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Abstract. We consider in this paper random batch interacting particle methods for
solving the Poisson-Nernst-Planck (PNP) equations, and thus the Poisson-Boltzmann
(PB) equation as the equilibrium, in the external unbounded domain. To justify the
simulation in a truncated domain, an error estimate of the truncation is proved in
the symmetric cases for the PB equation. Then, the random batch interacting parti-
cle methods are introduced which are O(N) per time step. The particle methods can
not only be considered as a numerical method for solving the PNP and PB equations,
but also can be used as a direct simulation approach for the dynamics of the charged
particles in solution. The particle methods are preferable due to their simplicity and
adaptivity to complicated geometry, and may be interesting in describing the dynam-
ics of the physical process. Moreover, it is feasible to incorporate more physical effects
and interactions in the particle methods and to describe phenomena beyond the scope
of the mean-field equations.

AMS subject classifications: 35Q92, 35Q84, 65N75
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1 Introduction

The charge distribution in dilute ionic solution around some charged surfaces is impor-
tant for a wide range of applications in electrochemistry [9, 22], biophysics [13, 29] and
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colloidal physics [14, 59]. In the so-called implicit solvent model, the solvent is mod-
eled by a continuum while the ions can be either modeled by charged particles or con-
tinuum distributions. When one models the ions using continuum distributions, some
partial differential equations (PDEs) can be proposed. Regarding the ion transport, the
Poisson-Nernst-Planck (PNP) equations [15,18,32,47] have been used to describe the non-
equilibrium processes in the dilute regime. The Poisson-Boltzmann (PB) equation, pro-
posed by Gouy [22] and Chapman [9] independently, can be viewed as the equilibrium
of the PNP equations. The PB equation is a typical implicit solvent model to describe the
distribution of the electric potential in dilute solution at equilibrium state when an object
with free charges inside is immersed into an ionic solution. Various numerical methods
have been proposed for the PNP and PB equations based on the PDE descriptions in lit-
erature [8,49], such as the finite difference method (FD) [11,18,20], finite element method
(FEM) [3, 10] and boundary element/integral method [6, 48].

While the continuum descriptions of the charge distributions can capture some mean-
field behaviors, the numerical simulations based on particles, or molecular dynamics
(MD) simulations, can potentially give more physics and give some dynamical properties
of the systems [19]. The MD simulations with electrostatic Coulomb interactions are
usually challenging due to the long-range nature. A lot of efforts have been made to
efficiently approximate the pair-wise interactions between charges in an electrolyte, such
as the fast multipole method (FMM) [23], the Ewald method [17], particle mesh Ewald
(PME) [12] and particle-particle particle mesh Ewald (PPPM) [50]. Recently, a stochastic
method, the Random batch Ewald (RBE) method [37], was proposed to simplify particle
simulations with Coulomb interaction. FMM can reduce the cost to O(N) per time step
but the implementation is nontrivial and the efficiency can be observed when the number
of particles is large. The Ewald-based methods like PPPM or RBE methods can reduce
the cost toO(N logN) orO(N) per time step, but the simulations take place in a box with
periodic boundary conditions (BCs). Another popular method for plasma simulations is
the particle-in-cell (PIC) method [58]. The PIC method considers the interaction between
particles by computing the electric field on a deterministic grid and coupling the charged
particles to the field, which has a cost ofO(N logN) using FFT. The collision-field method
[41] can be viewed as an improved version of PIC. It treats the inter-species collisions in
deterministic grid like PIC, while treats the intra-species collisions through the Langevin
equation. This method can ensure momentum and energy conservation exactly using
velocity corrections.

In this work, we would like to seek some particle methods for the PNP and PB equa-
tions using the random batch idea. In our particle methods, we simulate the overdamped
Langevin equations which are the microscopic descriptions corresponding to the PNP
equations so that the distributions in large time will solve the PB equation. In the sim-
ulation, each particle will interact with the others through the long-range Coulomb in-
teraction. Note that solving the PDEs using particle methods with interaction is often
expensive and the accuracy is lower compared with solving the PDEs directly. We em-
phasize the advantages of using particle methods in several aspects. On the one hand,
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particle simulation can render the transient phenomena and some features that the mean-
field PDEs cannot capture, though in this work our main focus is to solve the PDEs and
the equilibrium distributions. On the other hand, the particle method is meshfree so that
is insensitive to dimensionality and geometry. Moreover, thanks to the random batch
method (RBM) for interacting particle systems proposed by Jin et al. in [34], we can re-
duce the simulation cost per iteration to O(N) so that the computational cost can be
addressed to some extent. The RBM utilizes small but random batch idea so that interac-
tions only occur inside the small batches to reduce the computational cost per time step
from O(N2) to O(N) in a surprisingly simple way.

In the original setting, the charged object is immersed in some unbounded solution.
For the particle simulation, one must truncate the domain and prescribe a suitable BC
to the artificial surface. We choose to use the reflecting BC and will provide an error
estimate (Theorem 4.1) for the truncation in the PDE level which says the solution of the
truncated PB equation can well approximate the solution of the original PB equation.
For symmetric cases, the L1 error of the solution in the truncated domain with an extra
Neumann BC and the solution in the unbounded domain is exponentially decaying in the
truncated length. This means one only needs to simulate the ionic particles in a suitably
truncated domain.

In the mean-field PDE descriptions of the ionic solutions (i.e., the PNP and PB equa-
tions), only the effects of Coulomb interactions are present and the hard sphere potentials
like the Lennard-Jones potential [40] are ignored as the sizes of the particles tend to zero
in the mean-field limit. A naive particle method for the PNP and PB equations will thus
include the Coulomb forces only for the simulation. Such systems are often troublesome:
the positive charges and negative charges can merge if there is solely Coulomb interac-
tion. This brings difficulty to direct particle simulations. To address this issue, one often
includes the physical hard sphere potentials so that the simulation will be meaningful.
We remark, however, that if we solely want to capture the mean-field behaviors described
by the PNP and PB equations, the RBM can resolve the issue of attraction between oppo-
site charges so that we do not need the hard sphere potentials. The reason is that if we do
random reshuffling of particles at each time step, there is no possibility that two particles
stay in the same batch all the time. Hence, as the number of particles tends to infinity, the
simulation results can capture the mean-field behaviors. This means applying RBM to the
N-particle system with only Coulomb interaction can serve as a numerical particle method
for the PNP and PB equations. Of course, if one wants to do MD simulations where the
hard sphere potentials have physical impacts, one must consider the hard sphere poten-
tials and it is indeed relatively easy to include these effects in our particle method. Our
particle methods can thus also be used as MD simulation approaches with these effects
included. For instance, we conduct a colloidal example in Section 6.4, where the charge
reversal phenomenon can be observed in accordance with experiments [4], theories [25]
and MD simulations [37, 42], which can not be described by the mean-field PB equation.

Let us give here some comments on the random batch particle methods for the com-
parison to the aforementioned methods. PIC is traditionally a popular method for PB
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equation and plasma simulations. Compared to PIC, our particle methods discretize the
overdamped Langevin equations, and consider interactions between particles directly.
Therefore, various physical features can be added in the simulation, including the finite
size effect and additional interactions such as Lennard-Jones [40]. The random batch par-
ticle methods are based on Monte Carlo ideas so the accuracy may not be very high when
the time step is not small or the batch size is not big compared to PIC or FMM. However,
they are mesh-free so that they are easy to implement, and the prefactor in the linear scal-
ing is smaller compared to FMM. Moreover, the random batch particle methods can be
better suited for parallel computation. In fact, the super-scalability based on the random
batch idea has already been confirmed in the RBE for MD [45].

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
PNP and PB equations from a microscopic point of view and some basic setup. In Section
3, we present an approximate model by truncating the domain and we obtain an error
estimate in Section 4, which demonstrates that the solution of the approximate PB equa-
tion converges exponentially to the solution of the original PB equation in some special
cases. In Section 5, we explain the details of the random batch particle methods for the
PNP and PB equations in a truncated domain and address several important issues in im-
plementation. Numerical examples are given in Section 6, which show the effectiveness
of the random batch particle methods in solving the PNP and PB equations. Concluding
remarks are drawn in Section 7.

2 The PNP and PB equations

In this section, we first give a brief derivation of the PNP and PB equations starting from
the Langevin equation describing the motion of the microscopic particle. Then we per-
form nondimensionalization for them.

2.1 The mathematical setup

Consider an object C ⊂R
d with some free charges inside, immersed in some electrolyte

solution Ω with J ionic species. Here, the object C could be a macromolecule or the solute
in solvent. It could also be a cell (like a neuron) in the tissue fluid. In this setup, Ω=R

d\C̄ .
Let ρ f be the distribution of charges inside C which we regard as given in our considera-
tion. Denote Γ= ∂C, the boundary of C. This is either the macromolecule/solvent-solute
interface or the membrane of the cell. Later, we will generally call this the “interface”. We
will also assume that the interface Γ has a fixed shape and the ions can not go through it.
Then the ions will concentrate close to the interface and form a screening layer in several
Debye lengths. The setup is illustrated in Fig. 1.

We assume the dielectric constant does not change too much from inside to outside
of C, so we will assume the dielectric constant ε is the same in R

d throughout this work
to illustrate our particle methods. Note that this assumption is reasonable for the cell
immersed in tissue fluid but quite restrictive for the solvent-solute models. However,
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Figure 1: Illustration of the domain.

for the solvent-solute models, the apparent surface charge is often known like the colloid
immersed in a solution. Hence, one can equivalently use an effective ρ f with the same
dielectric constant inside C. In some applications, the effects of a different dielectric con-
stant inside C should be considered in detail. For these cases, we need to make use of
the image charge method to apply our particle methods [7,60]. See Appendix A for some
discussions on the effects of different dielectric constants.

In this work, the finite size of the ions outside C is considered negligible, so the ions
can be treated as point charges. For a typical ionic particle Xj of the j-th species (1≤
j≤ J) with valence zj, it is subject to the electric field and collides with other particles
and molecules of the solvent. We assume the electrolyte is dilute so that the collision
between particles and collision with the solvent molecules are modeled by friction and
white noise. Then the motion of Xj is described by the overdamped Langevin system

dXj =−
1

γ
∇(zjeΦ)dt+

√
2DdB+dR. (2.1)

Here dXj comes from the friction term so that Xj ∈R
d is the location of the particle. e is

the electron charge, Φ is the total electronic potential, −zje∇Φ represents the electronic
force. D is the diffusion constant satisfying Einstein relation D=kBT/γ, where kB, T and
γ denote the Boltzmann constant, the absolute temperature and the viscosity coefficient
respectively. Note that here [B]=

√

[t], where [·] represents the dimension, (the scale of

time [t] is chosen as L2
c

D in the next subsection), this gives B(t)=
√

[t]B̃
(

t
[t]

)

with B̃(·) being

a standard Brownian motion. Furthermore, R(t)∈R
d is the reflecting process associated

to Xj which prohibits Xj from crossing the interface. Then Xj(t) is a Ω̄-valued process
and R(t) satisfies

R(t)=
∫ t

0
n(Xj)d|R|s, |R|t =

∫ t

0
1Γ(Xj)d|R|s. (2.2)

Here, n(Xj) denotes the outward unit normal to Γ at the point Xj ∈Γ, R(0)=0, and |R|t
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is the total variation of R(t) on [0,t], namely, |R|t = sup∑
n
k=1 |R(tk)−R(tk−1)|, where the

supremum is taken over all partitions 0≤ t0 < t1< ···< tn = t.
The reflecting stochastic differential equation (RSDE) (2.1)-(2.2) is also called Sko-

rokhod SDE. Finding the solution pair (Xj,R) to the RSDE is the well-known Skorokhod
problem, which was pioneered by Skorokhod in [56], where the reflecting process in
a half-line [0,∞) was taken into account. Later on, Tanaka [57] considered the multi-
dimensional case in a convex domain. Lions and Sznitman [46] considered more general
domains satisfying admissibility conditions. At the discrete level, RSDE can be solved
by some standard numerical methods [51, 55], which combine the widely used Euler-
Maruyama scheme and some reflecting techniques.

Next, we turn to the continuous description. Let ρj be the macroscopic species density
of the j-th species in Ω (outside the C). By Itô’s formula, ρj corresponding to systems
(2.1)-(2.2) is governed by the Nernst-Planck equation























∂tρj =∇·
[

D
(

∇ρj+
zje

kBT ρj∇Φ
)]

, x∈Ω, t>0,

ρj|t=0=ρ0,j, x∈Ω,
〈

D
(

∇ρj+
zje

kBT ρj∇Φ
)

,n
〉

=0, x∈Γ,

(2.3)

coupled with the Poisson equation for the total electronic potential Φ






















−ε∆Φ= eρ f , x∈C,

−ε∆Φ=
J

∑
j=1

zjeρj, x∈Ω,

[Φ]
∣

∣

Γ
=0, [∇Φ·n]

∣

∣

Γ
=0.

(2.4)

Eq. (2.4) is derived from Gauss’s law. Here, ε= ε0εr is the dielectric constant both inside
and outside the C, n is the outward unit normal of Γ (pointing to Ω). The coupling of
the Nernst-Planck equation (2.3) and the Poisson equation (2.4) is the well-known PNP
system.

The stationary distribution of Eq. (2.3) has the form of

ρj = cj exp

(

− zje

kBT
Φ

)

with cj a positive constant. Provided the system satisfies the electroneutrality condition

J

∑
j=1

zjρ
∞
j =0,

where ρ∞
j is the far field concentration, one has Φ(x)→0 as |x|→∞ and thereby cj =ρ∞

j .

Hence, the stationary species density is given by the Boltzmann distribution

ρj =ρ∞
j exp

(

− zje

kBT
Φ

)

, j=1,··· , J. (2.5)



L. Li, J.-G. Liu and Y. Tang / Commun. Comput. Phys., 32 (2022), pp. 41-82 47

Consequently, the steady state Poisson equation becomes


















−ε∆Φ= eρ f , x∈C,

−ε∆Φ=
J

∑
j=1

zjeρ∞
j exp

(

− zje

kBT
Φ

)

, x∈Ω,

[Φ]
∣

∣

Γ
=0, [∇Φ·n]

∣

∣

Γ
=0, Φ(x)→0 as |x|→∞.

(2.6)

This is the so-called PB equation.

2.2 Nondimensionalization

Denote Lc as the diameter of C and ρc as the characteristic concentration. Introduce the

Debye length defined by λD =
√

εkBT
e2ρc

and a parameter ν=
( λD

Lc

)2
. Then, one can rescale

the variables x̃= x

Lc
, t̃= Dt

L2
c
, let C̃={x̃∈R

d : x̃Lc∈C}, Γ̃= ∂C̃ , Ω̃=R
d\C̃ and introduce the

following dimensionless quantities

Φ̃=
eΦ

kBT
, ρ̃j =

ρj

ρc
, ρ̃∞

j =
ρ∞

j

ρc
, ρ̃ f =

ρ f

ρc
, ρ̃0,j =

ρ0,j

ρc
.

For notation convenience, the tildes over all quantities are dropped from now on.
For simplicity, we only consider the symmetric monovalent electrolyte (we also con-

sider the asymmetric case in a numerical example) throughout this paper, i.e. J=2, j=±,
z+=1, z−=−1. The dimensionless PNP system for two species reads



















































∂tρj =∇·
(

∇ρj+zjρj∇Φ
)

, x∈Ω,

〈∇ρj+zjρj∇Φ,n〉=0, x∈Γ, j=±,

ρj|t=0=ρ0,j, x∈Ω,

−ν∆Φ=ρ f , x∈C,

−ν∆Φ=ρ+−ρ−, x∈Ω,

[Φ]
∣

∣

Γ
=0, [∇Φ·n]

∣

∣

Γ
=0, Φ(x)→0 as |x|→∞,

(2.7)

while the equilibrium distributions read

ρj =ρ∞
j exp

(

−zjΦ
)

, j=±.

Due to electroneutrality,
ρ∞ :=ρ∞

+=ρ∞
− .

Then, the nonlinear dimensionless PB system under investigation is














−ν∆Φ=ρ f , x∈C,

−ν∆Φ=ρ∞

(

e−Φ−eΦ
)

, x∈Ω,

[Φ]
∣

∣

Γ
=0, [∇Φ·n]

∣

∣

Γ
=0, Φ(x)→0 as |x|→∞.

(2.8)
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From formal asymptotic expansion, we know there is a boundary layer (the so-called
Debye screening layer) around Γ in the solvent region Ω whose thickness is ofO(√ν) [2].

3 Approximation by the truncated domain

As we mentioned, we seek particle methods that directly simulate the dynamics of the
ions. At the microscopic level, the underlying RSDE for (2.7) is given by







dXj =−∇
(

zjΦ
)

dt+
√

2dB+dR,

R(t)=
∫ t

0 n(Xj)d|R|s, |R|t =
∫ t

0 1Γ(Xj)d|R|s.
(3.1)

This is the dimensionless version of (2.1). Again, the reflecting process R associated with
Xj prevents Xj from going into C.

However, it is unrealistic to do the simulation in an unbounded domain. Due to no-
flux BC on Γ, we have

∫

Ω
ρ±dx =

∫

Ω
ρ∞e∓Φdx =+∞ as ρ∞ 6= 0, which means the total

positive and negative charges are infinite in the unbounded external domain. However,
we can only simulate finite number of particles in particle simulation. In this section, we
propose a model in the truncated domain for approximation.

3.1 RSDE with an artificial wall

Intuitively, consider, for example, NaCl solution in an unbounded container. Put a
charged object into it, a screening layer is gradually formed to neutralize the effective
surface charge on the interface, Cl− and Na+ away from the interface reach a dynamic
equilibrium. Physically, there is a big reservoir with inexhaustible Cl− and Na+. When
one looks at a ball BL={|x|<L} large enough, in order to ensure the conservation of den-
sity and momentum, the influx of ions should be equivalent to the outflux of ions through
∂BL in the sense of charges and heat. Although an ion would not change its direction at
once when it crosses ∂BL, there would be another ion from the reservoir which gets in-
side. Since we only care about the statistical behavior of Cl− and Na+, we can simply
bounce an ion back when it crosses ∂BL as if there was a virtual wall. This motivates us
to consider an approximate problem in a truncated domain and impose a reflecting BC in
the artificial wall. See Section 4 for mathematical justification of introducing a truncated
domain for the PB equation in symmetric cases.

Let BL = {|x|< L} be a sufficiently large ball containing C. Then the truncated do-
main is ΩL = BL\C̄ , see Fig. 2. As mentioned before, one can only simulate the motion
of charged particles in the truncated domain ΩL. Besides the reflecting process on the
inner boundary Γ, we also use a reflecting BC for ∂BL. Thus the approximate RSDE with
artificial wall reads







dXj =−∇(zjΦ̂L)dt+
√

2dB+dR,

R(t)=
∫ t

0 n(Xj)d|R|s, |R|t =
∫ t

0 1∂ΩL
(Xj)d|R|s, Xj(0)=X0,j∼ρ0,j.

(3.2)
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Figure 2: Illustration of the truncated domain. The yellow and blue regions denote the object C and the
truncated domain ΩL, while the black and red curves denote the inner boundary Γ and the artificial boundary
∂BL respectively.

Here, the subscript L is used to emphasize the truncated domain. The physical potential
Φ̂L should be determined by Gauss’s law, whose source consists of the free charges inside
C and the positive and negative charges in ΩL. Moreover, ∂ΩL = Γ∪∂BL, the reflecting
process R ensures the particle stay in ΩL.

3.2 The approximate PNP and PB equations with an artificial wall

At the macroscopic level, the Nernst-Planck equations in ΩL corresponding to (3.2) are


















∂tρj =∇·(zjρj∇Φ̂L+∇ρj), x∈ΩL,

〈zjρj∇Φ̂L+∇ρj,n〉=0, x∈∂ΩL,

ρj|t=0=ρ0,j, x∈ΩL,

j=±. (3.3)

The no-flux BCs ensure that the total positive charge Q+=
∫

ΩL
ρ+dx and total negative

charge Q−=
∫

ΩL
ρ−dx are conserved.

The total potential Φ̂L is generated by the free charges ρ f in C and the charges ρ± in
ΩL. Due to the assumption of uniform dielectric constant, one has

Φ̂L =(ρ f +ρ+−ρ−)∗Ψ. (3.4)

Here Ψ is the Coulomb potential given by

Ψ(x)=



















− 1
2ν |x|, d=1,

− 1
2πν ln|x|, d=2,

1
d(d−2)α(d)ν|x|d−2 , d≥3,

(3.5)

where α(d) = πd/2

Γ(d/2+1)
denotes the volume of the unit ball in R

d. Physically, since the

dielectric constants are the same in Ω and C, there is no induced charge on the inner
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boundary Γ as well as the artificial boundary ∂BL, so Ψ is the fundamental solution to
−ν∆Ψ=δ in the whole space. See Appendix A for more discussions on variable dielectric
constants.

The stationary solutions to (3.3) still have the form

ρ+=C+e−Φ̂L , ρ−=C−eΦ̂L .

Then the steady state Poisson equation reads

−ν∆Φ̂L =C+e−Φ̂L−C−eΦ̂L , x∈ΩL, (3.6)

C+, C− are to be determined.
For the original PB Eq. (2.8), ρ∞

+ = ρ∞
−= ρ∞. Otherwise, the net charge of the physical

system Q f +
∫

Ω
ρ+−ρ−dx is infinite since ρ+→ρ∞

+ , ρ−→ρ∞
− as |x|→∞, where Q f =

∫

C ρ f dx

is the total free charge in C. However, in the bounded case, it is not necessary that ρ+=ρ−
for all x∈∂BL. But we can impose

ρ+(x̄)ρ−(x̄)=ρ2
∞ (3.7)

at some point x̄∈ ∂BL by adjusting the total charge of positive ions. For example, in 1D,
we can require ρ+(L)ρ−(L)= ρ2

∞. While in 3D, we can pick a point x̄=(L,0,0) such that
ρ+(x̄)ρ−(x̄)=ρ2

∞. Thus, C+C−=ρ2
∞, and there exists a constant c such that

C+=ρ∞e−c, C−=ρ∞ec. (3.8)

Let ΦL = Φ̂L+c. We obtain


































−ν∆ΦL =ρ f , x∈C,

−ν∆ΦL =ρ∞

(

e−ΦL−eΦL
)

, x∈ΩL,

[ΦL]
∣

∣

Γ
=0, [∇ΦL ·n]

∣

∣

Γ
=0,

∂ΦL

∂n

∣

∣

∣

∣

∂BL

=n·∇
[(

ρ f +ρ∞e−ΦL−ρ∞eΦL
)

∗Ψ
]

,

(3.9)

which is the approximate PB equation in the truncated domain. We also remark that

∫

∂BL

∂ΦL

∂n
dSx=0 (3.10)

due to zero net charge at ∂BL.

4 Error estimate of the truncation for the PB equation

In this section, we will show in the PDE level the validity of the truncation in a special
case for the PB equation. In other words, the solution of the PB equation in the truncated
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domain ΩL converges to the solution of the PB equation in Ω exponentially fast. We
believe similar error control happens for the PNP equations but we leave this for future
investigation.

For the sake of simplicity, we consider the case where ρ f is radially symmetric. Hence,

− ∂Φ
∂n

∣

∣

Γ
= σf , where σf denotes the equivalent effective surface charge for the inside free

charge distribution ρ f . This means that σf is a given function totally determined by ρ f .
σf gives exactly the same field as ρ f for x∈Ω and it holds that ν

∮

Γ
σf dSx =Q f . Then the

PB equation in the external domain Ω can be rewritten as











−ν∆Φ=ρ∞

(

e−Φ−eΦ
)

, x∈Ω,

−∂Φ

∂n

∣

∣

∣

∣

Γ

=σf , Φ(x)→0 as |x|→∞.
(4.1)

For the truncated problem, zero electronic flux in ΩL implies the electronic field is tan-

gential. That is to say, (3.10) will reduce to ∂ΦL
∂n

∣

∣

∂BL
=0 in this case. Then, the approximate

problem in ΩL =BL\C̄ is











−ν∆ΦL =ρ∞

(

e−ΦL−eΦL
)

, x∈ΩL,

−∂ΦL

∂n

∣

∣

∣

∣

Γ

=σf ,
∂ΦL

∂n

∣

∣

∣

∣

∂BL

=0.
(4.2)

The well-posedness of (4.2) is guaranteed by classical elliptic theory [16]. By the way,
in 1D, the constraint on ρ f can be removed due to the symmetry of the electronic field

−∇Ψ= 1
2ν sgn(x).

Next, we will show (4.2) is a good approximation to (4.1) when the ball BL is large
enough. The approximate result here focuses on 1D and 3D. However, we believe a
similar convergence rate holds in other dimensions due to the exponential decay of ∇Φ.
This can be estimated by analyzing the Green function of the linearized equation by the
boundary integral method [27, 39] like 3D.

Theorem 4.1 (Convergence). (d=1&3). Let Φ be the solution of (4.1) and ΦL that of (4.2).
Then there exist constants C1>0, C2>0 independent of L such that

‖ΦL−Φ‖L1(ΩL)
≤C2e

− C1√
ν

L

for L large enough.

In order to show this, we need the exponential decay property of the solution to (4.1).

Proposition 4.1 (Exponential decay of Φ,∇Φ). (d=1&3). There exists a positive constant
R and generic constants C such that, for all |x|>R, the following estimates hold:
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• d=1:

|Φ(x)|≤
|σf |

√

2ρ∞/ν
e−
√

2ρ∞/νdist(x,Γ),

∣

∣Φ′(x)
∣

∣≤|σf |e−
√

2ρ∞/νdist(x,Γ).

• d=3:

|Φ(x)|≤ C

|x| e
− C√

ν
|x|

,

|∇Φ(x)|≤ C

|x|2 e
− C√

ν
|x|

.

This proposition is proved by comparing it to a linear equation, whose solution is
given by the boundary integral representation formula. So we need the following prepa-
rations: Lemma 4.1 and Lemma 4.2. The proof of Proposition 4.1 in 3D is left to Appendix
B. For 1D, it is quite similar and simpler, so it is omitted.

Lemma 4.1 ([39] Representation formula). If u is smooth in R
d\Γ and satisfies



















−∆u+cu= f , x∈Ω,

−∆u+cu=0, x∈C,

lim
|x|→∞

u=0, lim
|x|→∞

|∇u|=0.

Then

∫

Γ

{[

∂u

∂n

]

G(x−y)−[u]∂G(x−y)

∂ny

}

dSy+
∫

Ω
G(x−y) f (y)dy

=











u(x), x /∈Γ,

ui(x)+ue(x)

2
, x∈Γ.

(4.3)

Here, G is the Green function which is the solution to (cI−∆)G= δ. For x∈Γ, ui(x) and ue(x)
represent the limit from C and Ω, respectively. [u]=ui−ue.

The proof is similar to that in [39] and we omit the details.

Lemma 4.2 ([16] Comparison principle on unbounded domain). Let u∈C2(Ω)∩C(Ω̄).
Consider an elliptic operator L having the form

Lu=−∆u+c(u)u,



L. Li, J.-G. Liu and Y. Tang / Commun. Comput. Phys., 32 (2022), pp. 41-82 53

where c>0 is continuous. Then






















Lu≤0, x∈Ω,

−∂u

∂n
≤0, x∈Γ,

lim
|x|→∞

u(x)=0,

⇒ u≤0.

We also sketch a short proof of Lemma 4.2 in Appendix B.
Now, we are ready to prove the convergence result: Theorem 4.1. We only give a 3D

proof, the 1D case can be shown without the bridge of sup solution.

Proof of Theorem 4.1 in 3D. Construct a sup solution Φ+ which satisfies











−ν∆Φ+=ρ∞

(

e−Φ+−eΦ+
)

, x∈ΩL,

−∂Φ+

∂n

∣

∣

∣

Γ
=σf ,

∂Φ+

∂n

∣

∣

∣

∂BL

=ΣL,
(4.4)

where ΣL =
∥

∥

∂Φ
∂n

∥

∥

L∞(∂BL)
<+∞.

Let u1=Φ+−ΦL. According to (4.4) and (4.2), u1 satisfies










−ν∆u1+cu1=0, x∈ΩL,

−∂u1

∂n

∣

∣

∣

Γ
=0,

∂u1

∂n

∣

∣

∣

∂BL

=ΣL,
(4.5)

with c = 2ρ∞(sinhΦ+−sinhΦL)
Φ+−ΦL

= 2ρ∞ coshΦξu1
≥ 2ρ∞ bounded below on ΩL. Then by the

maximum principle, we obtain
u1≥0. (4.6)

Integrating Eq. (4.5) on ΩL yields

ν
∫

∂BL

ΣLdSx=ν
∫

∂ΩL

∂u1

∂n
dSx=

∫

ΩL

cu1dx.

It follows from the non-negativity of u1 that

‖u1‖L1(ΩL)
=

∣

∣

∣

∣

∫

ΩL

u1dx

∣

∣

∣

∣

≤ 2πL2ν

ρ∞

ΣL.

That is,

‖Φ+−ΦL‖L1(ΩL)
≤ 2πL2ν

ρ∞

‖∇Φ·n‖L∞(∂BL)≤
2πL2ν

ρ∞

‖∇Φ‖L∞(∂BL).

Similarly, let u2=Φ+−Φ for x∈ Ω̄L. Then,

‖Φ+−Φ‖L1(ΩL)≤
4πL2ν

ρ∞

‖∇Φ‖L∞(∂BL).
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Hence, one concludes from Proposition 4.1 that there exist positive constants R and C1,
C2 such that for L>R,

‖ΦL−Φ‖L1(ΩL)≤C2e
− C1√

ν
L
.

This completes the proof.

Theorem 4.1 demonstrates the exponential decay rate of L1 error of Φ and ΦL in trun-
cated domain ΩL. This verifies we only need to solve the PB system in ΩL.

5 The random batch particle methods

In (3.2), the law of particles is the positive or negative charge density distribution up to a
multiplicative constant. Hence, (3.2) can be regarded as the mean-field limit of the inter-
acting particle system. In this section, we investigate the interacting particle system and
state three essential problems in solving it. We then propose some numerical methods to
obtain our random batch particle methods.

5.1 Interacting particle systems for the PNP and PB equations

In (3.2), the potential is the one generated by the mean-field distribution. We use N
particles that interact with each other through Coulomb interaction to approximate the
distribution, hoping that the empirical measures of positive and negative particles ρN

±
multiplied by total positive and negative charge Q± are the approximations to ρ±. That
is, in the N→∞ regime,

Q+ρN
+⇀ρ+, Q−ρN

−⇀ρ−,

where

ρN
+=

1

N+
∑

i∈I+

δ(·−Xi), ρN
−=

1

N−
∑

i∈I−

δ(·−Xi).

Here, the superscript i denotes the i-th particle, I+ = {i, zi = 1}, I− = {i, zi =−1} with
zi being the sign of the i-th particle. Let q be the absolute value of charge per particle.
Then, the numbers of positive and negative charges are N+ = Q+/q and N− = Q−/q
respectively. The total particle number is N = N++N−. Denote |Q|= Q++Q− as the
total absolute charge in ΩL, we have |Q|=Nq. Note that the ’particle’ here can be either
’numerical particle’ or ’physical particle’.

Let

F=−∇Ψ, E f =ρ f ∗F,

so that F= x

dα(d)ν|x|d is the Coulomb repulsive force and E f is the electronic field generated

by ρ f . Then, the above interpretation implies that we can approximate the self-consistent
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RSDE (3.2) through the interacting particle system















dXi = ziE f (X
i)dt+ ∑

k:k 6=i

zizkqF(Xi−Xk)dt+
√

2dBi+dRi, i=1,··· ,N,

Ri(t)=
∫ t

0
n(Xi)d|Ri|s, |Ri|t =

∫ t

0
1∂ΩL

(Xi)d|Ri|s, Xi(0)=Xi
0.

(5.1)

Here {Xi}N
i=1 are the trajectories of N particles and the particles from all species are num-

bered together. {Bi}N
i=1 are N independent d-dimensional Brownian motions and {Ri}N

i=1
are reflecting processes associated with {Xi}N

i=1. The initial data {Xi
0}i∈I± are indepen-

dent, identically distributed (i.i.d.) random variables with probability density function
ρ0,±.

Next, we point out three essential issues in solving the N-particle system (5.1).

The first one is unphysical attraction. Intuitively, as N→∞, (5.1) will approximate
(3.2), and this is the so-called mean-field limit. In fact, if the force field F is regular, such
mean-field limit can be justified rigorously. For the interacting particle system (5.1) with
finite N particles, however, there is some probability that two opposite particles attract
each other. When a positive and a negative charge meet, they cancel each other and there
is an energy jump (the interaction energy is frozen and set to zero). This is a problem
related to the N-particle system (5.1), which does not arise in the N→∞ limit. In fact, in
the N→∞ limit, each particle carries infinitely small charge and this cancellation will not
affect the continuum interaction energy.

A possible way to deal with this issue is to introduce hard sphere potential as in the
physical model with finite number of ions. The hard sphere potential due to finite size
effect will avoid the unphysical attraction and cancellation. Likewise, we can add hard
sphere potentials in the N-particle system (5.1). The Lennard-Jones potential [40]

φ(x)=4ǫ

[

(

σ

|x|

)12

−
(

σ

|x|

)6
]

, (5.2)

where ǫ is the depth of the potential well and σ is the finite distance at which the inter-
particle potential is zero, is usually used. As a consequence, the interacting particle sys-
tem becomes

dXi = ziE f (X
i)dt+ ∑

k:k 6=i

zizkqF(Xi−Xk)dt− ∑
k:k 6=i

∇φ(Xi−Xk)dt+
√

2dBi+dRi. (5.3)

In the mean-field limit N→∞, the parameters ǫ and σ will vanish and the mean-field limit
of (5.3) is then (3.2). Hence, (5.3) can be used for the N-particle computation. Meanwhile,
as the hard sphere potential does not play its role in the mean-field limit, we do not need
the hard sphere potential if we aim to capture the mean-field behaviors only, as long as
we can find a way to tackle the attraction issue. We will see this as a byproduct of RBM
in Section 5.2.2.
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The second issue for (5.1) or (5.3) is the singularity of the forces which brings in nu-
merical stiffness. We will discuss how to resolve it using time splitting strategy in Section
5.2.2 or kernel splitting strategy in Section 5.2.3.

What matters most is the computational cost. Direct simulation of (5.1) or (5.3) is ex-
pensive due to the interaction term. Solving it requiresO(N2) operation per time step. As
discussed in the introduction, there are several strategies to resolve this, and some typical
methods include the FMM or the PIC. The FMM and PIC could have better accuracy with
O(N) orO(N logN) cost, but the prefactor in the linear scaling could be large. We choose
to apply the random batch method (RBM) in [34] to (5.1) or (5.3), which is also O(N) but
has smaller prefactor in the linear scaling. The reasons include the simplicity for imple-
mentation and better scalability in parallel computing (as the random-batch based RBE
method demonstrates in [45]). Moreover, compared to PIC, such particle methods allow
the incorporation of more physical effects. Note that the random batch method is based
on the Monte Carlo ideas, so the accuracy is not very high if the step size is not very small
and batch size is not very big. However, when the accuracy requirement is not very high,
it can still potentially have much less CPU cost ( [34, 36, 37]). Also, RBM will introduce
additional noise due to the randomness but this can be controlled by the interaction with
the heat bath in the Langevin equations. The comparison between the RBM strategy and
the traditional methods has been thoroughly discussed in [34, 36, 37, 45].

Below, we briefly introduce the RBM strategy and then discuss how to implement the
RBM strategy for our systems to turn into practical random batch particle methods in
Section 5.2.

5.2 Random batch particle methods for the PNP and PB equations

5.2.1 A brief introduction to the RBM

Pick a time step τ > 0 and define the time grid tm := mτ. On each time sub-interval
[tm−1,tm), RBM [34, 36] randomly divides the N particles into n small batches with batch
size p (p≪N) and interact them within each batch. For the next time step, one reshuf-
fles and forms a new set of batches, and repeats the process. Note that the set of random
batches can be obtained inO(N) cost using the random permutation so that the computa-
tional cost per time step is remarkably reduced from O(N2) toO(pN) per time step. The
idea used to fasten the evaluation of interacting force shares a lot of similarities with the
Direct Simulation Monte Carlo method [5, 54] based on binary collisions for Boltzmann
equation and its adaptation for mean-field equations of flocking dynamics using stochas-
tic binary interactions [1]. RBM has been investigated theoretically in [33,35], and already
has a variety of applications in, for example, efficient sampling [43,44], MD [37,45], flock-
ing models [26] and quantum systems [21, 38].

The original version of RBM in [34] was for indistinguishable particles, but it was
then extended to interacting particles with disparate species and weights [35]. In our
case, the particles have different charges so we will apply the version in [35], which will
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be explained briefly here. Consider the first order interacting particle system

dXi =b(Xi)dt+
1

N−1 ∑
k:k 6=i

mkFik(X
i,Xk)dt+σdBi , i=1,··· ,N. (5.4)

For each time interval [tm−1,tm), RBM solves the following SDE instead

dXi =b(Xi)dt+
1

p−1 ∑
k∈C(m)

θ(i)
:k 6=i

mkFik(X
i,Xk)dt+σdBi . (5.5)

Here, C(m) :={C(m)
ℓ

:ℓ=1,··· ,n} denotes the random batches on [tm−1,tm), and the batches

will be renewed at next time grid point. θ(i) indicates the index ℓ such that i∈C(m)
ℓ

. The
cost is clearly O(pN) per time step for the new system since interactions only take place
inside small batches.

Let us briefly explain why RBM works here. Define the fluctuation of the random
force on particle i by

χi=
1

p−1 ∑
k∈Cθ(i):k 6=i

mkFik(x
i,xk)− 1

N−1 ∑
k:k 6=i

mkFik(x
i,xk). (5.6)

It is proved in [35, Lemma 3.2] that

Eχi=0, Var(χi)=E|χi|2=
(

1

p−1
− 1

N−1

)

Λi, (5.7)

where

Λi =
1

N−2 ∑
j:j 6=i

∣

∣

∣
mjFij(x

i,xj)− 1

N−1 ∑
ℓ:ℓ 6=i

mℓFiℓ(x
i,xℓ)

∣

∣

∣

2

and the expectation is taken over random divisions for a given configuration (x1,··· ,xN).
Λi is independent of batch size p. This claims the random force is unbiased and the
variance is smaller for larger p. For a single time step, the cross-batch interactions are
completely neglected, which leads to an O(1) approximation error (i.e. χi=O(1)). How-
ever, since we do random reshuffling at each time grid, the random errors will roughly
cancel out over time as the random force is unbiased by (5.7). As the dynamics go on,
the time averaging effect owing to the law of large numbers (in time) could ensure the
convergence of RBM. Since the number of time intervals is like τ−1 so the strong error
would be like

√
Variance∗τ∼

√

τ/p by a typical Monte Carlo bound.

Since the configurations on the time intervals are not independent, the error bound
cannot be obtained from the law of large numbers directly. Nevertheless, it has been
shown in [35] that the strong error of RBM for regular interactions can be given by the
following result.
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Proposition 5.1 ([35, Theorem 3.1]). Let Xi and X̃i be solutions to (5.4) and (5.5) respec-
tively. Suppose the weights mi are bounded, the external force b is one-sided Lipschitz,
b,∇b have polynomial growth, and the interacting force Fik have uniformly bounded sec-
ond order derivatives. Then there exists C independent of N,p such that

sup
t≤T

J(t) :=sup
t≤T

√

√

√

√

1

2N

N

∑
i=1

miE
∣

∣Xi(t)−X̃i(t)
∣

∣

2≤C

√

Λ

p−1
τ, (5.8)

where Λ=maxi ||Λi||∞.

The error bound clearly agrees with the Monte Carlo interpretation above. Hence,
the strong convergence order is 1/2 and larger batch size p gives more accurate approx-
imation. A more important implication of the error estimate is that the error bound is
uniform in N so that the method is “asymptotic-preserving” under the mean-field limit
(see [34] for more discussions). Hence, we can choose batch size p=O(1) independent of
N and the method really scales like O(N).

If one cares about the distribution generated by RBM and the statistics of the particle
system (like density, pressure, etc), the weak error makes more sense. It has been shown
in [35] that the distribution generated by RBM is indeed close to the one generated by the
full particle system and the error in the weak sense is first order.

Proposition 5.2 ([35, Theorem 4.1]). Suppose the weights mi are bounded, the functions
b, Fik are C4 and have uniformly bounded derivatives up to order 4. Then, for any test
function ϕ∈C∞

b (Rd), the weak error is controlled as

sup
m:tm≤T

Em := sup
m:tm≤T

∣

∣

∣

∣

∣

1

N

N

∑
i=1

ωiEϕ(X̃i(tm))−
1

N

N

∑
i=1

ωiEϕ(Xi(tm))

∣

∣

∣

∣

∣

≤Cτ, (5.9)

where ωi=
Nmi

∑
N
k=1mk

, C=C(ϕ,T) is independent of N, τ.

Estimate (5.9) shows that the RBM system (5.5) converges weakly with first order to
the full system (5.4), in terms of empirical measures. Standard mean-field theory [30, 31]
says the empirical measure of N-particle system converges to the solution to the corre-
sponding Fokker-Planck equation as N→∞ and the invariant measure as t→∞. Hence,
we expect that we can use RBM to approximate the distributions of positive and negative
charges in the PNP and PB equations, though the rigorous proof is still open since the
Coulomb interaction is singular.
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5.2.2 An effective particle method for the PNP and PB equations

We now consider the RBM approximation to (5.1) to reduce the cost. The corresponding
RBM system reads: for t∈ [tm−1,tm) and i=1,··· ,N,























dXi = ziE f (X
i)dt+

N−1

p−1 ∑
k∈C(m)

θ(i)
:k 6=i

zizkqF(Xi−Xk)dt+
√

2dBi+dRi,

Ri(t)=
∫ t

0
n(Xi)d|Ri|s, |Ri|t =

∫ t

0
1∂ΩL

(Xi)d|Ri|s, Xi(0)=Xi
0.

(5.10)

Unlike the full particle system (5.1), in random batch particle system (5.10), if two op-
posite particles encounter (they are in the same batch and the distance between them is
zero) at a certain time step, it is of high probability that they get lost (they are in dif-
ferent batches) in the next time step. Owing to the random mini batch approximation,
two particles being stuck all the time is an impossible event, which does not have to be
taken care of. This means the attraction issue automatically disappears when using RBM.
Hence, system (5.10) is an effective interacting particle system for the mean-field behav-
ior described by the PNP and PB equations. Discretization of this will yield an effective
particle method for the PNP and PB equations.

The stiffness in (5.10) due to the singularity can be resolved well in the case p=2. In
fact, using the time splitting method, we may split system (5.10) into

dXi = (N−1)zizkqF(Xi−Xk)dt, i, k∈C(m)
ℓ

, (5.11)

dXi = ziE f (X
i)dt+

√
2dBi+dRi. (5.12)

Therefore, for each time step, we can solve (5.11) analytically and then apply stochastic
schemes to (5.12). This then gives an effective random batch particle method for mean-
field behavior described by the PNP and PB equations, as detailed in Algorithm 1.

Algorithm 1 An effective random batch particle method for the PNP and PB equations

1: for m in 1 : [T/τ] do

2: Divide {1,2,··· ,N} into n=N/2 batches randomly.

3: for each batch C(m)
ℓ

do

4: Update Xi,Xk(i,k∈C(m)
ℓ

) for t∈ [tm−1,tm) by the following:

5: Compute v= Xi−Xk

|Xi−Xk| , β= 2(N−1)zizkq
α(d)ν , η=

∣

∣Xi−Xk
∣

∣

d
+βτ.

6: If η≥0, X̃i = Xi+Xk+vη1/d

2 , X̃k = Xi+Xk−vη1/d

2 .

7: Otherwise, X̃i= X̃k = Xi+Xk

2 .

8: Solve (5.12) for Xi,Xk with initial data X̃i,X̃k.
9: end for

10: end for
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5.2.3 The kernel splitting strategy for general batch sizes and molecular dynamics

The time splitting method above clearly does not work for (5.10) when p≥3. Instead, we
consider the splitting strategy introduced in [28, 52] and decompose F into two parts:

F=F1+F2,

where F1 is regular with long-range, F2 is singular with short-range. In principle, the
splitting is kind of arbitrary as long as the stiff part is included in the short-range part. A
feasible splitting for the Coulomb force when d≥2 could be

F1=

{

fc, |x|< rc ,
x

dα(d)ν|x|d , |x|> rc ,
F2=

{

x

dα(d)ν|x|d− fc, |x|< rc ,

0, |x|> rc ,
(5.13)

where rc is the cutoff radius, fc =
rc

dα(d)ν|rc|d . Applying RBM to F1 only yields the split

RBM approximation to (5.1). With suitable rc, the summation in F2 can be done in O(1)
operation for each particle Xi. So, the overall cost is stillO(N) per time step. Clearly, this
kernel splitting approach for general batch sizes p≥3 can be used and the resulting RBM
system reads

dXi =
N−1

p−1 ∑
k∈C(m)

θ(i)
:k 6=i

zizkqF1(X
i−Xk)dt+ ∑

k:k 6=i

zizkqF2(X
i−Xk)dt

+ziE f (X
i)dt+

√
2dBi+dRi. (5.14)

Since the short-range attraction is computed fully in (5.14), the attraction issue may arise.
Hence, one would like to include the hard sphere potentials. Moreover, if one considers
the physical models, the Lennard-Jones potential (5.2) would be essential so one would
like to simulate (5.3). The kernel splitting strategy mentioned above can be used for
random batch particle methods corresponding to (5.3), either for MD simulations or for
numerical method of the PNP and PB equations. The resulting random batch particle
method is shown in Algorithm 2. Here, the decomposition (5.13) has been applied for
the Coulomb potential while Lennard-Jones potential has not been split due to the short-
range nature. Of course, if one desires, the Lennard-Jones potential may also be suitably
decomposed in applications. When used as a numerical method, our experience shows
that such kind of method is comparable to Algorithm 1 for solving PNP and PB equations,
see Section 6.2.

5.3 An iterative RBM-PB method with fixed ρ∞

In many applications, we only care about the equilibrium and what we often know is the
far field concentration ρ∞ in solution, rather than the total positive or negative charge Q±.
However, in the above methods, Q± is assumed to be known so that we know how many
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Algorithm 2 Split RBM for the PNP and PB equations

1: for m in 1 : [T/τ] do

2: Divide {1,2,··· ,N= pn} into n batches randomly.

3: for each batch C(m)
ℓ

do

4: Update Xi’s (i∈C(m)
ℓ

) for t∈ [tm−1,tm) by the following

dXi =
N−1

p−1 ∑
k∈C(m)

ℓ
:k 6=i

zizkqF1(X
i−Xk)dt+ ∑

k:k 6=i

zizkqF2(X
i−Xk)dt

− ∑
k:k 6=i

∇φ(Xi−Xk)dt+ziE f (X
i)dt+

√
2dBi+dRi.

(5.15)

5: end for

6: end for

positive or negative particles we need. So, we design an iterative algorithm to determine
Q+ with fixed ρ∞.

One can see from Fig. 3 that: with fixed Q f , the larger Q+ is, the larger ρ∞ will be.
Though plotted in 1D, it holds for higher dimensions. Since each particle shares charge
q, larger Q+ represents more positive particles. So we can run the particle simulation by
iteration without prior knowledge of the total positive charge Q+ and adjust the particles
adaptively.

Figure 3: The equilibrium distributions (red for ρ−, blue for ρ+) in 1D with fixed Q f =1. The truncated domain

is [1,10]. This shows ρ∞ is larger when Q+ is larger.
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In each iteration, first run RBM simulation for the PB equation with Q+ at present.
Then compute the densities ρ±(x̄) at some fixed point x̄∈∂BL. If ρ+(x̄)ρ−(x̄) is lower than
ρ2

∞, randomly add some positive and negative particles into the ensemble. Otherwise,
randomly kill some positive and negative particles. Since the free charge distribution
ρ f in C is unchanged, the total net charge Q+−Q− in ΩL should be fixed as −Q f , which
leads to a synchronous change of positive and negative particles. The iteration terminates
when condition (3.7) is satisfied within tolerance. After iteration, one can get the true Q+.
The process is illustrated in Algorithm 3.

Algorithm 3 Iterative RBM-PB method with fixed ρ∞

Input Initial distributions ρ0,±, truncated length L, free charge distribution ρ f , charge per
particle q, far field concentration ρ∞, a point x̄∈∂BL, tolerance δ.

1: Initial guess Q+, Err=1.

2: Generate N+= Q+
q samples from ρ0,+ and N−=

Q−
q =

Q++Q f

q samples from ρ0,−.

3: while Err>δ do

4: Run RBM simulation for PB with Q+.
5: Calculate the densities ρ±(x̄).
6: I = ρ+(x̄)ρ−(x̄)−ρ2

∞, error Err =
√

|I|, the approximate charge change △Q :=
α(d)Ld

2 Err. Then△N :=
⌊

△Q
q

⌋

,△Q′=q△N.

7: if I<0 then

8: Generate △N samples from ρ0,± and add them to the positive particles and
the negative particles respectively. