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Abstract. The reliability of BiCGStab and IDR solvers for the exponential scheme dis-
cretization of the advection-diffusion-reaction equation is investigated. The result-
ing discretization matrices have real eigenvalues. We consider BiCGStab, IDR(S),
BiCGStab(L) and various modifications of BiCGStab, where S denotes the dimension of
the shadow space and L the degree of the polynomial used in the polynomial part. Sev-
eral implementations of BiCGStab exist which are equivalent in exact arithmetic, how-
ever, not in finite precision arithmetic. The modifications of BiCGStab we consider are;
choosing a random shadow vector, a reliable updating scheme, and storing the best in-
termediate solution. It is shown that the Local Minimal Residual algorithm, a method
similar to the “minimize residual” step of BiCGStab, can be interpreted in terms of
a time-dependent advection-diffusion-reaction equation with homogeneous Dirichlet
boundary conditions for the residual, which plays a key role in the convergence anal-
ysis. Due to the real eigenvalues, the benefit of BiCGStab(L) compared to BiCGStab
is shown to be modest in numerical experiments. Non-sparse (e.g. uniform random)
shadow residual turns out to be essential for the reliability of BiCGStab. The reliable
updating scheme ensures the required tolerance is truly achieved. Keeping the best in-
termediate solution has no significant effect. Recommendation is to modify BiCGStab
with a random shadow residual and the reliable updating scheme, especially in the
regime of large Péclet and small Damkohler numbers. An alternative option is IDR(S),
which outperforms BiCGStab for problems with strong advection in terms of the num-
ber of matrix-vector products. The MATLAB code used in the numerical experi-
ments is available on GitLab: https://gitlab.com/ChrisSchoutrop/krylov-adr, a
C++ implementation of IDR(S) is available in the Eigen linear algebra library: http:
//eigen.tuxfamily.org.
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1 Introduction

Advection-diffusion-reaction (ADR) equations and their discrete approximations are ubiq-
uitous in the modeling of physical systems [1-5]. A wide variety of discretization schemes
for the ADR equation, such as finite difference, (pseudo)spectral, finite element and finite
volume methods exist. For the solution to be representative, the discretization scheme
must not only be convergent in the limit of infinitesimally fine grids, but also yield rep-
resentative results for more pragmatic grid sizes. A counterexample, is the discretization
of the ADR equation in the presence of strong advection where the central differencing
scheme yields spurious oscillations if the grid is too coarse [6, p. 83]. This discrepancy
is reflected by the eigenvalues of the exact ADR-operator and the discretized operator,
i.e., the exact operator has real eigenvalues, whereas the discretized version has complex
eigenvalues. However, for the exponential discretization scheme of [6,7] which we use
here, the discretized version also has real eigenvalues.

After the discretization step a linear system is obtained which must be solved to ob-
tain the approximate solution. Such linear systems are of the type Ax=b, with A a gen-
erally sparse, asymmetric, but invertible matrix of size N x N. In this paper we mainly
consider 3D equations. Note that even with a modest M =102 grid points per direction
this results in a linear system with N =10° unknowns. A robust method for solving such
linear systems is by factorizing A into a pair of lower and upper triangular matrices using
the well-known LU decomposition [8, p. 96], and subsequently computing x by solving
two triangular systems using backward and forward substitution. The main downside
of LU decomposition is that for a sparse system matrix there can be significant fill-in;
the factors L and U are not guaranteed to be sparse. As a result the time complexity of
factorizing the resulting A for discretized three-dimensional ADR-equations is in general
O(N7/3) [9].

Another approach are iterative methods, most commonly the Krylov subspace
methods such as the Conjugate Gradient (CG) method. Such methods seek succes-
sive approximations to the solution as a projection on the linear subspace ICx(A,r) =
span{ro,Aro,AZro,---,Akilro} with rg := b— Axp the residual generated by some initial
guess xg. For linear systems obtained from discretizing a second order PDE with a grid
spacing proportional to N~!/3, the CG method requires O(N*/3) flops to reach a given
tolerance € [9], saving a factor N compared to the LU decomposition. A second benefit is
that the memory requirement of O(N) is modest, as only the matrix itself and a constant
number of vectors of size N have to be stored. Additionally, CG is an optimal Krylov
method in the sense that in each iteration the error is minimized over the A-norm [10].

The main drawback of CG is the requirement of a symmetric, positive definite ma-
trix A. For more general invertible matrices the Faber-Manteuffel theorem [11] states
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that there is no Krylov subspace method using Ct(A, 7o) that has short recurrences and
optimality [12]. Short recurrence methods express the next residual and solution ap-
proximation in terms of a fixed (practically small) number of previous residuals and so-
lutions. However, in long recurrence methods the number of terms in the recurrence
grows with the iteration count. Optimality here refers to the minimization of the error
ep = x—xi € span{x—xp } + Ky (A,rp) in some norm. Therefore, for a general invertible
matrix A one has to either, drop the optimality requirement, use long recurrences, use a
space different than /Cx(A,r), or settle for a compromise. This leads to a wide variety of
Krylov methods, each with different tradeoffs.

One possible extension of CG to solve non-symmetric systems is the BiCG algorithm
originally described in [13]. The idea of BiCG is to use a second Krylov subspace denoted
as the “shadow space”; ICk(AT,?O), where the vector 7y is arbitrary but commonly chosen
as rp. Unfortunately, the BiCG algorithm has several drawbacks as well. First, unlike CG
the residuals produced by the BiCG algorithm are not guaranteed to decrease each iter-
ation in some norm. Second, additional computational effort is needed in matrix vector
products involving AT [8, p. 247]. Third, matrix-vector products of the form ATv may
be prohibitively expensive to compute, making the BiCG method unsuitable for some
applications such as Newton-Krylov methods [2,8, p. 241].

To alleviate these issues the well-known BiCGStab algorithm was developed. This
method was originally described in [14] and has since then been incorporated in many
popular linear algebra packages such as MATLAB [15] and Eigen [16], and in simulation
software such as PLASIMO [17] and COMSOL [18]. BiCGStab combines one iteration of
BiCG with a Local Minimal Residual (LMR) step [19]; this step can also be seen as per-
forming one iteration of the GMRES method [20]. LMR chooses the current residual as
a search direction, and takes a step in this direction such that the next residual is mini-
mized, which results in a smoother decrease of the residual norm of BiCGStab compared
to BiCG. Additionally, BiCGStab does not require operations involving AT. However, this
combination of LMR and BiCG leads to several subtleties which are discussed in Section
2.

To compare BiCGStab with other Krylov methods, we also include BiCGStab(L) and
IDR(S). The BiCGStab(L) method, combines L steps of BiCG with a GMRES(L) step [21].
Another method we include is the recent IDR(S) algorithm, which can be seen as using
S different shadow spaces; ICk(A,ﬁ) with R an N x S matrix. IDR(S) is constructed such
that the residuals are forced into a subspace that decreases in dimension each iteration
[22]. Even though not as widespread as BiCGStab, IDR(S) outperforms BiCGStab for a
wide class of problems [22,23]. We focus on BiCGStab, BiCGStab(L), IDR(S), and most
importantly the differences in reliability arising in the implementations of the BiCGStab
algorithm.

In this paper we focus on specific implementations of the BiCGStab algorithm, and
show that small differences in these implementations can have a significant impact on
the reliability of this solver. Here we place the effects of these differences in a physical
context by considering the advection-diffusion-reaction equation. Furthermore, we do
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not use the central differencing discretization scheme, but apply the exponential scheme
for which the common critique that BiCGStab cannot handle complex eigenvalues does
not apply. We then show that even though the eigenvalues are real, there are still pit-
falls for a widely used BiCGStab implementation, and we present possible mitigations.
Additionally we show that even for preconditioned systems these modifications are still
applicable. To summarize, the objective and novelty of this paper is:

1. Investigate the reliability of BiCGStab, BiCGStab(L) and IDR(S) for advection-
diffusion-reaction equations discretized with the exponential scheme, resulting in
matrices with real eigenvalues.

