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Abstract. In this paper we present a coupled Finite Element Method – Boundary Ele-
ment Method (FEM-BEM) approach for the solution of the free-boundary axi-symmetric
plasma equilibrium problem. The proposed method, obtained from an improvement
of the Hagenow-Lackner coupling method, allows to efficiently model the equilibrium
problem in unbounded domains by discretizing only the plasma region; the external
conductors can be modelled either as 2D or 3D models, according to the problem of in-
terest. The paper explores different iterative methods for the solution of the nonlinear
Grad-Shafranov equation, such as Picard, Newton-Raphson and Newton-Krylov, in or-
der to provide a robust and reliable tool, able to handle large-scale problems (e.g. high
resolution equilibria). This method has been implemented in the FRIDA code (FRee-
boundary Integro-Differential Axisimmetric – https://github.om/matteobonotto/

FRIDA), together with a suitable Adaptive Integration Technique (AIT) for the compu-
tation of the source term. FRIDA has been successfully tested and validated against
experimental data from RFX-mod device, and numerical equilibria of an ITER-like de-
vice.

PACS: 52.65.Kj, 52.55.Fa, 52.55.Hc, 41.20.Gz

Key words: FEM-BEM, MHD, plasma equilibrium, Grad-Shafranov equation.

1 Introduction

In magnetic confinement fusion (MCF) research, the successful design of Tokamak de-
vices, the set up of plasma operations, the prediction of performance scenarios and the
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design of feedback control systems are all activities which rely, to an extent, on equi-
librium codes [1, 2]. High accuracy MHD stability analysis also relies on given equilib-
rium reconstructions, which are usually performed in fixed-boundary conditions. One
of the basic problems of equilibrium reconstructions is the more general quasi-static free-
boundary plasma equilibrium problem, consisting in the numerical solution of the Grad-
Shafranov equation [3, 4] with a plasma separatrix, the plasma-vacuum interface, which is
not known a priori.

The solution of the free-boundary axi-symmetric equilibrium problem requires to
deal with a two-dimensional, elliptic partial differential equation (PDE), defining the axi-
symmetric plasma equilibrium, given the prescribed set of external currents, the plasma
current density profile and the total plasma current value. The computational challenges
in solving such magneto-quasistatic problem are related to the fact that (i) the compu-
tational domain is unbounded, (ii) the plasma current density profiles is a non-linear
function of the poloidal magnetic flux and (iii) the plasma separatrix is unknown.

Despite the well-assessed theory concerning the axisymmetric quasi-static plasma
equilibrium problem [5, 6], its numerical solution is still a hot topic. Many equilibrium
codes are based on Finite-Difference (FD) or Finite-Element-Method (FEM) for the spa-
tial discretization of the PDE, a fixed-point (Picard) iteration scheme to solve the non-
linearities, and a coupling method, based on the analytical Green’s functions [7], to re-
duce the unbounded domain to a bounded region. Among these codes, some exam-
ples are FBT [8], MAXFEA [9], and TES [10]. Other computational tools are based on a
Newton-Raphson like iterative scheme, and a more sophisticated analytic uncoupling on
a semi-circular domain, which was introduced by Albanese, Blum and de Barbieri [11].
This approach is implemented, for examples, in the codes PROTEUS [12], CREATE-
L [13], CREATE-NL+ [14], CEDRES++ [15] and FEEQS.M [5]. All these codes can be
divided in two groups, depending on how the plasma equilibrium problem is treated.
On one hand, we find all the tools based on robust and reliable Newton-Raphson like
schemes used to solve the non-linear equilibrium problem in a rigorous way (i.e PRO-
TEUS, CREATE-L, CREATE-NL+, CEDRES++, and FEEQS.M). On the other hand, a
group of codes (i.e. FBT, MAXFEA, and TES) rely on the idea that the free-boundary
equilibrium problem is characterized by an intrinsic axisymmetric instability which is en-
countered in all equilibrium calculations with a free-boundary condition. This misconception
is explicitly expressed in [10], and more indirectly in [16], and it is pretty common in
the MCF community, with the consequence of believing that it is impossible to solve the
free-boundary plasma equilibrium problem without handling this intrinsic axisymmetric
instability by means of naive numerical approaches (e.g. with the insertion of a feedback
loop). However, such misconceptions come from a misinterpretation of the convergence
limitations of the Picard scheme, much less robust and reliable than Newton-Raphson-
like scheme, as will be clarified in sections 5 and 6.

In the sake of a rigorous mathematical analysis of the problem [5, 6], in this paper
we present a coupled Finite Element Method – Boundary Element Method (FEM-BEM)
approach obtained improving the well-known Hagenow-Lackner (HL) coupling method
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[7]. This method has been implemented in the FRIDA code (FRee-boundary Integro-
Differential Axisimmetric – https://github.om/matteobonotto/FRIDA), in which the
boundary convolution integral over the plasma current is kept explicit instead of intro-
ducing an auxiliary variable to reduce the problem to a one dimensional convolution
integral. This strategy allows to overcome the convergence limitations of the HL scheme,
providing a FEM-BEM coupling scheme which has optimal convergence. Moreover, the
computation of the Green matrix, which depends only on the geometry of the domain
triangulation, is performed beforehand during a pre-processing phase and it does not
need to be repeated if another equilibrium with the same mesh is analyzed. Finally, an
Adaptive Integration Technique (AIT) for the computation of the plasma source term has
been implemented, in order to treat the mismatch problem between plasma separatrix
domain, which is not known a priori, and the mesh elements. The FRIDA code exploits
Newton-like iterative schemes (Newton-Raphson, Newton-Krylov) in order to solve the
free-boundary problem in a rigorous way. The Picard scheme is also implemented to
compare its performances with Newton-like methods.

It is worth noting that the presented FEM-BEM coupling method has been derived
also with the purpose to give a modular tool, suitable to deal with different representa-
tions of the external field sources: by solving the equilibrium problem only in the plasma
region, the boundary conditions contain the contribution of all external field sources, both
2D axi-symmetric (i.e. poloidal field coils) and pure 3D (e.g. conductors with arbitrary
geometry). Moreover, it is suitable to be generalized for time-evolution problems, con-
sidering also the eddy current contribution as part of the equilibrium problem through
the boundary conditions. This approach is not novel, but, in the authors’ knowledge, the
only existing implementation is that of CarMa0NL code [17].

The paper is organized as follows. Sections 2 to 4 describe the mathematical and
numerical formulation of the free-boundary axi-symmetric equilibrium problem. Section
5 describes the implementation of the iterative schemes used to deal with the non-linear
problem. Section 6 presents the validation of the FRIDA code against experimental data
from RFX-mod device and numerical equilibria of an ITER-like device. Finally, Section 7
draws the conclusions.

2 Axi-symmetric equilibrium equation

The magneto-static problem in the three-dimensional space can be cast as:

∇×
(

1

µ0
∇× ~A

)

=~j, (2.1)

where ~A is the magnetic vector potential, ~j is the current density and µ0 is the magnetic
permeability of vacuum. We consider now a cylindrical coordinate system (r,φ,z): under
the assumption of axial symmetry, Eq. (2.1) becomes a scalar equation in the poloidal



30 M. Bonotto, D. Abate, P. Bettini and F. Villone / Commun. Comput. Phys., 31 (2022), pp. 27-59

plane (r,z):

L(ψ)=−µ0 jφ(~r), (2.2)

ψ(~r)|r=0=0, (2.3)

lim
||~r||→∞

ψ(~r)=0, (2.4)

where L(ψ)=∇·
(

1
r∇ψ

)
,~r=(r,z) and ψ(~r) is the poloidal flux per radian, defined as:

ψ(~r)=
1

2π

∫

Sψ(~r)
(∇× ~A)·n dS, (2.5)

where Sψ(~r) is a circular surface centered on the z axis and obtained by rotating a certain
point~r around the z axis.

The computational domain consists of the following regions:

• vacuum internal region Ωv, the vacuum region available to the plasma (i.e. the space
inside the vacuum chamber);

• vacuum external region Ω∗
v, a narrow region which encircles Ωv and not available to

the plasma (i.e. introduced for computational reasons);

• coils region Ωc=
⋃Nc

i=1Ωci, the region of the Nc active coils.

The boundary of the computational domain is labelled as ∂Ω. In addition to this, we label
as Ωp the plasma cross-section, i.e. the region inside the plasma separatrix Γp (i.e. the
interface between the plasma and the vacuum region). It is worth noting that, for a given
a MCF device, the regions Ωv, Ω∗

v and Ωc depend only on the machine geometry, and
thus can be defined just once beforehand and kept fixed. Conversely, Ωp is an unknown
of the problem because it depends on the plasma equilibrium (i.e. free-boundary problem).
Fig. 1 shows, for the RFX-mod device [18], a typical example of domain subdivision.

Therefore the source term jφ assumes different definitions depending on the region:

jφ(~r)=







jp(~r,ψ̄)=λ

[

r
dp(ψ̄)

dψ̄
+

f (ψ̄)

µ0r

d f (ψ̄)

dψ̄

]

, in Ωp, (2.6a)

jCi, in Ωci, i=1,··· ,Nc, (2.6b)

0, elsewhere, (2.6c)

where p is the kinetic pressure and f (ψ) is the poloidal current function, defined as:

f (ψ)=
Ipol(ψ)

2π
. (2.7)

The term Ipol(ψ) is the total poloidal current, i.e. related to the component of the current
density which flows in the poloidal direction, and it is defined accordingly with (6.12)
of [2].
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Figure 1: De�nition of regions Ωv, Ω∗
v, Ωc, and Ωp.

The profiles of p(ψ̄) and f (ψ̄) are usually given in terms of the normalized poloidal
flux ψ̄=(ψ−ψa)/(ψb−ψa), where ψa and ψb are respectively the value of the flux at the
magnetic axis and at the plasma separatrix Γp. These functions cannot be derived from
the simple toroidal force balance, and must be determined either from experimental data,
or from transport calculation, or using some suitable parametrization functions [6, 19].

In addition to this, the scaling parameter λ is needed to impose the total plasma cur-
rent as: ∫

Ωp

jp(~r,ψ̄)dΩ= Ip. (2.8)

Eq. (2.2) inside the plasma region, where the current density is defined in (2.6a), is called
Grad-Shafranov equation (GSE), which is the basic equation describing the plasma equilib-
rium for axisymmetric toroidal configurations [2].

From a rigorous point of view, the computational domain is [r,z]∈[0×∞,−∞×∞], but
a limited-bounded domain is required to solve the problem numerically. For this reason
a limited region of vacuum, which surrounds the plasma region without intersecting or
overlapping the active conductors, is considered. An example of this configuration is
shown in Fig. 1, where the limited computational domain Ωd =Ωv∪Ω∗

v is highlighted.
From a mathematical point of view, this means that the regularity conditions at infinity
expressed by (2.4) can be replaced with:

ψ(~r)|∂Ω= ψ̂, (2.9)

where ψ̂ is the set of Dirichlet boundary conditions (BCs) on the boundary ∂Ω.
The unknowns are the value of ψ in Ωd and ψ̂ on ∂Ω, together with additional degrees

of freedom (DoFs) required in order to solve the free-boundary equilibrium problem,
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such as: the current scaling parameter λ required to impose the total plasma current Ip,
the profiles of the pressure p(ψ̄) and the poloidal current function f (ψ̄). The geometry
and the current of the external coils (jCi, i=1,··· ,Nc) are also required. Other quantities,
such as the position of the magnetic axis, are unknowns of the equilibrium problem.

Eq. (2.2) can be written in a weak form in the limited-bounded domain Ωd as:

∫

Ωd

1

r
∇w(~r)·∇ψ(~r)dΩ−

∫

∂Ω

1

r
w(~r)

∂ψ(~r)

∂n
dS=

∫

Ωd

µ0w(~r)jφ(~r)dΩ, (2.10)

where w(~r) is a scalar test function. This problem is treated numerically following the
Finite Element Method (FEM) approach.

3 FEM-BEM coupling method

The numerical solution of the problem given by (2.2), (2.3) and (2.9) in unbounded do-
main requires, together with (2.10) inside Ωd, a suitable coupling equation for the BCs on
∂Ω. The total flux at the boundary can be split into:

ψ̂(~r,ψ)= ψ̂p(~r,ψ)+ψ̂c(~r), (3.1)

where ψ̂p, ψ̂c are the contributions of the plasma and the external coils, respectively. The
total flux at the boundary depends both on the known total value Ip and on the current
density distribution, which is a non-linear function of ψ: for this reason ψ̂(~r,ψ) is also
non-linear and depends on ψ. Conversely, the contribution of the external coils is fixed
and depends only on the geometry and the current of the external coils.

It is worth noting that ψ̂c contains the contribution of all external sources. This
approach is the same described in [17] for the CarMa0NL code, which solves the axi-
symmetric non-linear plasma equilibrium problem, self-consistently coupled to eddy
currents equations describing the three-dimensional (3D) structures surrounding the
plasma. Therefore, our approach is suitable to be generalized for time-evolution prob-
lems, considering also the eddy current contribution as part of the equilibrium problem
through the BCs ψ̂c.

The typical way to reduce the computation on the unbounded domain to a limited-
bounded domain relies on the analytical Green’s function. The most famous coupling
method in MCF community is the von Hagenow-Lackner method (HL) [7], and it is based
on the Green’s function. Another method, which is less known and used, but notewor-
thy, is the aforementioned analytic uncoupling on a semi-circular domain by Albanese,
Blum and de Barbieri (ABB) [11]. Additional coupling methods, well known in applied
mathematics but not in the MCF community, are Johnson-Nédélec coupling (JN) [20] and
Bielak-MacCamy coupling (BMC) [21]. A comprehensive review of these coupling meth-
ods can be found in [5].

Eq. (3.1) is treated recalling the fundamental solution of the operator L(ψ) defined in
Eq. (2.2), also known as Green function of L(ψ), giving the integral formulation of the
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Boundary Element problem:

ψ̂p(~r,ψ)=
∫

Ωp

G(~rb,~r), jp(~r,ψ)dΩ, (3.2)

ψ̂c(~r)=
Nc

∑
i=1

∫

Ωci

G(~rb,~r)jcidΩ, (3.3)

where~rb∈∂Ω, Ωci is the i−th active coil, Nc is the total number of active coils and G(~r,~r′)
is the Green’s function defined as [7]:

G(~r,~r′)=
µ0

√
rr′

2πk(~r,~r′)

[
(
2−k2(~r,~r′)

)
K
(
k(~r,~r′)

)
−2E

(
k(~r,~r′)

)
]

, (3.4)

where

k2(~r,~r′)=
4rr′

(r+r′)2+(z−z′)2
, (3.5)

and K(k), E(k) are the complete elliptic integrals of the first and second kind, respectively.

Recalling the domain subdivisions presented in chapter 2, the additional region Ω∗
v,

forbidden to the plasma, is intended to avoid singularities on integral (3.2). By doing this,
the mesh nodes inside Ωp, which are the sources of (3.2), and the boundary nodes never
coincide.

The FEM-BEM coupling strategy is also the starting point of the Hagenow-Lackner
coupling (HL). However, the HL coupling, in order to avoid the direct computation of the
integral in (3.2) over the possible large domain Ωp, introduces a new auxiliary unknown,
which satisfies the homogeneous Dirichlet boundary value problem on ∂Ω, thus allowing
to replace the integral over plasma domain and coils by an integral over the boundary ∂Ω

using the Neumann data of the auxiliary function. The difference between HL method
and our method, and pros and cons, will be discussed in paragraph 6.1.

4 Galerkin formulation

Following the standard Galerkin approach, we use a Quadratic Lagrangian Element
(QLE) based Finite Element Method. The computational domain is discretized by a suit-
able triangularitation algorithm [22], and the following basis function is used [23]:

w(~r)= a1r2+a2z2+a3rz+a4r+a5z+a6, (4.1)

which is a complete second order polynomial of (r,z) of coefficients a=[a1 ··· a6]T. Thus,
since triangular elements and nodal basis functions are used, the boundary elements are
defined as the nodes at the boundary ∂Ω, whose support is given by the triangles with
one or more edges ∂Ω.



34 M. Bonotto, D. Abate, P. Bettini and F. Villone / Commun. Comput. Phys., 31 (2022), pp. 27-59

The terms ψ and jp can be expressed in terms of (4.1) as:

ψ(~r)=
Nn

∑
i=1

( N i
e

∑
j=1

wi
j(~r)

)

ψi, (4.2)

jp(~r,ψ̄)=
Nn

∑
i=1

( N i
e

∑
j=1

wi
j(~r)

)

jp(ψ̄i), (4.3)

where Nn is the number of mesh nodes. For a given i−th node there are j = 1,··· ,Ni
e

triangles sharing such node and forming its local support Ωi
e; wi

j(~r) is the basis function

on the j−th triangle of the local support and related to the i−th node.

The current density can be obtained from the profiles of the pressure and the poloidal
current function, or through a suitable parametrization [6, 19]. In the following, we will
pose:

jφ=λg(ψ,ψa,ψb), (4.4)

where the current density function g(ψ,ψa,ψb) can be defined as:

g(ψ,ψa,ψb)= r
dp(ψ̄)

dψ̄
+

f (ψ̄)

µ0r

d f (ψ̄)

dψ̄
, (4.5)

or

g(ψ,ψa,ψb)=

[
rβ0

R0
+
(1−β0)R0

r

]

(1−ψ̄αM)αN , (4.6)

depending on which information is available.

In (4.6) R0 is the machine major radius and the parameters [αM,αN ,β0] have to be cho-
sen to match the values of plasma internal inductance li and poloidal βp. The best values
of [αM,αN ,β0] to characterize the equilibrium are determined by applying a least-squares
minimization technique to the difference between the measured and calculated values
of the poloidal field [19]. This means that, in (4.6), both d f (ψ̄)/dψ̄ and dp(ψ̄)/dψ̄ have
the same dependence on ψ̄, because the use of only magnetic measures makes practi-
cally unfeasible the reconstruction of d f (ψ̄)/dψ̄ and dp(ψ̄)/dψ̄ profiles separately. On
the other hand, if also non-magnetic diagnostics are available (i.e. Thomson Scattering,
Polarimetry etc), these profiles can be separated; this is usually necessary for particular
operational conditions (e.g. profiles with a strong pedestal). A further generalization of
this approach will involve also such a contribution.

The final system of equations is obtained: (i) by using the Galerkin formulation on
(2.10) for the FEM problem (first integral of (2.10) written both for ψ and ψ̂), and on (3.1)-
(3.2)-(3.3) for the BEM problem, and writing the source as (4.4); (ii) by considering that
the fluxes ψa,ψb are also unknown, because they depend on the solution ψ(~r); and (iii) by
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imposing the total plasma current. It follows that:

∫

Ωd

1

r
∇w(~r)·∇ψ(~r)dΩ+

∫

Ωd

1

r
∇w(~r)·∇ψ̂(~r)dΩ

=λ
∫

Ωd

µ0w(~r)g(ψ̄,ψa,ψb)dΩ, (4.7)

ψ̂c(~r)+λ
∫

Ωp

G(~r,~rp)w(~r)g(ψ,ψa,ψb)dΩ= ψ̂(~r), (4.8)

max
Ωp

{ψ}=ψa, (4.9)

max
∂Ω−

v ∪Ωv0

{ψ}=ψb, (4.10)

λ
∫

Ωp

w(~r)g(ψ̄,ψa,ψb) dΩ= Ip, (4.11)

where ∂Ω−
v is the portion ∂Ωv where~n·∇ψ<0, with~n unit vector outgoing from ∂Ωv, and

Ωv0 is the region inside Ωv where the poloidal magnetic field vanishes. Eqs. (4.9)-(4.10)
are suitable for most of the typical limiter/diverted configurations: additional constrains
might be necessary for more particular configurations (e.g. plasma during disruption
events).

It is worth noting that the second term of (2.10) is identically zero for the interior
elements (i.e. elements without nodes on the computational boundary), and it con-
tributes only if BCs involving normal derivative of the unknown are considered (i.e.
Neumann/Robin BCs). Since, in this context, only Dirichlet BCs are considered, and
specifically through (4.8), the second term of (2.10) gives no contribution in (4.7).

Eqs. (4.7)-(4.11) give a system of Nd+Nb+3 equations in Nd+Nb+3 unknowns, where
Nd is the number of the mesh nodes inside the domain Ωd and Nb is the number of nodes
on the boundary ∂Ω, respectively.

The discrete version of the previous system can be written in matrix form, by defining
the vector of unknowns x=[ψ,ψ̂,ψa,ψb,λ]T:









K Kbc 0 0 −µ0i(x)
0 E 0 0 −Gbpi(x)

χa(x) 0 −1 0 0
χb(x) 0 0 −1 0

0 0 0 0 It(x)

















ψ

ψ̂

ψa

ψb

λ









=









0
ψ̂c

0
0
Ip









, (4.12)

where ψ,ψ̂ are the discrete counterparts of ψ,ψ̂ and E is the identity matrix. The matrix
blocks K(i, j) and Kbc(i, j) are defined as:

K(i, j)=
∫

Ωij

1

r
∇wi ·∇wjdΩ, i, j∈Nd , (4.13)

Kbc(i, j)=
∫

Ωij

1

r
∇wi ·∇wjdΩ, i∈Nd, j∈Nb , (4.14)
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where Ωij =Ωi
e∩Ω

j
e. All integrals (4.13) and (4.14) and in following relations are evalu-

ated numerically using high degree efficient symmetrical Gaussian quadrature rules for
triangles [24].

The term i(x) is the vector of discrete currents, whose elements Ii(x), i=1,··· ,Nn are
obtained by integrating the source function g(ψ̄i,ψa,ψb) on the mesh elements:

Ii(x)= Ii(ψ,ψa,ψb)=
∫

Ωi
e

( N i
e

∑
j=1

wi
j(~r)

)

g(ψ̄i,ψa,ψb)dΩ, (4.15)

while It is the total current:

It(x)=
Nn

∑
i=1

Ii(x). (4.16)

The discrete counterpart of (4.8) has been written assuming that, for the i−th node, the
current is not distributed on the support Ωi

e of each node but each node carries all the
current. Thus the convolution integral in (4.8) becomes Gbpi(x), where Gbp = G(~rb,~rp)
defined according to (3.4).

Eqs. (4.9)-(4.10) can be written, in a discrete manner, by introducing vectors χa(x)
and χb(x), which are vectors of weights to identify the positions of the magnetic axis and
the XP/limiter points respectively in terms of ψ. To give a clarification, we consider the
magnetic axis. Let Ωax

t be the 6-nodes triangle in which the magnetic axis is located, and
wax

j (~r), j= 1,··· ,6 the set of basis functions of such a triangle. Since ψa is a combination

of the values of ψ at the nodes of the triangle Ωax
t , χa(x) will have all zero entries, except

for the elements related to the nodes of triangle Ωax
t . Since ψ is parameterized in terms

of quadratic basis functions, the weight vector χa(x) is different from zero only on the
triangle containing the magnetic axis, with weights equal to the values of each node’s
basis function on~ra. The same holds for ψb and χa(x). This is written in a formal way as:

χa(x)=

{

∑
6
j=1 wax

j (~ra), for i = index of magnetic axis,

0, elsewhere,
(4.17)

χb(x)=

{

∑
6
j=1 wXP

j (~rXP), for i = index of XP/limiter,

0, elsewhere,
(4.18)

where ~ra and ~rXP are the positions of the magnetic axis and the XP/limiter points re-
spectively. In this work, the proposed method for the identification of~ra and ~rXP is to
search for the points where ||∇ψ||=0. This can be done element by element, as the com-
ponents of the gradient, obtained by differentiating (4.1), are linear functions of (r,z).
However, since the Lagrangian-based FEM gives a solution which is not C1, the fact that
the gradient is not, in principle, continuous has to be taken into account. The problem
can be addressed by suitably refining the triangulation in the regions where such points
are expected.
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Figure 2: Sparsity pattern of the matrix A(x) of (4.21).

By substituting the term λi(x) from the FEM block

λi(x)=
1

µ0
(Kψ+Kbcψ̂), (4.19)

into the BEM block, we get:

− 1

µ0
GbpK

︸ ︷︷ ︸

K̂

ψ+

(

E− 1

µ0
GbpKbc

)

︸ ︷︷ ︸

K̂bc

ψ̂−ψ̂c=0. (4.20)

Thus, the system (4.12) becomes:









K Kbc 0 0 −µ0i(x)
K̂ K̂bc 0 0 0

χa(x) 0 −1 0 0
χb(x) 0 0 −1 0

0 0 0 0 It(x)









︸ ︷︷ ︸

A(x)









ψ

ψ̂

ψa

ψb

λ









︸ ︷︷ ︸

x

=









0
ψ̂c

0
0
Ip









︸ ︷︷ ︸

b

. (4.21)

The reason of this manipulation is clarified in Section 5. The sparsity pattern of the matrix
(4.21) is shown in Fig. 2, where the dense BEM block related to K̂ can be seen clearly in
the lowest part of the matrix.

5 Solution of the non-linear equilibrium problem

The problem is non linear because the source term i(x) in Ωp is a non-linear function of
the solution x, and because the plasma domain, delimited by the plasma separatrix Γp, is
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not known a priori. For this reason, (4.21) is usually written in the form:

F(x)=A(x)x−b=0, (5.1)

and a suitable iterative scheme is used to find the zero of the function F(x).
It is worth noting that a suitable initial guess x0 is needed: in this context, suitable

means that x0 = [ψ0,ψ̂0,ψa0,ψb0,λ0] must be sufficiently close to the solution x. The ini-
tial guess can be obtained using several methods to model the plasma, such as a single
filament placed in a suitable position (i.e. the current centroid if available, but the ma-
chine center can be used, as well) and carrying the total plasma current, or an equivalent
filamentary model with a prescribed number of filaments matching the lower order mo-
ments of the plasma current density [25].

However, the solution of this problem is demanding for several reason. Firstly, it is
an open boundary problem, in which the BCs ψ̂ on the computational boundary ∂Ω are
part of the solution. This leads to a large cost from the computational point of view,
due to the dense BEM block in (4.21). Moreover, a robust and reliable iterative scheme
is needed: as was already mentioned in the introduction, the choice of a robust iterative
scheme such as Newton-like scheme is fundamental to avoid convergence issues, which
are conversely common drawbacks of Picard-type schemes. To investigate this aspects,
three numerical schemes will be analyzed in details in the next sections: Picard, Newton-
Raphson, Newton-Krylov.

5.1 Picard iteration

The Picard iteration has been used in several implementations because it gives an easy
and straightforward way to compute the solution xk+1 by searching for the fixed-point of
equation A(x)x=b:

xk+1=A−1(xk)b. (5.2)

Unfortunately, it is well known that the Picard iterative scheme converges if and only if
ρ[JF(xk)]< 1 [26, 27], where ρ[JF (xk)] is the spectral radius of the Jacobian of F(xk) (i.e.
the largest eigenvalue in absolute value). This means that the function F(x) is contracting
over the iterations.

As it will be pointed out in Section 6.2, the assumption of ρ[JF (xk)]< 1 is usually
not satisfied: the solution can exhibit a progressive drift during the iterations, leading
the plasma to move away from the expected equilibrium position and to collapse on
boundary of the plasma region. It is worth noting that this behaviour does not depend
on the good quality of the initial guess.

One way to avoid numerical instability during the Picard iterations is to fix some ge-
ometrical quantities, resulting in artificial numerical ways to help convergence in such
cases where this numerical scheme is not supposed to converge. The most known artifi-
cial ways is to fix the magnetic axis through an additional set of coils’ current, added to
the equilibrium currents, in order to adjusts the coils’ current over the iterations to keep
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the magnetic axis at the desired position [10] (i.e. resulting in a numerical fictitious feed-
back controller which has the only aim to help the convergence of the nonlinear solver).

5.2 Newton-Raphson method

One of the aims of this work is to show that the free-boundary equilibrium problem can
be rigorously solved without relying on any artificial numerical way. For this purpose,
we exploit the Newton-Raphson (NR) scheme, which is more stable and reliable if a suit-
able initial guess is given, and has, under certain assumptions, a quadratic convergence.
The strengths of the NR scheme are reviewed in details in [5], and many examples of
implementations of this scheme can be found in literature [6, 13, 14, 17].

For this reason, (5.1) is solved with the relaxed (or damped) Newton-Raphson scheme
[28]:

JF(xk)hk+1=−F(xk), (5.3)

xk+1= xk+αkhk+1, (5.4)

where JF is the jacobian matrix and the relaxation parameter αk is suitably chosen at every
iteration to avoid an overshoot of the solution, especially during the very first iterations
when the solution between two following steps typically changes dramatically.

For this specific problem, JF(xk), defined as:

JF(xk)=
∂F(xk)

∂xk
, (5.5)

can be written as the sum of two terms:

JF(xk)= J ′F(x0)+ J′′F(xk), (5.6)

where

J ′F(x0)=











K Kbc 0 0 0 d
ψ

K̂ K̂bc 0 0 0 d
ψ

0 0 −1 0 0 d
ψ

0 0 0 −1 0 d
ψ

0 0 0 0 0 d
ψ











︸ ︷︷ ︸

fixed

, (5.7)

J′′F(xk)=










−µ0
di
dψ

0 −µ0
di

dψa
−µ0

di
dψb

−µ0
di
dλ

di
dψ

0 0 0 0 0

χa(x) 0 0 0 0
χb(x) 0 0 0 0

dIt
dψ 0 dIt

dψa

dIt
dψb

dIt
dλ










︸ ︷︷ ︸

to be updated at every iteration

. (5.8)
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Figure 3: Sparsity pattern of the terms J′F(x0) and J′′F (xk).

It is worth noting that J ′F(x0) depends only on the geometry of the problem, and it is
always the same if the same mesh is considered. It follows that it can be computed only
once during a pre-processing phase and then stored. On the other hand, J′′F(xk) has to be
updated at every iteration, and it is computed using a hybrid semi-analytical approach
which exploits the sparsity of the original matrix A. This approach is strongly paral-
lelizable, ensuring a fast and efficient implementation, both in terms of CPU time and
memory usage.

We underline that considering (4.21) rather than (4.12) is beneficial for several rea-
sons. At first, the only non-trivial term in the derivatives of F(x) corresponds to
di(ψ,ψa,ψb)/dx, therefore the computation of the derivatives of the second block of equa-
tions, related to ψ̂, is simplified because i(ψ,ψa,ψb) is no longer present. Moreover, al-
though both (4.12) and (4.21) allow the aforementioned partition of the Jacobian matrix
into two terms J ′F(x0) and J ′′F(xk), (4.21) leads to a more sparse J′′F(xk) with respect to
(4.12), and this is because the equations related to the BEM block do not change during
the iterations. For this reason the rows of J ′′F(xk) related to the BEM block have all zero
entries.

Fig. 3 shows the sparsity pattern of the terms J′F(x0) and J′′F(xk). It can be seen that
the BEM block K̂ appears only in J′F(x0) (i.e. the lowest part).

5.3 Jacobian-free Newton-Krylov method

If, on one hand the computation of the Jacobian matrix JF(xk) can be done in a very
efficient way, on the other hand the solution of (5.3) can be computationally expensive,
because of the dense BEM block of J′F(x0), whose size depends on the number Nb of
nodes on the boundary ∂Ω. This is not a critical issue for small problems (i.e if the mesh
is coarse), but it might be for large problems, because the computational cost of direct
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methods scales as O(n3), with n the number of Degrees of Freedom (DoFs) of the system,
making the problem unfeasible if a very fine mesh is considered.

To this purpose, the Jacobian-Free Newton-Krylov method (NK) have been imple-
mented. The Newton-Krylov method is jacobian-free in the sense that (5.3) is solved
without computing and inverting explicitly the Jacobian matrix. The computation of the
jacobian matrix is sometimes "error prone and time consuming". If the jacobian is not
sparse, also the solution of the system (5.3) can be time consuming. For this reason, this
method has been exploited in plasma physics as well as in several other computational
fields [29, 30]. For this specific problem the computation of the Jacobian matrix is not a
particular issue, and has been efficiently implemented: it remains the issue related to the
numerical solution of (5.3).

The NK method is a projection method which solves the problem F(x)=A(x)x−b=0
looking for the solution in the Krylov subspace†:

Kj(J,r0)= span
{

r0, Jr0, J2r0,··· , J j−1r0

}
, (5.9)

where here J= JF(x), r0=−F(x)− JF(x)h0.
After j Krylov iterations, hj is:

hj =h0+
j−1

∑
i=0

βi J
ir0, (5.10)

where the scalars βi minimizes the residual, which means that is determined as a lin-
ear combination of the orthonormal Arnoldi vectors produced by the Generalized Min-
imum Residual Method (GMRES) [31]. Eq. (5.10) shows that GMRES does not requires
the jacobian matrix explicitly, but only in term of matrix vector product, which can be
approximated as:

JF(x)r≈
[
F(x+ǫr)−F(x)

]

ǫ
, (5.11)

where ǫ is a small perturbation. There are several approaches available in the literature
to choose the perturbation ǫ, see for example [32].

The convergence of NK can be improved using a suitable preconditioner, in order
to cluster near the unity the eigenvalues of the iteration matrix [26] and consequently
reduce the number of GMRES (Krylov) iterations. A badly chosen preconditioner can
even compromise at all the convergence. The method implemented in this work relies on
the right preconditioning, which means that (5.3) becomes:

(
JF(xk)P

−1
)
y=−F(xk), (5.12)

hk+1=P−1y, (5.13)

†Since the NK solver is performed at every non-linear free-boundary iteration k, in the following description
such index k is dropped, and only the index j of the NK iterations is considered.
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where the matrix P is the preconditioner. Regarding the choice of the preconditioner,
there are several strategies available in literature: one can choose either Algebraic Pre-
conditioners (AP) [26], exploiting problem-independent matrix factorization techniques,
or Physics-Based Preconditioners (PBP) [33], based on problem-dependent considerations.
In this work we implemented both kind of preconditioners: specifically, for AP we ex-
trapolate the optimal value of drop-tolerance of the DT-ILU factorization following an
empirical rule, and, for PBP, we developed a far-field sparsification technique to use as
preconditioner a sparsified version of the system matrix A(x) in Eq. (4.21). These strate-
gies are described in details in Appendix B, where an extensive comparison of the per-
formances of preconditioned NK, against NR, is reported as well.

6 Validation of the FRIDA code

The validation of the FRIDA code involves several aspects: (i) the convergence of the
FEM/BEM coupling, the (ii) investigation of the convergence capabilities of the numer-
ical schemes adopted (Picard, Newton-Rahpson, Newton-Krylov), and (iii) the applica-
tion of the code to realistic plasma equilibrium problems.

For these reasons, at first a simple magneto-static problem has been considered to
study the convergence behaviour of the FEM-BEM coupling method, and to compare the
outcome with the other coupling methods.

Secondly, two different devices are considered as test cases for the plasma equilibrium
problem: RFX-mod [18], operating as low-current tokamak, and an ITER-like device.
Fig. 4 shows the geometry of these devices and the regions Ωp, Ωc, and Ωv.

All following simulations and numerical experiments have been performed on a
Desktop machine with Intel Core i7 6 cores processor and 16GB 2666MHz. The FRIDA
code has been developed in the MATLAB environment, with parallel C++ subroutines
for the most demanding computations, such as the stiffness matrix in (4.13)-(4.14), the
Green matrix in (4.8), and the terms of the Jacobian matrix to be updated (J ′′F(xk) in 5.6,
which is computed at every iteration following the procedure described in paragraph
5.2).

6.1 Convergence of FEM-BEM coupling method

In order to analyze the convergence of the FEM-BEM coupling method described in Sec-
tion 3, we consider the simple axi-symmetric magneto-static problem given by a source
ΩS carrying a current density jφ:

L(ψ)=

{
jφ(~r), in ΩS, (6.1a)

0, elsewhere. (6.1b)

Two cases will be analyzed:
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Figure 4: De�nition of Ωv, Ω∗
v Ωc and ∂Ω for RFX-mod (a) and ITER-like (b) geometries.

(a) (b)

Figure 5: Two examples of triangulations: (a) mathing and (b) non-mathing the boundary of the soure term.

Filled triangles in (b): red = enter of mass inside Γp, grey = outside.

1. jφ(~r)= JC: a constant current density as in (2.6b), square ΩS, describing a single coil
as source (which will be called vacuum case);

2. jφ(~r)= jp(~r,ψ̄): a realistic plasma current density as in (2.6a), ΩS =Ωp is a realistic
separatrix of a diverted plasma configuration (which will be called plasma case).

These two cases have different purposes. The vacuum case is performed in order to
prove the maximum achievable rate of convergence of the FEM-BEM coupling method,
which occurs where the triangulation perfectly matches the edges of the source domain,
as it can be seen in Fig. 5(a). This is the same test case already used in [5] to obtain
the rate of convergence of the methods HL, ABB, JN and BMC. Specifically, by using
this test it is shown that, under the aforementioned assumptions, the proposed coupling
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method ensures a optimal rate of convergence, differently from the original HL method
that exhibit a lower rate of convergence.

The plasma case resembles the typical free-boundary problem, where the domain of
the plasma source term is not defined a priori. Since the plasma domain Γp is computed
at every iteration of the non-linear problem, a triangulation which matches perfectly the
boundary of the source domain would require to mesh the computational domain at
every iteration, being not feasible from a computational point of view. An Adaptive In-
tegration Technique (AIT) has been developed (see Appendix A) in order to compute the
source term by properly integrating the triangles on the boundary Γp.

To evaluate the error we introduce a second region Ωǫ, as can be seen in Figs. 6-7-8
(green square). The error ǫ is measured in the L2-norm as:

ǫ=

√∫

Ωǫ

(
ψ(~r)−ψR(~r)

)2
dΩ, (6.2)

where ψR(~r) is the reference value, obtained in different ways depending on the case
and specified for each case in the related paragraph. In order to increase the accuracy,
the integration of the quantities over triangles (e.g. for the computation of the stiffness
matrix through (4.13) and (4.14)) has been done using high degree efficient symmetrical
Gaussian quadrature rules [24].

6.1.1 Vacuum case

The source domain ΩS =ΩC is a square region (blue in Fig. 6a) and the computational
domain Ωd (grey in Fig. 6a) is a rectangular region including Ωǫ (green in Fig. 6a) and
ΩC. The reference value ψR(~r) in (6.2) is obtained using semi-analytic high precision
quadrature formulas for axi-symmetric sources with rectangular cross-section [34].

Fig. 6b, which reports the convergence obtained with basis functions of the first (cyan)
and second (red) order, as a function of the mesh size h, shows that the proposed cou-
pling method ensures a quadratic and cubic convergence respectively for the linear and
quadratic basis functions. Comparing these results with those presented in [5], we can
see an optimal rate of convergence like the one of the JN and ABB methods. Moreover,
unlike BMC, the proposed method does not suffer from loss of convergence rate due to
the presence of sharp corners on the computational boundary.

It is important to underline that the HL method has non-optimal rate of conver-
gence [5]. This happens because the HL introduces an auxiliary variable u [5, (7)] to
decrease the computational complexity. The 2D convolution integral in (4.8) is then re-
placed by a 1D convolution integral with the Neumann data of an auxiliary variable u,
causing a loss of optimality in the convergence rate. Our approach does not rely on this
approximation, keeping explicit the integral in (4.8), thus the optimality in the conver-
gence rate is maintained.
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Figure 6: Vauum ase. (a): Regions Ωd (grey), ΩC (blue) and Ωǫ (green); (b) rates of onvergene for linear

and quadrati basis funtions.

Figure 7: Plasma ase. (a): Regions Ωd (grey), ΩC (monotoni urrent density pro�le) and Ωǫ (green); (b)

rates of onvergene (magenta=non-adaptive integration, blue=adaptive integration).

Figure 8: Plasma ase. (a): Regions Ωd (grey), ΩC (urrent density pro�le with pedestal) and Ωǫ (green); (b)

rates of onvergene (magenta=non-adaptive integration, blue=adaptive integration).
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6.1.2 Plasma case

The same convergence test of the previous paragraph is repeated considering as source
ΩS=Ωp a realistic plasma equilibrium with diverted configuration. Two different current
density profiles are considered: the first is monotonic, while the latter exhibits a strong
pedestal fraction in the proximity of the plasma separatrix (see respectively Fig. 7a and
Fig. 8a). The reference solution is obtained by solving the same problem on a fine trian-
gular mesh that perfectly matches Γp.

While in Section 6.1 the presented FEM-BEM coupling method has been proven to
have optimal convergence rate (i.e. cubic rate), it is clear that this result is no longer
valid if the triangulation does not match exactly the source boundary. However, we can
see clearly that the proposed AIT is able to maintain a quasi-optimal rate of convergence
(≈2.87), which is also independent from the distribution of the source current (blue lines
in Figs. 7b and 8b).

Here it is reported also the comparison with a less sophisticated integration tech-
nique, obtained considering in the computation of the source term only the triangles
with center off mass inside the boundary of Ωp (see Fig. 5(b): red triangle is inside, grey
triangle is outside). We observe a rate of convergence of ≈ 1.95 for the monotonic cur-
rent density, and ≈0.95 for the current density with pedestal (magenta lines Figs. 7b and
8b), respectively. This means that, for the optimistic case of a plasma current which van-
ishes smoothly to the boundary, the rate of convergence is almost the same of a FEM
model with linear basis functions. The performance worsen if a consistent fraction of the
plasma current is close to the boundary.

6.2 Convergence of the non-linear problem

In this section, the results of a thorough numerical study on the convergence perfor-
mance of Picard iteration and of more robust and reliable methods, such as Newton-
Raphson/Newton-Krylov, are presented. As a test problem, a RFX-mod Upper Single
Null plasma equilibrium is considered (i.e. shot no. 39122 at 0.85s, see Section 6.3 for
further details). For this test case, the condition number the matrix A(x) of (4.21) is
κ≈1.45×106, and the spectral radius of the jacobian of (5.1) is ρJ =6.16.

Fig. 9 reports the behaviour of Picard (9(a)) and Newton-Raphson. The same initial
guess (blue curves) is used for both schemes. We can clearly see how much the solu-
tion provided by Picard is drifting in the outward direction (red curves), after a certain
number of iterations, while Newton-Raphson does not exhibits such behaviour, but it
monotonically converges. Fig. 9(c) gives a quantitative idea of the residue, defined as
||F(xk)||/||xk ||, versus the number of iterations: Newton-Raphson converges to almost
machine working precision after 15 iterations, while Picard shows an unstable behaviour.

On the other hand, if the initial guess is not well chosen, the Newton-
Raphson/Newton-Krylov schemes can suffer of an overshoot in the computation of
xk+1 = xk+hk+1. This is most likely to happen during the very first iterations, in which
the term hk+1 is higher. These overshoots can be avoided using a relaxed (or damped) ver-
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(a) (b) (c)

Figure 9: Piard (a) vs Newton-Raphson (b): plasma separatrix and entroid are shown during the iterations

(blue = initial guess, red = after 30 iterations). Residues ().
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Figure 10: Impat of the relaxation parameter on the onvergene. Solution at di�erent iterations of standard

NR (top) and relaxed NR (bottom) and residues (middle). Standard NR sheme stopped after 10 iterations.
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sion of NR/NK, where the relaxation parameter αk gives a weighted step αkhk+1. The
value of αk is chosen at every NR/NK iteration, by performing a preliminary check on
the updated solution. Through this strategy it is possible to understand if an overshoot
is occurring as well as to estimate its magnitude, in order to choose a suitable value of αk

to avoid it.
Fig. 10 investigates how the relaxation parameter affects the convergence of the re-

laxed NR with respect to the standard (not relaxed) NR, starting from the same initial
guess, deliberately chosen non suitable. The solutions xk+1 of for these two cases, at dif-
ferent iterations, are represented in terms of 2D contour map in Fig. 10. The standard
NR (Fig. 10 top) is very sensitive to the initial guess, leading the iterative scheme to ex-
plore different branches of solutions, eventually stopping, after 10 iterations, without
finding the correct solution (an internal check on the consistency of the solution is used
as stopping criterion). On the other hand, convergence to the correct solution is achieved
by tuning αk for a weighted step αkhk+1, in order to have much more stable iterations
(Fig. 10 bottom). Fig. 10 shows also the trend of the residues for both schemes.

The same considerations about relaxing the iteration step are valid also for Newton-
Krylov, thus (5.13) becomes hk+1 = αkP−1y, by choosing αk following the same strategy
used for NR.

6.3 Numerical validation

Three experimental Single Null plasma equilibria achieved by RFX-mod, operating as
low current tokamak, are analyzed using the FRIDA code. The main plasma equilibria
parameters [β0,αM,αN ], related to the parametrization of the current density in (4.6), are
summarized in Table1. These parameters are obtained with an optimization procedure
to achieve the best match on the experimental magnetic field measurements [19, 35]. The
free-boundary equilibrium solutions are shown in Figs. 11-13 in terms of poloidal mag-
netic flux surfaces, plasma current density and residual.

Table 1: Main plasma parameters of RFX-mod Single Null equilibria.

Shot # Ip [A] β0 αM αN

36922 58096 0.31 1.54 1.10

37829 50969 0.10 1.32 1.20

39122 63335 0.79 0.97 1.05

The trend of the residue over the iterations shows that the FRIDA code converges to
a minimum of the function F(x) within 10 to 15 iterations‡, without drifting from this

‡In all the test cases, the tolerance has been set to machine working precision (e.g. 2.220410−16) to evaluate
how the obtained residual is close to the theoretical one (i.e. residual = 0). We underline that, despite the

proposed Newton-like solvers can reach values of tolerance of the order of 10−(13∼15), the solutions at two
following steps of the nonlinear solver are practically indistinguishable already at residuals of the order of
10−8.
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Figure 11: RFX-mod shot #36922: blak dashed = referene boundary, red solid = FRIDA boundary. Flux (a),

plasma urrent density (b) and residue ().

Figure 12: RFX-mod shot #37829: blak dashed = referene boundary, red solid = FRIDA boundary. Flux (a),

plasma urrent density (b) and residue ().

Figure 13: RFX-mod shot #39122: blak dashed = referene boundary, red solid = FRIDA boundary. Flux (a),

plasma urrent density (b) and residue ().
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Figure 14: ITER-like ase #1:blak dashed = referene boundary, red solid = FRIDA boundary. Flux (a),

plasma urrent density (b) and residue ().

Figure 15: ITER-like ase #2: blak dashed = referene boundary, red solid = FRIDA boundary. Flux (a),

plasma urrent density (b) and residue ().

Figure 16: ITER-like ase #3: blak dashed = referene boundary, red solid = FRIDA boundary. Flux (a),

plasma urrent density (b) and residue ().
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equilibrium point. This means that the code is robust and reliable, and does not suffer
of the aforementioned intrinsic axisymmetric instability. It is clear that the plasma bound-
aries given by the FRIDA code (red) are in fairly good agreement with the experimental
references (black dashed) reconstructed by extrapolating the poloidal flux in the vacuum
region between the plasma and the magnetic measurements [36]

The same numerical tests has been performed on a ITER-like device. The analyzed
equilibria involves one limiter and two diverted configurations, in order to assess the
flexibility of the FRIDA code. As for RFX-mod, the code converges after 10÷15 iterations,
and the boundaries are indistinguishable from the references, obtained with the codes
CREATE-L [13] and CREATE-NL [14].

7 Conclusions

In this paper a coupled FEM-BEM approach for the solution of the free-boundary axi-
symmetric plasma equilibrium problem has been presented. The proposed method, ob-
tained from an improvement of the Hagenow-Lackner (HL) coupling method, allows to
handle the unbounded domain by reducing the computational domain only to the region
inside the vacuum chamber. With this approach the external environment, including coils
and conducting structures, can be described by means of Dirichlet boundary conditions
on the surface of the limited computational domain. The external environment can be
represented with both different level of complexity (i.e. 2D, 3D). These considerations
would be very useful in simulating time-domain scenarios in which the 3D representa-
tion of the conductors is relevant (e.g. eddy currents problem, disruption events).

The paper explores different iterative methods for the solution of the non-linear Grad-
Shafranov equation, such as Picard, Newton-Raphson and Newton-Krylov, in order to
provide a robust and reliable tool, able to handle large-scale problems (e.g. high res-
olution equilibria). The convergence properties of each scheme are investigated lead-
ing to the result that the misconception of an "intrinsic axisymmetric instability which is
encountered in all equilibrium calculations with a free-boundary condition" [10] arises from
the use of the fixed-point/Picard scheme, which is well known to suffer for limitations
on convergence [5]. On the other hand, Newton-type schemes (i.e. Newton-Raphson,
Newton-Krylov) are the most robust and reliable, allowing to achieve a fast conver-
gence to machine working precision. In particular, the relaxed (or damped) versions
of these Newton-type schemes overshoots and/or instabilities in following the correct
branch of solution, even when the initial guess is not well chosen. The robustness of
Relaxed/Damped Newton’s based scheme could be of fundamental use in modeling sce-
narios in which the non-linear plasma current density evolves in time following profiles
given by multi-physics calculations (i.e. transport codes) which is a condition character-
ized by a much more pronounced non-linearity. Large-scale problems (i.e. high resolu-
tion equilibria) are efficiently handled by using the jacobian-free Newton-Krylov scheme,
that revealed to be much faster with respect to the Newton-Raphson and also use a less
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amount of memory.

A dedicated convergence analysis has shown that, unlike HL, this method exhibits
optimal rate of convergence of the L2-norm of the error as the mesh size decreases. More-
over, an Adaptive Integration Technique (AIT) has been developed to compute the source
term related to the plasma. This is mandatory if a suitable integration is required on
a triangulation which does not match the source domain, as happens with this free-
boundary equilibrium problem. The combination of this FEM-BEM coupling method
together with the proposed adaptive integration technique gives a quasi-optimal con-
vergence rate (O(h2.87)), even for free-boundary equilibrium problem characterized by a
current density profile with a strong pedestal.

The proposed FEM-BEM approach has been implemented in the FRIDA code (FRee-
boundary Integro-Differential Axisimmetric – https://github.om/matteobonotto/

FRIDA), together with the aforementioned iterative methods. The FRIDA code has been
validated against both experimental (i.e. RFX-mod plasma discharges) and numerical
data (i.e. ITER-like device).
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Appendices

A Adaptive integration procedure for the computation of

plasma source term

For a typical free-boundary problem, where the plasma domain Γp is computed at ev-
ery iteration of the non-linear problem, it is not possible to have a triangulation which
matches perfectly the boundary of the plasma domain. This would require, in principle,
to mesh the computational domain at every iteration. This way of addressing the prob-
lem has undeniable drawbacks from the computational point of view, as it would require
to compute at every iteration all the quantities defined in Sections 3-4. From a practical
point of view this means that a certain number of triangles are crossed by the separatrix

Γp, and thus, for each triangle, one can identify a region inside Γp (we will refer as Ω
⋫
p to

the portion of each triangle inside Γp).
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Figure 17: Deomposition of Ω
⋫
p into triangles: (a) triangle ontaining the X-Point, (b) di�erent ases depending

on how many verties are inside Γp. Related Gauss points (blak) are shown.

In order to compute the source term related to the plasma, an adaptive integration
technique can be used for the triangles on the boundary. For each triangle on the bound-

ary, the region Ω
⋫
p is evaluated, considering not only the intersection between the triangle

and Γp, but also the midpoint of the curved arc given by the portion of Γp inside the tri-
angle, in order to allow a better geometrical representation of the curved boundary. The

resulting polygon describing Ω
⋫
p is then decomposed into triangles, in order to perform

the integration with NGauss =6 Gauss points for each triangle.

An example is reported in Figs. 17a-17b for the test problem used in paragraph 6.1.2

(current density with pedestal), where the region Ω
⋫
p can be:

1. quadrilateral with a curved edge if two vertices are inside Γp (red in Fig. 17b);

2. triangular with a curved edge if one vertex is inside Γp (orange in Fig. 17b);

3. triangular/quadrilateral if, in case of a diverted configuration, the triangle contains
the X-Point (green in 17a).

Triangles close to that containing the X-Point should be treated carefully; in such case as
also polygons like pentagon may arise.

This method was already proposed by Heumann [15] using 3-nodes triangles and

4-nodes quadrilaterals to approximate the region Ω
⋫
p , and resulting in first order local

basis function. The integration of the source term inside Ω
⋫
p is performed using one

Gauss node in both cases.
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B Preconditioning techniques for the jacobian-free Newton-

Krylov method

The use of a Preconditioned Newton-Krylov (NK) is mandatory, as the convergence of
NK strongly depends on the preconditioner Pk used [31]. The purpose is to efficiently
cluster eigenvalues of the iteration matrix, which in turn will reduce the required number
of GMRES iterations [33]. Unlikely the common use of GMRES method to solve a linear
system of equation, in which the system matrix is known a priori, in the NK method the
system matrix is the jacobian, whose computation would be avoided. For this reason, NK
preconditioners are usually obtained starting from Ak, i.e. the system matrix of Eq. (4.21).
Traditionally, problem-independent standard iterative methods, such as Incomplete LU
factorization (ILU), are applied to Ak when constructing a preconditioner [31], i.e. Alge-
braic Preconditioning (AP) [26]. On the other hand, a possible choice can be using a ma-
trix which is an approximation of Ak, i.e. Physics-Based Preconditioning (PBP). Both AP
and PBP have strengths and drawbacks; however, we will describe how these drawbacks
have been overcome in this work in order to obtain high-performance preconditioners.

Regarding the AP, an effective technique is the Drop-Tolerance ILU (DT-ILU), already
used in the solution of BEM problems [37]. DT-ILU establishes a continuum between the
direct method and diagonal preconditioning, allowing the existence of an optimal drop-

tolerance ǫ
opt
ilu which minimizes the total CPU time of GMRES [38]. Although a priori

determination of the optimal drop tolerance remains an open problem [38], the approach
followed in this work is to obtain problem-specific empirical trend to extrapolate the opti-
mal drop-tolerance as a function of the number of Degrees of Freedom (DoFs).

Considering the PBP, the main limitation is imposed by the fact that the approxima-
tion Pk≈Ak should be sparse, while Ak is not completely sparse because of the BEM block
(see Figs. 2 and 3). To overcome this issue we developed a far-field sparsification technique,
in order to obtain A∗

k , a sparse version of Ak, satisfying the constrain A∗

k ≈ Ak. The spar-
sified version of Ak is then used as preconditioner Pk = A∗

k . This technique is applied
only to the block K̂, i.e. the BEM block, and is based on neglecting interaction between
far points, exploiting the fact that a node closer to a point of the computational boundary
has a stronger effect on it if compared to nodes which are far away. This means to neglect
the entries of each row of K̂ smaller than a factor α (α= 0 means no sparsification, α= 1
means full sparsification, i.e. only the entry with maximum absolute value per each row is
maintained).

Since, as already said, for this specific problem the jacobian can be computed, the
effectiveness of the preconditioners can be fully tested by considering also the cases of
Pk= J (true jacobian) and Pk = J∗k (far-field sparsification applied to Jk).

A preliminary comparison is shown in Fig. 18a, where a convergence analysis of GM-
RES with and without preconditioners is reported. It is clear that the preconditioner is
essential to reduce the number of iteration of 2 orders of magnitude. On the other hand,
as expected [39], GMRES preconditioned using the exact jacobian leads to convergence
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Figure 18: (a) onvergene analysis of GMRES; (b) sparsity fator of A∗
and J∗.

Figure 19: (a): total time (DT-ILU + GMRES) as a funtion of the drop-tolerane for 4 meshes with inremental

re�nement; (b) extrapolated optimal drop-tolerane as a funtion of N.

Figure 20: NR versus NK, time per iteration vs DoF (three preonditioners are onsidered).
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Table 2: Timing of preonditioned GMRES.

Preconditioner total GMRES time time per GMRES iteration

Pk = Jk 7.25s 0.9063s

Pk = J∗k 1.64s 0.0911s

Pk =Ak 11.31s 0.6653s

Pk =A∗

k 2.00s 0.0800s

Pk = ilu(Ak) 1.17s 0.0285s

with the least number of iterations. However, a fast convergence in terms of number of
iterations does not necessarily means fast convergence in terms of total CPU time, as can
be see from Table 2, which reports the total GMRES time. We can see how, a non fully
sparse preconditioner (i.e. Jk, Ak) needs more computational time, being practically not
appealing.

Fig. 18b shows the effectiveness of the far-field sparsification technique applied to the
BEM block K̂, reporting the sparsity factor of A∗ (resp. J∗), defined as nnz(A∗)/nnz(A),
i.e., the ratio between the non-zero entries of A∗ (resp. J∗) over the non-zero entries of
A (resp. J). Fig. 18b shows an evident sparsification of the considered matrices as α→1,
proving that the block K̂ has ≈90% of all the entries of the matrices.

Regarding the AP, an attempt to obtain problem-specific empirical trend of the optimal
drop-tolerance of the DT-ILU is reported in Fig. 19. Specifically, Fig. 19a shows the total
time per step of the non-linear solver, i.e. factorization (DT-ILU) plus solution (GMRES),
as a function of the drop-tolerance ǫilu and for 4 meshes with incremental refinement
(number of nodes from N=7000 to N=65000). The minimum value of each curve gives

the experimental optimal drop-tolerance ǫ
opt
ilu . Fig. 19b shows an extrapolation, using a

power regression, of the ǫ
opt
ilu as a function of the number of DoFs. This strategy gives

a good a priori guess of ǫ
opt
ilu . We underline that this approach is problem-specific, and a

general way to a priori determine ǫ
opt
ilu still remains an open problem [38].

Fig. 20 shows how the time per iteration ttot of the non-linear solver, i.e. the time
needed to (i) compute the preconditioner plus (ii) to solve Eq. (5.12), scales with N. While,
for Newton-Raphson (NR), ttot ∝ N2.1, for NK we obtain:

• AP: ttot ∝ N≈1.4 for Pk = ilu(Ak);

• PBP ttot ∝ N≈1.1 for Pk =A∗

k , P∗

k = Jk.

thus NR is preferable for small N but less appealing as N increases (e.g. a finer triangu-
lation). On the other hand, Physic-Based Preconditioned NK scales almost linearly with
N, which is slightly better that Algebraic Preconditioned NK. This is a remarkable result,
showing how the far-field sparsification technique can be more appealing, with respect
to DT-ILU with optimal drop-tolerance, if a very high number of DoFs is required.



M. Bonotto, D. Abate, P. Bettini and F. Villone / Commun. Comput. Phys., 31 (2022), pp. 27-59 57

References

[1] J. Wesson and D. Campbell, Tokamaks. International Series of Monogr, OUP Oxford, 2011.
[2] J. P. Freidberg, Ideal MHD. Cambridge University Press, 2014.
[3] H. Grad and H. Rubin, “Hydromagnetic equilibria and force-free fields,” in Proc. Second UN

Intern. Conf. on Peaceful Uses of Atomic Energy 31, p. 190–197, 1959.
[4] V. D. Shafranov, “Plasma Equilibrium in a Magnetic Field,” Reviews of Plasma Physics, vol. 2,

p. 103, Jan. 1966.
[5] B. Faugeras and H. Heumann, “FEM-BEM coupling methods for tokamak plasma axisym-

metric free-boundary equilibrium computations in unbounded domains,” Journal of Compu-
tational Physics, vol. 343, pp. 201–216, 2017.

[6] J. Blum, Numerical simulation and optimal control in plasma physics. United States: John Wiley
and Sons Inc, 1989.

[7] K. Lackner, “Computation of ideal MHD equilibria,” Computer Physics Communications,
vol. 12, no. 1, pp. 33–44, 1976.

[8] F. Hofmann, “FBT – a free-boundary tokamak equilibrium code for highly elongated and
shaped plasmas,” Computer Physics Communications, vol. 48, no. 2, pp. 207–221, 1988.

[9] P. Barabaschi, “The maxfea code,” Proceedings Plasma Control Technical Meeting, 1993.
[10] Y. M. Jeon, “Development of a free-boundary tokamak equilibrium solver for advanced

study of tokamak equilibria,” Journal of the Korean Physical Society, vol. 67, p. 843–853, Sep
2015.

[11] R. Albanese, J. Blum, and O. D. Barbieri, “On the solution of the magnetic flux equation in
an infinite domain,” EPS. 8th Europhysics Conference on Computing in Plasma Physics, 1986.

[12] R. Albanese, J. Blum, and O. D. Barbieri, “Numerical studies of the next european torus via
the PROTEUS code,” 12th Conf. on Numerical Simulation of Plasmas, 1987.

[13] R. Albanese and F. Villone, “The linearized CREATE-l plasma response model for the control
of current, position and shape in tokamaks,” Nuclear Fusion, vol. 38, pp. 723–738, may 1998.

[14] R. Albanese, R. Ambrosino, and M. Mattei, “CREATE-NL+: A robust control-oriented free
boundary dynamic plasma equilibrium solver,” Fusion Engineering and Design, vol. 96-97,
pp. 664–667, 2015. Proceedings of the 28th Symposium On Fusion Technology (SOFT-28).

[15] H. Heumann, J. Blum, C. Boulbe, B. Faugeras, G. Selig, J. Anè, S. Bremond, V. Grand-
girard, P. Hertout, and E. Nardon, “Quasi-static free-boundary equilibrium of toroidal
plasma with cedres++: Computational methods and applications,” Journal of Plasma Physics,
vol. FirstView, pp. 1–35, 06 2015.

[16] J. L. Johnson, H. Dalhed, J. Greene, R. Grimm, Y. Hsieh, S. Jardin, J. Manickam, M. Ok-
abayashi, R. Storer, A. Todd, et al., “Numerical determination of axisymmetric toroidal mag-
netohydrodynamic equilibria,” Journal of Computational Physics, vol. 32, no. 2, pp. 212–234,
1979.

[17] F. Villone, L. Barbato, S. Mastrostefano, and S. Ventre, “Coupling of nonlinear axisymmetric
plasma evolution with three-dimensional volumetric conductors,” Plasma Physics and Con-
trolled Fusion, vol. 55, p. 095008, Jul 2013.

[18] P. Piovesan, D. Bonfiglio, F. Auriemma, F. Bonomo, L. Carraro, R. Cavazzana, G. De Masi,
A. Fassina, P. Franz, M. Gobbin, L. Marrelli, P. Martin, E. Martines, B. Momo, L. Piron,
M. Valisa, M. Veranda, N. Vianello, B. Zaniol, M. Agostini, M. Baruzzo, T. Bolzonella,
A. Canton, S. Cappello, L. Chacón, G. Ciaccio, D. F. Escande, P. Innocente, R. Lorenzini,
R. Paccagnella, M. E. Puiatti, P. Scarin, A. Soppelsa, G. Spizzo, M. Spolaore, D. Terranova,
P. Zanca, L. Zanotto, and M. Zuin, “RFX-mod: A multi-configuration fusion facility for three-



58 M. Bonotto, D. Abate, P. Bettini and F. Villone / Commun. Comput. Phys., 31 (2022), pp. 27-59

dimensional physics studies,” Physics of Plasmas, vol. 20, no. 5, p. 056112, 2013.
[19] J. Luxon and B. Brown, “Magnetic analysis of non-circular cross-section tokamaks,” Nuclear

Fusion, vol. 22, pp. 813–821, Jun 1982.
[20] C. Johnson and J. C. Nedelec, “On the coupling of boundary integral and finite element

methods,” Mathematics of Computation, vol. 35, no. 152, pp. 1063–1079, 1980.
[21] J. BIELAK and R. C. MacCAMY, “An exterior interface problem in two-dimensional elasto-

dynamics,” Quarterly of Applied Mathematics, vol. 41, no. 1, pp. 143–159, 1983.
[22] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in

pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering,
vol. 79, pp. 1309–1331, 09 2009.

[23] D. Pepper and J. Heinrich, The Finite Element Method: Basic Concepts and Applications with
MATLAB, MAPLE, and COMSOL, Third Edition. Computational and Physical Processes in
Mechanics and Thermal Sciences, CRC Press, 2017.

[24] D. A. Dunavant, “High degree efficient symmetrical Gaussian quadrature rules for the trian-
gle,” International Journal for Numerical Methods in Engineering, vol. 21, no. 6, pp. 1129–1148,
1985.

[25] A. Cenedese, P. Bettini, and M. Bonotto, “Model-based approach for magnetic reconstruc-
tion in axisymmetric nuclear fusion machines,” IEEE Transactions on Plasma Science, vol. 46,
pp. 636–644, March 2018.

[26] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. No. 16, SIAM, 1995.
[27] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations

intégrales,” Fundamenta Mathematicae, vol. 3, no. 1, pp. 133–181, 1922.
[28] M. Crisfield, “Accelerating and damping the modified newton-raphson method,” Computers

& Structures, vol. 18, no. 3, pp. 395–407, 1984.
[29] W. Xu and T. F. Coleman, “Solving nonlinear equations with the Newton-Krylov method

based on automatic differentiation,” Optimization Methods and Software, vol. 29, no. 1, pp. 88–
101, 2014.

[30] S. Jardin, Computational Methods in Plasma Physics. USA: CRC Press, Inc., 1st ed., 2010.
[31] Y. Saad, Iterative Methods for Sparse Linear Systems. USA: Society for Industrial and Applied

Mathematics, 2nd ed., 2003.
[32] D. Knoll and D. Keyes, “Jacobian-free Newton-Krylov methods: a survey of approaches and

applications,” Journal of Computational Physics, vol. 193, no. 2, pp. 357–397, 2004.
[33] D. Knoll, V. Mousseau, L. Chacon, and J. Reisner, “Jacobian-free Newton-Krylov methods for

the accurate time integration of stiff wave systems,” Journal of Scientific Computing, vol. 25,
pp. 213–230, 11 2005.

[34] L. Urankar, “Vector potential and magnetic field of current-carrying finite arc segment in
analytical form, part iii: Exact computation for rectangular cross section,” IEEE Transactions
on Magnetics, vol. 18, pp. 1860–1867, November 1982.

[35] D. Abate, G. Marchiori, and F. Villone, “Modelling and experimental validation of RFX-mod
tokamak shaped discharges,” Fusion Engineering and Design, vol. 146, pp. 135–138, 2019.
SI:SOFT-30.

[36] O. Kudlacek, P. Zanca, C. Finotti, G. Marchiori, R. Cavazzana, and L. Marrelli, “Real time
measurement of plasma macroscopic parameters on RFX-mod using a limited set of sen-
sors,” Physics of Plasmas, vol. 22, no. 10, p. 102503, 2015.

[37] J. H. Kane, D. E. Keyes, and K. G. Prasad, “Iterative solution techniques in boundary element
analysis,” International Journal for Numerical Methods in Engineering, vol. 31, no. 8, pp. 1511–
1536, 1991.



M. Bonotto, D. Abate, P. Bettini and F. Villone / Commun. Comput. Phys., 31 (2022), pp. 27-59 59

[38] N. Jovanovic, D. Keyes, and G. Prasad, “Drop tolerance ilu preconditioners for iterative
solution techniques in boundary element analysis,” in Boundary Elements XV (C. Brebbia
and J. Rencis, eds.), pp. 501–516, Publ by Computational Mechanics Publ, 1993. Proceedings
of the International Conference on Boundary Element Methods (BEM XV); Conference date:
10-08-1993 Through 13-08-1993.

[39] L. Chacón, “An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional
viscoresistive magnetohydrodynamics,” Physics of Plasmas, vol. 15, no. 5, p. 056103, 2008.


