0 ahead of the plate for Kn=0.1, compar-
ing with the results in Ref. [51]. For this simulation, the program operates about 4.0 hours,
and the required RAM of the distribution functions is 248.337Mb with double precision.

Figure 17: Computational grid system of the hypersonic flow around an infinite flat plate placed normally.
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(a) Density (b) Translational and rotational temperatures

Figure 18: Distributions on the deceleration line y=0 ahead of the plate for Kn=0.1.

It can be observed that the present GKUA results match well with the results in the refer-
ence. Besides, we can find that there exist one detached shock wave, or called the strong
disturbance, located in the front of the vertical plate along the deceleration line, which
causes the high temperature region. Comparing the distributions of the translational and
rotational temperatures, it can be found that the maximum value of the dimensionless
translational temperature is Ttr =15.719 approximately, while it is Trot =13.708 in the ro-
tational temperature profile, showing the serious non-equilibrium flow effects presented
in the front of the vertical plate.

Furthermore, in Fig. 19, the contour lines from the present GKUA for density, overall
temperature, translational temperature, and rotational temperature, Mach number for
Kn = 0.1 are plotted together, as well as the streamlines in the adjacent region of the
plate. Fig. 20 presents the density, overall temperature, translational temperature, and
rotational temperature, Mach number contours for Kn=0.01, as well as the streamlines.
Comparing Fig. 19 with Fig. 20, it can be found that the detached shock wave in the
flow field of Kn = 0.01 is more identifiable than that of Kn = 0.1, which indicates that
the flow is transforming from the rarefied non-equilibrium flow of Kn= 0.1 with strong
disturbance shock layer shown in Fig. 19 into the near-continuum flow of Kn=0.01 with
clear detached shock wave and leeward wake separation zone shown in Fig. 20. For
this simulation, it uses nearly 5.5 CPU hours, and the required RAM of the distribution
functions is the same as the first case.

From the distributions of the translational and rotational temperature at Kn=0.01 in
near-continuum flow regime, we can find that these two contour lines of temperature
are almost the same, indicating that the flow field tends to the equilibrium state of the
gas molecular velocity distribution function. However, for the rarefied flow, i.e., Kn=
0.1, it can be observed that the translational and rotational temperature contours exist
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(a) Density (b) Overall temperature

(c) Translational temperature (d) Rotational temperature

(e) Mach number (f) Stream lines

Figure 19: Macro-variable contours or stream lines around the plate for Kn=0.1.
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(a) Density (b) Overall temperature

(c) Translational temperature (d) Rotational temperature

(e) Mach number (f) Stream lines

Figure 20: Macro-variable contours or stream lines around the plate for Kn=0.01.
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significant difference, the gas flow attaches to the surface of the plate accompanied by
severe velocity slip and temperature jump, and transits to the downstream flow state
smoothly, which do not develop the recirculation region. While for the flow at Kn =
0.01, the recirculation region arises in the backward plate visibly, which can be shown
intuitively in Fig. 20(f).

5 Concluding remarks

In this paper, based on the ellipsoidal statistical model with rotational energy excitation,
the gas-kinetic unified algorithm covering various flow regimes has been developed for
the polyatomic gas flows in the rotational non-equilibrium state. Unifying expressions
on the gas molecular collision relaxing parameter and the local equilibrium distribution
function have been constructed, which are mainly related with the macroscopic flow vari-
ables, the flow state controlling parameter Kn, and the molecular models. The relaxation
parameters β and θ have been introduced to define the relaxation temperature and the
corrected tensor, and determine the specific expressions of the collision relaxation param-
eters and the local equilibrium VDFs. Determinations of these two parameters have been
given in detail. The corresponding CDVOM has been constructed, which preserves the
conservative properties on the mass, momentum and energy during the collision proce-
dure at the discrete level by the numerical method. Utilizing the CDVOM, the unified
kinetic modeling equation has been transformed into hyperbolic conservation forms at
each of the discrete velocity ordinate points. The explicit and implicit schemes have been
developed to solve the discrete equations directly. Besides, according to the conservation
of the mass flow flux and energy balance on the surface, the mathematical model and
the numerical procedures for the gas-kinetic wall boundary condition in the rotational
non-equilibrium state have been developed and presented in detail.

Applying the new version of the GKUA, some selected numerical examples have been
investigated to test the present algorithm, including the Sod Riemann problem, homoge-
neous flow rotational relaxation, normal shock structure calculations, planar Fourier and
Couette flows, supersonic flows past a circular cylinder, and hypersonic flow passing a
reentry flat plate placed normally. Comparing with the analytic, experimental, DSMC,
and some other models or measurements in the references, it has been found that the nu-
merical simulation results obtained by the present algorithm match well in agreement,
which demonstrates the validity and accuracy of the present algorithm. Especially, some
polyatomic gas non-equilibrium phenomena have been observed and analysed by solv-
ing the Boltzmann-type velocity distribution function equation covering various flow
regimes.

This work only extend the GKUA as a new version for the polyatomic flows at
translational-rotational non-equilibrium state in the near-earth space flight environment,
which are preliminary application and computational test for the hypersonic reentry flow
covering various flow regimes. Investigations on complex three-dimensional hypersonic
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flows of the vibrational-chemical excited non-equilibrium are needed to get further de-
velopments, which may be presented in the future works.
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