2. Discuss the subtleties in different BiCGStab implementations for model linear sys-
tems.

3. Discuss pitfalls and remedies for several BiCGStab implementations.
4. Highlight the critical effect of the choice of a shadow residual 7 in BiCGStab.

5. Illustrate that for the LMR method, the residual propagates similarly to the solution
of a time-dependent advection-diffusion equation. This phenomenon is used to
obtain insight into the convergence of BiCGStab.

6. Present numerical results suggesting that the residual for BiCGStab is transported
similarly to the solution of a time-dependent advection-diffusion problem to sup-
port the observation regarding the shadow residual 7.

7. Show that even for preconditioned systems the proposed modifications are still
relevant.

Typically, large sparse linear systems are solved using preconditioned iterations. We in-
vestigate the effect of Jacobi, incomplete LU and geometric multigrid preconditioners
for the MATLAB implementation of BiCGStab. Such preconditioners do indeed signif-
icantly reduce the number of required matrix-vector products, however we show that
it does not alleviate all shortcomings. To simplify the analysis, and work toward a ro-
bust BiCGStab variant that converges for a broad range of systems we mainly consider
unpreconditioned systems in the coming sections.

The contents of this paper are the following. First, the BICGStab algorithm and dif-
ferent implementations are discussed in Section 2. Second, the model ADR-system along
with the discretization and resulting eigenvalues are introduced in Section 3. Third, sev-
eral numerical experiments are presented and discussed in Section 4. Finally, we end
with concluding remarks in Section 5.

In conclusion, we recommend to use BiCGStab with a random shadow residual 7 and
reliable updating scheme, or alternatively the efficient IDR(S) algorithm. The MATLAB
code used in the numerical experiments is available on GitLab: https://gitlab.com/
ChrisSchoutrop/krylov-adr a C++ implementation of IDR(S) is available in the Eigen
library [16].



160 C. Schoutrop et al. / Commun. Comput. Phys., 32 (2022), pp. 156-188

2 Solver implementation

One of the main goals of this paper is to compare BiCGStab and IDR. However, this
is not as straightforward as one might expect. For example, the BiCGStab algorithm
has several variants, which are not identical for finite precision arithmetic. A common
alternative to BiCGStab is BiCGStab(L), which modifies BiCGStab to include a higher
order stabilizing polynomial step and reduces to BiCGStab for L =1. The higher order
polynomial step makes BiCGStab(L) more robust for matrices having eigenvalues with
large imaginary parts [21]. It is shown in [24] that BiCGStab(L) can be implemented in
different ways, affecting both stability and computational complexity. There also exist
other algorithms which reduce to BiCGStab for specific parameters, such as IDR(S) [22]
and IDR(S)Stab(L) [23,25]. In addition there are several variants for specific situations,
such as a version of BiCGStab geared specifically for parallel computers; see e.g. [26]
and [27], a block-version [28] specialized for solving systems with multiple right-hand
sides, and a recycling version [29] optimized for solving a sequence of linear systems.

The BiCGStab algorithm which we list here for the sake of completeness is based on
Algorithm 1 of [30] with L =1, given here as the baseline BiCGStab Algorithm 1. In this
paper (a,b) := a'b denotes the inner product of the vectors a and b. In Algorithm 1 the
MATLAB notation is used, i.e., 7. ; denotes the entire first column of the matrix 7. Unless
mentioned explicitly all arithmetic is conducted over the real numbers.

As mentioned in the introduction, BiCGStab combines BiCG with LMR. In Algorithm
1, specifically in Lines 2—6, the initial residual 7. ;, the search directions # and the shadow
residual 7 are initialized. The next part (lines 8 —15) performs one BiCG iteration, and the
lines 16—19 perform the LMR-step. The LMR-step can be seen as choosing the search
direction equal to the residual 7. ;, and computing w such that the norm of the next resid-
ual, ||7. 1 —w7.2]|2, is minimized. Note that 7. ; contains the residual and 7. ; is an auxiliary
vector used in the LMR step.

To illustrate some of the differences between several BiCGStab implementations, we
focus on three specific modifications that require little alteration to the baseline BiCGStab
algorithm, i.e.,

1. Random shadow residual, 7, Section 2.1.
2. Reliable update scheme from [31], Section 2.2.
3. Storing solution with best residual thus far, Section 2.3.

In the next sections we illustrate shortcomings of baseline BiCGStab using small model
problems, and comment on the effect of these three modifications. In Section 2.4 it
is shown how the initial residual is propagated similarly to the solution of a time-
dependent advection-diffusion equation, which is argued to be the main reason for the
effectiveness of choosing a random shadow residual later in this paper.
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Algorithm 1 Baseline BiCGStab

1: function BASELINE BICGSTAB(A, b, x,tol)
2 polac1,w1,7+0€RN*2 5+ 0 RN*2

3: ?;/1 +~—b—Ax
4: TT > Arbitrary, such that (7,7, 1) #0
5: x'—x, x<0
6 g |7l
7: while { > tol||b|| do
8: 00 < —pPow
9: 014 <f17,?;,1>
10: B<—a(p1/po),  po<p1
11: U.1<7.1—Pu.1
12: lx/l\;,z — Ail\:,1
13: Dé(—pl/<7,ﬁ;,2>
14: X4 xX+adl.
15: T T Qi)
16: T.o— AT 1
17: w<—argmin, |71 —wr || = (7.,2,7.1) / (F.2,7.2)
18: X x+wr.
19: T T — W
20: 1/7;,1 — 1/7;,1 — wﬁ;,2
21: g |7al

22: end while
23:  x<x+x return x,/||b||
24: end function

2.1 Choice of shadow residual

There is quite some freedom in the implementation of BiCGStab, one example is the
choice for 7 in Algorithm 1. This vector of the BiCGStab algorithm is the so-called
“shadow residual” and can be chosen almost arbitrarily. By default 7 is chosen as the
first residual b— Axo. However, as will be demonstrated for several model systems, the
specific choice of 7 can strongly influence the convergence of BiCGStab.

An interesting alternative choice for 7 stems from the IDR(S) algorithm in [22], i.e.,
choosing 7 random and complex. To illustrate this, consider linear systems involving a
matrix with eigenvalues that have a large imaginary part compared to the real part. For
such systems BiCGStab breaks down as a result of |w| <1 in line 17. Such systems were
one of the main motivations to develop BiCGStab(L) [21]. The simplest system for which
BiCGStab will stagnate due to w =0 is a system involving a 7t/2-rotation matrix;

a=[i %] v=[i] ==[i] @
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The matrix in (2.1) has purely imaginary eigenvalues £i. It is straightforward to show
that for any real-valued 7. 1, the operation 7. 5 < A7. 1 results in (7. 1,7.2) =0, since 7.1 L7.»
and thus w =0. One way to avoid this is to use a version of BiCGStab with higher-order
stabilizing polynomials, as is the idea behind BiCGStab(L) with L > 1. Alternatively,
note that this issue does not arise in complex arithmetic. This is achieved by choosing 7
random and complex, since this will also result in a complex-valued 7. ;. Consequently,
as the inner product to determine w also involves complex conjugation, it can be shown
that (7. 1,7.2) is purely imaginary. In this case BICGStab does most likely not break down,
however, choosing complex 7 comes at the cost of replacing real by complex arithmetic.
But, there also exist systems with real eigenvalues for which the default choice of 7
will cause BiCGStab to break down. Surprisingly, this occurs for the following system

A=t 0] o[, we ] o2

It can be verified that the default choice of 7 leads to (7,#.,) =0 and the algorithm stalls
while not having updated x even once. The idea of choosing a random 7 is to avoid any
correlation between the generated residuals 7 and search directions #, making it exceed-
ingly unlikely for BiCGStab to break down or stagnate due to any of these quantities
having a vanishingly small inner product with 7. This can be achieved by choosing every
element of 7 in the interval (0,1) from a uniform random distribution, i.e., 7; € U(0,1).
Inspired by the system presented in Example 3.3 of [32], another system for which
BiCGStab will break down, and which can be avoided by a different choice of 7 reads

A0 0 1 0
A=|-A A 0|, b=|0]|, x=|0], A>0, (2.3)
0 —A A 0 0

where again all eigenvalues are real, and are equal to A. This system can be seen as
the discretization with the upwind scheme of a one-dimensional problem on a grid with
only a few grid cells. Note that for problems involving strong advection the exponential
scheme reduces to the upwind discretization scheme. Note that each iteration the bound-
ary value on the left is propagated one grid cell. For the default choice of ¥ = this is
fatal, since rp only has the first element non-zero, however, the later residuals produced
have a vanishing first element, leading to p; = (#,7.1) =0 on line 9 in Algorithm 1. Because
of this, combined with the property that Ae;=A(e;—e; 1) for i <3, a on line 13 becomes
undefined due to a zero by zero division. A straightforward calculation shows that a
becomes undefined in the second iteration of Algorithm 1. It is shown in Section 2.4 that
(ro, 1) decreases exponentially for the LMR method; it is also observed later in Section 4.4
that a similar phenomenon occurs for BiCGStab and LMR when applied to discretization
matrices obtained from two-dimensional ADR problems.

The idea of choosing a random 7 is inspired by several sources. First, the effect of
choosing a random initial guess (and thus a random 7) was shown in [33] for BiCG al-
gorithms to significantly impact which model problems could be solved. Second, similar
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to BiCGStab, IDR(S) uses an S-dimensional shadow space. In [22] in the context of the
IDR(S) algorithm it was noted that choosing all S vectors at random is essential for robust-
ness. Note that IDR(1) is equivalent to BiCGStab. Finally, it was shown in two numerical
experiments of acoustics problems that choosing a random 7 improved convergence [34]
for CGS, and in [35] for both CGS and BiCGStab. Here CGS is the well-known Conjugate
Gradient Squared method, a derivative of BiCG that does not require operations with AT.

2.2 Reliable update scheme

Note that in baseline BiCGStab, the residual r:=7. is only directly computed from the

definition r=b — Ax at the initialization step in line 3. For all subsequent iterations both

r and x are computed recursively from the results of previous iterations. This opens an

avenue through which finite precision arithmetic can lead to discrepancies between the

true residual b— Ax and the recursively computed residual r. This discrepancy between

the true residual and the recursively computed residual is called the residual gap.
Assuming the only error is introduced by k updates of the form

Xjip1 =X+ Wi, Tjp1=tj— AWy, (2.4)

it is shown in [24] that the maximum residual gap due to accumulating rounding errors
is bounded by
7l =116 —Axll| < 2kn el Al A | max]r (25)

Here n4 is the maximum number of non-zeros per row and €, the machine precision,
|| A|] is the 2-norm of the element-wise absolute value of A. An example of a problematic
system Ax="b is given by

1 —y O 0 1
A=|—y 1 —v|, x=10|, b=|0]. (2.6)
0 — 1 0 1

For this system it can be shown, in particular if ¢ > V2, that
I|A]|=1+V2y, [|A7Y|=1, 2.7)

where the matrix-norms are the 2-norm. After the first update to the residual we obtain
0
Fa= 27|, (2.8)
0

therefore the term max;<y (||| in (2.5) is at least 2y. Using this result it follows that a
conservative estimate for the right hand side in (2.5) is v, more specifically it scales as
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Q(7?) in the limit v — oo for this system. Therefore, depending on 7y the upper bound for
the residual gap can be arbitrarily large.

By computing the true residual from the definition b— Ax the gap is reduced to zero.
However, this is expensive as it costs an additional Matrix-Vector product (MV). In [31]
it is suggested to compute the true residual if one of the following conditions holds:

L |[7.1]| <0.01][b|| and ||b|| <max;||7, |,

2. ||b]] §O.01maxjH?:7,1H and ||7.1|| <maxjH?:7/1H,

where the maximum is taken over all residuals since the last computation of the true
residual. By computing the true residual the residual gap can be significantly decreased
with only a few extra MV. Similarly, x is updated in a “’group wise” manner, collecting all
the updates into a temporary vector then applying several updates at once to x in order
to minimize the effects of round-off errors. For more details regarding the derivation of
the reliable updating strategy and the precise conditions for the groupwise updates, the
reader is referred to [24,31].

An alternative strategy is applied in MATLAB'’s implementation of BiCGStab. If
|lr]|/||b]| has decreased below the specified tolerance, the recursive residual is replaced
by the true residual. This has the benefit of ensuring the residual is accurate, however,
replacing the recursively computed residual by the true residual can destroy the BiCG
process [24]. We will indeed show in numerical experiments that MATLAB’s implemen-
tation can break down after this residual replacement.

2.3 Keeping the lowest residual solution

A final idea is applied in MATLAB's variant of BiCGStab [15]. One major difference be-
tween the baseline and MATLAB’s variant of BiCGStab is keeping track of the x with
the lowest residual. After every update of x and 7.1 the new x is stored separately until
a solution is computed with an even lower residual. This idea has its merits, since the
convergence of BiCGStab is in general not monotonic. If the method breaks down, the
solution x computed last may be worse than a previously computed solution. Neverthe-
less it is important to keep in mind that, due to the residual gap, a previously computed
x may not actually have a smallest true residual, even though it could have the smallest
recursively computed residual as pointed out in Section 2.2. The effects of this modifica-
tion are discussed in more detail in Section 4.2. In the next section we analyze the way
the initial residual of the LMR method changes with each iteration.

2.4 Propagation of the initial residual

To illustrate how the initial residual is affected by the BiCGStab process we investigate
a simpler Krylov subspace method. The LMR algorithm as presented in [19] is given in



C. Schoutrop et al. / Commun. Comput. Phys., 32 (2022), pp. 156-188 165

Algorithm 2. In essence this method makes a step in the direction of the residual, and de-
termines a step size such that the norm of the next residual is minimal. This method can
also be interpreted as GMRES(1), or the second half of BiCGStab (Line 16-19 in baseline
BiCGStab).

Algorithm 2 LMR algorithm
1: function LMR(A,b,x,tol)
2: r<—b—Ax

3 while ||7|]2 > tol do

4 W <§1Ar,r}3>

5 X<—x+wr

6: r<—r—wAr

7

8

9:

end while
return x
end function

To illustrate the LMR process, we consider a system of arbitrary size similar to the ex-
ample shownin (2.3) with A=1. Itis shown in Appendix A that for a linear system involv-
ing a bidiagonal Toeplitz matrix A of size N x N, with —1 on the first sub-diagonal and 1
on the diagonal the residual propagates toward the right. Such a bidiagonal Toeplitz ma-
trix is a model for a one-dimensional advection equation with an upwind discretization.
More specifically, given a right hand side e; and initial guess x =0 the k-th LMR residual
has elements that follow a binomial distribution;

with ¥ = e;. Importantly, note that
1
() =% (2.10)

i.e., the inner product of the first and the k-th residual decreases exponentially with k.
Another interpretation of the LMR algorithm exists if A is positive definite, since for
such matrices w > 0. Line 6 of Algorithm 2 can then be written as

—  —_AF (2.11)

which is the forward Euler discretization with step size w of the ODE system
dr_
dt
The LMR algorithm can be seen as time integration method for a linear ODE system.
For ADR problems the matrix A represents a discretized ADR operator, and r a discrete

—Ar. (2.12)
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(a) Exact solution of (2.12) (b) LMR residual

Figure 1: Comparison of the exact solution of the time dependent ODE system (2.12) and the LMR solution
(forward Euler approximation) for the bidiagonal Toeplitz matrix of size 100. Note that for the first 100 iterations

w:%. Importantly, this shows that the residual is advected throughout the domain, one grid cell per iteration.

approximation to a boundary value problem with homogeneous Dirichlet boundary con-
ditions. The exact solution to (2.12) is compared with the LMR residual in Fig. 1 for the
model upwind discretization resulting in a bidiagonal Toeplitz matrix of size 100. It is
shown in Appendix B that the discretization matrices obtained later on in this paper are
indeed positive definite. From Fig. 1 it can be concluded that the residual starts primarily
on the left and propagates toward the interior of the domain. Additionally, it can be seen
that the LMR residual indeed resembles the exact solution of the ODE system.

3 The discrete advection-diffusion-reaction equation

To investigate the performance of baseline BiCGStab and the modifications presented
in Section 2, we introduce the advection-diffusion-reaction equation as a model prob-
lem. First, the scalar advection-diffusion-reaction equation is converted to dimensionless
form, to investigate the iterative solvers for the entire parameter space. Second, the dis-
cretization scheme is outlined to obtain a set of difference equations, yielding a linear
system. Third, the eigenvalues of the resulting linear system are obtained to show that
the obtained matrix has real, positive eigenvalues.

3.1 Dimensionless form of the ADR equation

The scalar advection-diffusion-reaction equation, used here as a test problem, is relevant
for a wide variety of physical systems, describing for example Fickian diffusion in a bi-
nary mixture or describing a temperature distribution. Starting from the general ADR
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equation given by Eq. (2.13) in Ref. [6], with a linearized source term the equation reads
C (P _ e
+V-(ilp—eVp)=sc—spg. (3.1)

Here ii is the velocity field, € > 0 a diffusion coefficient, sc and spg a constant and linear
reaction term, respectively, and ¢ the quantity of interest. For clarity i, €, sc and sp are
taken to be constant, furthermore sc,sp > 0. In absence of transport, sc —sp Peq=0 where
Peq is the (chemical) equilibrium value of . Then after the substituting geq:=sc/sp, the
resulting model equation is given by

ag:”Jrv (ip—€eV @) =—5p(@—@eq)- (3.2)

The coefficient ¢ > 0 denotes the responsiveness of the system; for small ¢ the solution
can vary more rapidly compared to large values of §. Physically ¢ can, for example, take
the role of a specific heat capacity or mass density.

Consider a Cartesian three-dimensional coordinate system, then Eq. (3.2) can be ex-
panded as follows

¢ 3.9 0 . _
7+Zaxl <ugo ea—Z =—5p(¢— Peq), (3.3)

with x; the i-th Cartesian coordinate, and u; the corresponding component of the ad-
vection velocity. Next, we aim to make (3.3) dimensionless. To commence, a scaling is
performed; we scale the time t by a characteristic timescale T, and the coordinates x; are
scaled by the length scales L; for the i-th direction;

ti=t/T, x?‘ = (xi_xi,min)/Li~ (3.4)

The values of the characteristic variables are to be determined later. Using the newly
introduced quantities T and L;, the partial derivatives can be written as
919 9 _109
at_Tat*’ axi_Li axl*

(3.5)

Assuming constant ¢, and combining with the differentiation rules from (3.5), Eq. (3.3)
can be simplified to

Ltl'Ll' _ago _ _
( ) axl’f)_ SP(P— Peq)- (3.6)

gy 1
T ot* Z; L?9 €
Furthermore, by introducing Péclet numbers for each of the Cartesian directions

u;L;
Pe;:= ,

(3.7)
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we can simplify the notation. These Péclet numbers can be interpreted as the relative
strength of advection in the direction €; compared to diffusion. After some algebraic
manipulations the advection-diffusion-reaction equation becomes

ago Te 31 ap\ T
o T ET9 ( _ax;*>__sp(¢_%q)5' 9

We introduce the transport frequencies v;; and the reaction frequency v;, defined as
V= s, Upi= b
ti— Z70/ ==
¢L? ¢

We then obtain the advection-diffusion-reaction equation in terms of frequencies v; ; and
Uy as;

(3.9)

99
at* —|—TZV“ < <Pei(p—ﬁ> =V T(¢— Peq)- (3.10)

Next, by taking T such that vrT =1 the Damkohler numbers Da; can be introduced as

follows,

Vt,i 1 Sp LZ
=:—, Daj=—-!

v,  Da; ai

v T=-4 (3.11)

Finally, the dimensionless time-dependent advection-diffusion-reaction equation is ob-
tained by dividing both sides by a reference value ¢, such that ¢* := ¢/ @, which

results in X
9¢” 1 0 L WS
at* +1:21 Dai axz* <Pel(P ax§< > - ((P goeq)' (312)

1

If the characteristic length scales L; = L are the same in each of the Cartesian directions,
and assuming a stationary solution, Eq. (3.12) reduces to

Ls

i=1

d . 09"\ o
< <Pelgo _ax*>_ Da(¢"—¢gq), (3.13)

i
where now all Damkohler numbers are the same; Da. For ease of notation, * is omitted

in the following sections. In the next section we discretize Eq. (3.13) and obtain a linear
system which can be used to approximate the exact solution of (3.13).

3.2 Discretization

3.2.1 One-dimensional scheme

To discretize (3.13), for ease of exposition, we start with the one-dimensional equivalent
with @eq =0, since ¢eq will only affect the right hand side of the resulting linear system.
The ADR-equation can then be written as

< I(p(x))=-Dag(x) (3.142)
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where I is the flux, given by
— de

I'(¢p):=Pep— P (3.14b)
To discretize (3.14a), we use the Finite Volume Method (FVM). In the FVM method
the domain is subdivided into a finite number of disjunct intervals; referred to as con-
trol volumes. Here a cell-centered approach is applied on a uniform grid; in such a
configuration ¢ has to be computed at the nodal points x;. Control volumes are de-
fined around these nodal points; the i-th control volume extends over [x;_1,2,%Xi11/2],
where x;11/7 = %(xi—i—xiil) and the width of this volume is defined as the grid size
Ax:=Xi11/2—Xi-1/2.

Previously, the Péclet and Damkdohler numbers were defined with respect to a length
scale L, in the following we take the length of each grid cell as the respective length scale,
that is;

L=Ax=:h, (3.15)

defining them as the grid Péclet and Damkohler numbers. Integrating (3.14a) over a
control volume and approximating the integral over the source term with the midpoint
rule we obtain the discrete conservation law for each interval;

Fiy1/2—Fi-1/2=—hDag;, (3.16)

with ¢; a numerical approximation of ¢(x;). Several expressions for the numerical flux
Fiy1/7 at xj11/7 exist, depending on the discretization scheme used. Here we use the
exponential flux given in [6, p. 86];

1
Fip12= E(B(_Pe)(l)i_B(Pe)q)Hl)r (3.17)

where B(z) is the generating function for the Bernoulli numbers; in short the Bernoulli
function, defined as [36, p. 40] [37, p. 804]

;’ 0,
B(2):= { P Zf (3.18)
, z=0.

The resulting exponential scheme is obtained from the discrete conservation law (3.16)
resulting in

%(—B(Pe)(piﬂ—i— (B(—Pe)+B(Pe))pi—B(—Pe) i 1) = —hDag;. (3.19)

Assuming Dirichlet boundary conditions, the discretization matrix without linear source
term, is given by a tridiagonal Toeplitz matrix. For the exponential scheme the following
discretization matrix is obtained;

A= %tridiag(—B(—Pe),B(—Pe) 1 B(Pe),—B(Pe)), (3.20)
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with tridiag(a,b,c) indicating a tridiagonal Toeplitz matrix with a on the sub-diagonal,
b on the diagonal and ¢ on the super-diagonal. Note that for strong positive advection
(Pe — o0) the matrix A, becomes bi-diagonal, similar to the small model system shown
in Eq. (2.3), and the problem discussed in Section 2.4. Since this is a tridiagonal Toeplitz
matrix a closed form expression for the eigenvalues is known [38], namely they are given
by

Ak(Ax):%(B(—Pe)+B(Pe)+2\/B(Pe)B(—Pe)cos(leil>), k=1,2,--,M~2, (3.21)

with M the number of grid points. Note that since B(Pe) > 0 and the cosine factor is
greater than —1, we can obtain a strict lower bound, as

A > % (B(—Pe)-+B(Pe) —2,/B(Pe)B(~Pe) ) = % (\/B(—Pe) - \/B(Pe))z >0. (3.22)

3.2.2 Three-dimensional scheme

To extend the discussion of Section 3.2.1 to three-dimensional problems, the Kronecker
sum is used. The Kronecker sum &, as defined is given by [39, p. 268]

P2Q:=1,8P+Q®&]I,, (3.23)

with Pe R™*™, Q € R"*" and I, I,, the identity matrices of size m x m and n x n, respec-
tively. Here ® is the well-known Kronecker product (tensor product) defined for two
matrices P€ RN*N and Q as

p11Q ... p1nQ
PoQ=| : .. | (3.24)
pniQ ... pNNQ

It is then possible to construct the matrix Azp from three one-dimensional discretization
matrices using the Kronecker sum, similar to the procedure in [40].

For a three-dimensional problem on a cube of sides (M —1)h with constant coefficients
and cubical cells with sides of length &, the discretization matrix excluding the source
term can be written as

Asp=(A:BA;DA,)I?, (3.25)

where Ay, A, and A, are the discretization matrices corresponding to the one-
dimensional problem for each direction as laid out in Section 3.2.1. Applying (3.23) twice,
and using the associative property of the Kronecker sum it can be shown that

A DADA, =IRIQA+IRA,RI+A.RIRI, (3.26)

where each of the identity matrices is of size M —2, the number of grid cells in each
direction.



C. Schoutrop et al. / Commun. Comput. Phys., 32 (2022), pp. 156-188 171

Next, we show how the eigenvalues of A3p can be obtained. Consider a vector v as
right-eigenvector of P with eigenvalue A and w a right-eigenvector of Q with eigenvalue
1, then by using the mixed-product property of tensor products it follows that [39, p. 244]

(I,P+QR1I,)(w®v)=L,w®Pv+ Qw®I,v
=wRAV+UW RV
=A+u)(wew). (3.27)

Thus w®w is an eigenvector of P®Q with eigenvalue A4y, conform Theorem 4.4.5 in [39,
p. 268]. Consequently, if A, is an eigenvalue of A,, A, an eigenvalue of A, and A, an
eigenvalue of A, then A, +Ay+Azisan eigenvalue of A3p, resulting in an expression for
the eigenvalues of Asp;

Aijk) (Asp) = (Ai(Ax) +A5(Ay) + Ak(A)K, ijk=1,2,--- ,M—2. (3.28)

Finally, the effect of the linear source term has to be taken into account, namely a shift
of the eigenvalues by hDa resulting in the final set of eigenvalues for the discretization
matrix;

Aijo (A) = (Ai(Ax)+Aj(Ay) +A(AL) )R> +H°Da,  i,jk=1,2,- , M—2. (3.29)

This shows that all eigenvalues of A are positive and real for Da > 0. As a result, for all
values of Pe and Da which will be used in the numerical experiments later, the linear
system is invertible and only has positive, real eigenvalues. Furthermore, in Appendix B
it is shown that A is also positive definite.

In [21] an example was shown involving an advection problem where the system ma-
trix following from discretization with the central differencing scheme contains eigenval-
ues with large imaginary parts. In such a case BiCGStab(L > 1) is shown to outperform
BiCGStab. However, it should also be noted that for problems with strong advection the
central difference scheme yields spurious oscillations in the solution. Therefore, in our
experiments we consider the exponential scheme which does not result in unphysical
behavior for strong advection.

In the numerical experiments of Section 4 we illustrate that both of MATLAB's ver-
sions of BiCGStab and BiCGStab(2) do not converge for advection dominated problems
with the exponential scheme used here. Moreover, we also investigate modifications to
the baseline BiCGStab algorithm and show a potential mitigation by using a different
choice of 7.

4 Results and discussion

In this section we investigate the reliability of BiCGStab, IDR and their various imple-
mentations. To do this an ADR-equation is discretized in 3D and the true relative resid-
uals ||b—Axy||/||b|| are compared over the entire range of Péclet and Damkdohler num-
bers. Next, convergence as function of the number of Matrix-Vector products (MV) is
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compared for four specific combinations of Péclet and Damkdohler numbers. Finally, a
numerical experiment is conducted to elaborate on the effect of the residual propagating
through the domain, and the effect of choosing a random 7 in BiCGStab.

4.1 Convergence as function of Péclet and Damkdohler numbers

To investigate the convergence of BiCGStab and IDR, a model problem is set up to inves-
tigate the entire range of Péclet and Damkohler numbers. We solve (3.13) for ¢ on the
unit cube. To investigate the entire range of Péclet and Damkohler numbers we choose

1

&)

="

V3
¢(0,y,2) = (x,1,z) =p(x,y,1) =1,
¢(1,y,z) = ¢(x,0,z) = ¢(x,y,0) =0,

x+gy+gz)/ 621/ q)eq:O/
(4.1)

for varying u, and sp. The grid contains M =101 grid cells for each of the three Cartesian
directions such that 7=1/100. After discretization with the exponential scheme described
in Section 3.2 a linear system with 993=970,299 unknowns is obtained. No preconditioner
is used and the initial guess is set to zero. Both Pe and Da use the grid spacing & as the
characteristic length scales. The grid Péclet and Damkohler numbers in (3.13) are varied
over the range [107°,10°].

Each of the iterative solvers is given a maximum of 10* MV, and the tolerance is set
such that the relative residual ||r|| /||b|| is smaller than 10~!2. We will show that the most
efficient solver in terms of MV requires less than 10% of this maximum to converge. Le.,
if a solver does not converge, increasing the maximum number of iterations in an attempt
to enforce convergence would be inefficient, and may not resolve the issue either. After
completion of the iteration we compare the true residual for all four methods in Fig. 2.

It can be seen in Figs. 2(a), 2(b) and 2(d) that none of the BiCGStab variants are suc-
cessful in solving the discretized advection-diffusion-reaction problem for all Péclet and
Damkohler numbers. However, Fig. 2(c) shows that IDR(4) is close to achieving the pre-
scribed tolerance for a wide range of Péclet and Damkohler numbers.

BiCGStab(2) does not show improved reliability compared to BiCGStab. This is ex-
pected based on the eigenvalues, since the eigenvalues of the discretization matrix are
real as pointed out in Section 3.1. The ability to handle matrices with complex eigenval-
ues efficiently is one of the main advantages of BiCGStab(2) over BiCGStab. However,
for real eigenvalues this advantage is not relevant. As a result there is little difference
between the regions where MATLAB'’s implementations of BiCGStab and BiCGStab(2)
converge.

In addition, it can be seen that MATLAB’s implementation of BiCGStab performs
similarly to the baseline BiCGStab algorithm. This is due to a common issue related to
propagation of the initial residual. Both of MATLAB’s implementation and the base-
line algorithm share this issue, which is discussed in more detail in Section 4.4. Most
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Figure 2: True residual of the boundary value problem given by (3.13) and (4.1). Comparison between several
solvers.

importantly, neither solver converges reliably for problems with dominant advection, es-
pecially when only a weak source term is present.

In the next section we show the effects of the modifications presented in Section 2
when applied to the baseline BiCGStab algorithm.

4.2 Comparing modified solvers

To show the effects of the modifications to BiCGStab as discussed in Section 2, we first
show a version of BiCGStab with all modifications enabled;

e random shadow residual 7,
e reliable updating scheme,
e keeping the best intermediate solution.

The true residual computed from the solutions returned by the modified BiCGStab algo-
rithm with all three modifications enabled is shown in Fig. 3(a). It can be seen in this figure
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Figure 3: True residual of the system boundary value problem given by (3.13) and (4.1). Comparison between
BiCGStab and several modified variants.

that for all Péclet and Damkohler numbers the modified version of BiCGStab converges
to the prescribed tolerance. Next, we enable or disable one of the modifications in separate
figures to see their effect on the final residual.

Fig. 3(b) shows that the effect of storing the solution corresponding to the lowest
residual thus far, rmin, compared with the baseline algorithm shown in Fig. 2(d) is neg-
ligible. Furthermore, if the solver were to converge, the benefit of this modification is
limited as well. If the solver converges, modified BiCGStab always returns the solution
computed in the last iteration. Thus if the recursively computed residual is accurate,
and the solver does not stagnate, then keeping track of the best intermediate solution is
redundant. However, this may have an unwanted effect if the maximum number of iter-
ations set is small. If there is no improvement over the initial residual, BiCGStab would
return the initial guess as a solution.

In Fig. 3(c) we disable the use of a random 7, and use the default choice ¥=ry=b— Ax.
Here it can be observed that the choice of ¥ has a substantial effect on the final residual
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for the region roughly given by Pe >10? and Da < Pe. Compared to Fig. 3(a) it is clear
that for these problems the choice of 7 plays a significant role.

The cause of the convergence issues when using the default choice of ¥ =ry is a mani-
festation of the three-dimensional equivalent of the scenario presented in Eq. (2.3). More
specifically, the residual starts near one of the boundaries and propagates in a wave-
like manner through the domain. The important consequence of this is that the initial
residual only contains non-zero elements near one of the boundaries and gradually these
non-zero elements decrease in further iterations. This leads to the issue that (7,7.1) —0
and indirectly (7,#.,) — 0. Reliable updating offers no improvement here, as the issue
occurs even with accurate residuals. This effect is shown in more detail in Section 4.4.

The effect of the reliable updating scheme is shown in Fig. 3(d). In this figure we show
BiCGStab with the modifications of random 7 and keeping the best intermediate solution
enabled, and reliable updating disabled. For a wide range of the Péclet and Damkdohler
numbers the solver converges to the required tolerance of 10~!2, except for some cases
in the region Pe > 1 and Da < 10°. Even though the effect of reliable updating is not as
dramatic as choosing a different 7, a good solver should not stop iterating prematurely.
Therefore, the reliable updating scheme is nevertheless a beneficial addition to ensure the
required tolerance has truly been achieved.

In the next section we investigate the evolution of the residual as function of the num-
ber of MV, for four selected combinations of Péclet and Damkohler numbers.

4.3 Comparing performance for specific Péclet and Damkoéhler numbers

The convergence as function of the number of matrix-vector products for four combina-
tions of Péclet and Damkohler numbers is investigated. Fig. 4 shows the relative residual
(as computed by the solver) ||r||/||b|| as function of number of matrix-vector products.
Here the same model problem is used as in the previous sections.

For large Damkohler and small Péclet numbers it can be seen in Fig. 4(a) that all meth-
ods converge within a few MV. When both the Péclet and Damkohler numbers are large
it can be seen in Fig. 4(b) that the methods perform similarly for the first 40 MV, however
after this point MATLAB's solvers start to slow down. For a problem with dominant dif-
fusion, Fig. 4(c), all solvers converge smoothly and perform about the same. However,
the number of MV required is much larger than the case with negligible diffusion shown
in Fig. 4(b).

Fig. 4(d) highlights one of the points of interest with MATLAB’s implementations.
First, it can be seen that the residual increases significantly above the starting value for
MATLAB'’s solvers. Second, the residual can be seen to sharply increase at approximately
800 MV and 1200 MV for MATLAB’s versions of BiCGStab and BiCGStab(L), respectively.
The cause of this is that after a certain number of iterations the recursively computed
residual does decrease, however it strongly deviates from the true residual. When MAT-
LAB’s implementation detects stagnation, or when the recursively computed residual
norm is below the tolerance, the true residual is computed. After this step the recursive
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Figure 4: Relative residual of the boundary value problem given by (3.13) and (4.1) as function of the number
of matrix-vector products (MV). Note that this figure shows the convergence behavior corresponding to four
locations shown in Figs. 2 and 3.

residual is replaced by the true residual. However, shortly after this replacement of the
recursively computed residual by the true residual, the solvers stagnate.

It can be seen in Fig. 4(d) that IDR(4) converges in the least number of matrix-vector
products. Next, note that for the discretized problem, it takes at least 300 MV to propagate
the boundary conditions throughout the domain if every MV only spreads the solution to
neighbouring cells, similar to what was discussed for LMR in Section 2.4. Interestingly,
the convergence graph for IDR(4) shows a plateau for the first approximately 300 MV.
Similarly, it can be seen in Fig. 4(c) that there appears to be a speedup in convergence
around 300 MV. For Fig. 4(a) it should be noted that the system matrix is strongly di-
agonally dominant, nearly becoming a multiple of the identity matrix, causing the fast
convergence. Fig. 4(b) does not show a plateau region, presumably since the initial guess
of zeros is already a good approximation throughout the domain.
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4.4 Propagation of the residual for LMR and BiCGStab

In this section we investigate the hypothesis on the significant impact of replacing the
default choice of 7 =ry with a random 7. It is conjectured that, similar to the model
problem discussed in Section 2.4, for 2D and 3D problems the residual propagates into
the interior domain, following the advection direction.

To show the effect of the residual propagating through the domain, as was suggested
by Eq. (2.12), we consider a two-dimensional ADR problem on the unit square with the
following parameters;

(4.2)

where again both 1, and sp are varied to investigate specific Péclet and Damkohler num-
bers. The system is discretized using the exponential scheme using 101 grid points per
Cartesian direction. The Péclet number is set to 10° and the Damkohler number to 10~>;
the advection dominated regime. The resulting linear system is solved using a zero initial
guess for both LMR and baseline BiCGStab, modified to include a random 7.

In Fig. 5 two main effects can be seen. First, the non-zero residual is propagating in
the x-direction. Second, a wave-like structure traveling in the €, +e&, direction. Since in
the two-dimensional discretization scheme cells are coupled using a 5-point stencil, every
element in the residual vector can affect at most 4 other elements per MV, viz. their direct
neighbors. Therefore to have the grid cell representing the residual at x =0, y =0 affect
the grid cell at x=1, y=0 would take M —2 MV. Similarly, it would take 2(M—1) MV to
have the grid cell at x=0, y=0 affect the one at x=1, y=1, since the propagation follows
a staircase pattern.

It can be seen in Fig. 5 that for LMR the initial residual is non-zero close to x =0 and
zero throughout the rest of the domain, similar to the one-dimensional case shown in
Fig. 1. For consecutive iterations the residual can be seen to propagate similar to a wave
traveling in the &, +Ey direction. This is consistent with the interpretation of LMR solving
a time-dependent version of the advection equation, as suggested by Eq. (2.12).

For BiCGStab a similar effect is observed, however, a dispersion-like phenomenon is
also present; see Fig. 6. The residual is pushed into the direction ¢\ +¢, as well, however,
unlike LMR, the wavefront is not as sharp. It can be seen that the residual propagates in a
wave-like manner through the domain prone to dispersion. Note that the initial residual
is only non-zero on the left-most grid cells.

Importantly, since the residual propagates into the interior domain this results in
(ro,7c)—0 on line 9 of Algorithm 1. Consequently f—0, #. 1 —7.1. Additional multiplica-
tions by A only shift the residual even more, (¥,A#. 1) — 0 and « becomes undetermined
on line 13. Note, however, that since BiCGStab performs 2 MV per iteration, one might
expect the wave traveling in the €, +¢, to have crossed through the entire domain after
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Figure 5: Relative residuals for LMR plotted in the x—y plane for the model problem given by the parameters
in (4.2). White in these figures indicates a residual of exactly 0 at a given position. Here it can be seen that
the residual propagates in the direction of ii.

50 iterations. This does not seem to be the case, suggesting that only the LMR-part is
responsible for the wave propagation.

The effect of propagating residuals is the suspected cause of BiCGStab failing to con-
verge without a random 7, which can be seen by comparing Fig. 3(a) and Fig. 3(c). Note
that this reason is completely different from the issue due to BiCGStab failing for complex
eigenvalues which result from central difference discretization. Additionally, the prop-
agating residuals suggest that the LMR method needs O(M) iterations to get through
the first phase of convergence (the plateau in Fig. 7). It is suspected that this effect also
relates to the conjecture of [41] which states the first phase of convergence is determined
by the longest streamline for residual-minimizing Krylov subspace methods, in this case
2(M—2) cells. As it takes 2( M —2) iterations for the residual to propagate from x=0, y=0
to x=1, y=1, following only the grid cells in the direction of the advection velocity.
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Figure 6: Relative residuals plotted in the x—y plane for baseline BiCGStab with random 7 for the problem
described in (4.2) (F=ry breaks down). White in these figures indicates a residual of exactly 0 at a given
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BiCG part, one in the LMR part.
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4.5 Preconditioned BiCGStab

Since linear systems are typically solved using preconditioned iterations, several numer-
ical experiments using MATLAB’s BiCGStab, have been performed for a number of pre-
conditioners.

Specifically, we investigate if the use of a preconditioner can alleviate the conver-
gence issues of MATLAB’s BiCGStab, displayed in Fig. 2, in the regime of large Péclet
and small Damkohler numbers. MATLAB'’s BiCGStab was chosen as it supports the use
of functions as a preconditioner, and has a larger user base than our modified implemen-
tation of BiGCStab. Furthermore, our modified implementation converges for all Péclet
and Damkohler numbers without requiring a preconditioner.

These experiments use the same parameters as presented in Section 4.1, however with
M=256. Several convergence plots similar to the ones shown in Fig. 4 are presented. The
preconditioners used here are Jacobi, ILU(0) and a V-cycle geometric multigrid precondi-
tioner with a depth of 4 and Gauss-Seidel smoothing in the direction of the advection [42,
95]. The convergence plots of which are shown in Fig. 8. The results show that the multi-
grid is most efficient in terms of matrix-vector products, followed closely by ILU(0). Both
multigrid and ILU(0) converge especially quickly for strong advection, since in this limit
the system matrix becomes approximately lower-triangular. The Jacobi preconditioner
gives no significant speedup, if any.

Note, however, that the issues with MATLAB’s BiCGStab are not completely resolved
by adding a preconditioner. As can be seen in Fig. 8(h), the issue related to the deviation
between the estimated and the true residuals is still present, as can be seen by the sudden
increase in residual after the estimated residual has reached the tolerance of 10712,

Even though a good preconditioner does significantly lower the required amount of
matrix-vector products as expected, it does not provide a remedy for all convergence
issues. Both a good preconditioner and a robust iterative method are required for efficient
and reliable convergence.

5 Conclusions

As mentioned in the original reference of BiCGStab [14], there are many possible variants
of BiCGStab which are all equivalent in exact arithmetic, but may have different behavior
in finite precision arithmetic. In this paper we have reported on the reliability of different
implementations of BiCGStab and IDR for advection-diffusion-reaction (ADR) problems
with real eigenvalues of the discretization matrix.

First, a baseline BiCGStab implementation has been presented, for which it has been
shown that even for small matrices this variant can exhibit complications in converging
to a solution. Three modifications to the baseline BiCGStab algorithm have been imple-
mented, i.e., the choice of shadow residual 7, the reliable updating scheme and keeping
the solution with the smallest residual thus far.
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Figure 8: Comparison of the estimated residual as function of number of MV for MATLAB'’s BiCGStab with
various preconditioners with M =256. For Pe=10° ILU(0) and Multigrid both converge in less than 5 MV.

A model ADR problem has been set up and converted into dimensionless form. Using
this dimensionless form the entire parameter space of Péclet and Damkd&hler numbers
can be investigated. The ADR-equation has been discretized using the Finite Volume
Method in combination with the exponential scheme of [6]. Unlike the central difference
scheme, the exponential scheme yields a discretization matrix with real eigenvalues, even
for strong advection.

Since the eigenvalues are real, there is no improvement in reliability of BiCGStab(2)
compared to BiCGStab. MATLAB'’s implementations of BiCGStab and BiCGStab(2) per-
formed no better than the baseline BiCGStab algorithm. IDR(4) performed very well
for practically all Péclet and Damkohler numbers, clearly outperforming the modified
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BiCGStab implementations, in terms of the number of matrix-vector products for prob-
lems with large Péclet number. For roughly Pe >1 and Da < Pe MATLAB's solvers and
the baseline BiCGStab method do not converge. Choosing a random shadow residual, 7,
is essential in the numerical experiments for the reliability of BiCGStab starting from a
zero initial guess. It is hypothesized that this is due to the residual moving through the
domain, eventually leading to (#,7) — 0 and a breakdown of the BiCG part.

It is shown for matrices resulting from discretized ADR equations that the LMR
method can be interpreted as a time integration method for the advection equation
subject to homogeneous Dirichlet boundary conditions. This is explicitly shown for a
one-dimensional advection equation in Section 2.4. However, since the investigated dis-
cretization matrices are positive definite implying w >0, this time stepping property also
holds for these problems. Furthermore, it is demonstrated that BiCGStab shows similar
behavior in numerical experiments. It is suspected that the effect of the residual moving
as a wave in the advection direction is related to the conjecture in [41], where it was ar-
gued that the first phase (initial plateau where the residual remains relatively constant)
lasts as long as the longest streamline takes to traverse the grid with the flow for residual-
minimizing Krylov subspace methods.

The reliable updating scheme included in BiCGStab adds an extra step to ensure the
computed residual truly achieves the prescribed tolerance. As long as the solver con-
verges to the tolerance required, there is no benefit in storing the best solution thus far. If
the method stalls the effect is still not significant in our experiments.

We recommend to modify BiCGStab with a random shadow residual, in conjunction
with a reliable updating scheme. Most notably if the initial residual is sparse, for example
when it is only non-zero near the boundaries of the domain. Moreover IDR(4) is an
excellent candidate, achieving the tolerance for a large number of cases. Additionally,
for strong advection, IDR(4) uses significantly less matrix-vector products compared to
BiCGStab.

In practice one cannot know beforehand which linear solver is optimal for a given
problem. We have shown in this paper that even specific implementations of BiCGStab
have a significant impact on convergence. For example, the seemingly arbitrary param-
eter ¥ has a major impact on the robustness of the solver in our experiments. This obser-
vation complicates the applicability of specific iterative methods even further. Neverthe-
less, we conclude, based on the numerical results, that modified BiCGStab and IDR(S)
would be preferable over standard BiCGStab for ADR problems. A practical benefit of
the modified BiCGStab variant presented here is that choosing a different 7 is trivial to
implement in existing codes and should be sufficient to largely mitigate issues relating to
the vanishing of (7,7 1).

In this paper, the analysis is only applied to the linear advection-diffusion-reaction
equation. However, for nonlinear problems such as the nonlinear ADR equation and the
Navier-Stokes equations a linear system is still obtained after linearization using Newton
or Picard iteration. Alternatively, one may choose to linearize before discretizing, for
example by linearizing the source term of the ADR equation which was considered in
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this paper. We believe that even for nonlinear PDEs the results shown here can still be
relevant.

Acknowledgments

This research is supported by the Netherlands Organisation for Scientific Research
(NWO), which is partly funded by the Ministry of Economic Affairs, and The Nether-
lands eScience Center in the framework of the JCER program. The Netherlands eScience
Center is funded by NWO and SURF.

Appendices

A Derivation LMR stepsize and residual

In this appendix we show that the stepsize w = 3 under certain conditions; additionally
we derive an expression for the k-th residual generated by the LMR algorithm for the
problem given in Section 2.4.

First, the stepsize w in the LMR algorithm is given by

_ (Arr)
w:= W, (A1)

where the matrix A is the tridiagonal Toeplitz matrix
A:=tridiag(—1,1,0). (A.2)

With these definitions, we will show that w =3 for any vector r with last element equal
to zero given this specific matrix A. We start by computing the numerator in (A.1);
N N , N
(Arr) =Y (A=Y (Lagr)r (A3)
1°j=1

i=1 i=

then by splitting off the first term of the sum over i, and substituting the values for the
elements of A we arrive at

N N N ) N
Zaljrjrl + Z ( Zaiji’]‘) ri=r{+ Z(—T’i,l —|—7’l‘)7’l‘. (A4)
=1 i=2 \j=1 i=2

The expression in (A.4) can be seen as the squared 2-norm of r with a rest term, since after
expanding the brackets it is equal to

N N N-1
Yorr=Y riari=|rl]P= Y ririaa. (A.5)
i=1 i=2 i=1
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The denominator in (A.1) is computed via a similar procedure;

N N N 2
(ar,an) =Y (an?=Y" (L), (A.6)
i=1 "j=1

i=1

after again splitting off the first term of the i-sum and substituting the values for A we

obtain
N > N N
(Z”ljrj> +Z<Z”ijrj) —71+Z —rii1+1i)% (A7)
=1 i=2 \j=1

Then, expanding the squared term in the summation and relabeling the index, the de-
nominator becomes

N N N N-1
r%—kZ(r%—i—riz_l —2riqri) = Her—l—Zriz_l —227’1‘717’1‘ :2HrH2—r%\,—2 Z ritiv1- (A.8)
i=2 i=2 i=2 i=1

By dividing (A.5) and (A.8) it is clear that
w=3, if ryv=0. (A.9)

Second, we derive an expression for the k-th residual produced by LMR starting from an
initial residual of e;. The LMR recurrence for the residual, given w = %, is the following

= (I-wA)rF = (I-1A4)r". (A.10)
Next, the matrix B is introduced as
B:=(I—3A) = 1tridiag(1,1,0). (A.11)

Note that the matrix B can be interpreted as a smoothing matrix, taking two neighbouring
elements of a vector and computing the average value. We then define

rk:=0 forall k, (A.12)

and a special case of the binomial coefficients as

(8) =1. (A.13)

Then for any vector ¥ the LMR recurrence (A.10) gives the recurrence
=10k ), i=1,2,--- N, (A.14)

We will prove that the k-th residual

r’-‘:< k1>(%>k, i=12, k+1<N, (A.15)
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with the other elements given by
=0, i>k+1. (A.16)

To prove (A.15) holds for any k, we use a proof by induction; we start by showing the
base case k=0, then for a given k we derive the case for k+1.
Starting from the first residual vector ' =e;;

W=1, =0, i>1 (A.17)
The LMR recurrence yields the next residual as

rlzBelz%[l 10 .0, (A.18)

which agrees with (A.15). Next, we have to show that for any k,i

k+1
r5{+1:<1j1>(%)k+1/ Z:1/2//k"|_2<1\] (A19)

Substituting rf from (A.15) into the recurrence (A.14) yields

k k :
Pt =) =3 [<1—1> (2" + <Z._2> (%)k} , =12, k+2<N.  (A20)

This can be rewritten to

= [(if1>+<:2>] (%)kchll)(%)kﬂ' =

Since (A.21) is equal to (A.15) after relabeling the index, it follows by induction that for
any k Eq. (A.15) satisfies the relation (A.10) completing the proof.

B Positive definite discretization matrices

A positive definite (PD) matrix has the property that xT Ax > 0 for all non-zero vectors
x [43, p. 140]. First, we start by showing if xT(AT+A)x >0 then xT Ax > 0. Second, we
show that the discretization matrices obtained for the one-dimensional ADR problem are
PD. Finally, we show that the two-dimensional and three-dimensional ADR problems
also yield PD discretization matrices.
First, note that
xTAx=(xTAx)T=xTATx, (B.1)

and consequently
xT(A+ AT x=2xT Ax, (B.2)
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therefore if
xT(A+AT)x>O, then, xTAx>0. (B.3)

Second, we show that Aﬁ—A; with A, given by (B.4) later, is PD. To do this, note that
the matrix A, +A£ is symmetric, therefore if all eigenvalues are positive then this matrix
is PD [39, p.246]. The matrix A+ A is given by

At AT = T tridiag(~B(Pe) — B(Pe), 2B(~Pe) +2B(Pe),~B(~Pe) ~B(Pe)),  (B.4)

which can be written as

A, +Al= % (B(Pe) +B(—Pe))tridiag(—1,2,—1). (B.5)
Since the eigenvalues of tridiag(—1,2,—1) are positive for any number of grid points,
Ay+AT is PD. It can be shown in a similar fashion that also for non-zero Damkohler
numbers discretization matrix is PD, since the addition of a non-zero Damkohler number
term only shifts all eigenvalues toward the right on the real axis.
To extend this derivation to the two-dimensional ADR problems, note that

(A:®A) =(I®A+A,]) =(I0A) +(A,21)7, (B.6)
and using the property (IQ A)T=I® AT [44, p. 40] it follows that
(AxBAy)+(ABA)) =10 (A +AL)+ (A +A)) L. (B.7)

By using corollary 4.2.13 of [39, p.246] it is known that if (A, +A£) is symmetric positive
definite (SPD) then I® (Ax+Al) is also SPD. Via a similar argument it follows that (A, +
AyT )®1 is also SPD. Since the element-wise sum of two SPD matrices yields another SPD
matrix, we conclude that (A, ®A,) is PD.

The matrices obtained from the three-dimensional discretization of the ADR equation
with the exponential scheme can be shown to be PD in a similar way.
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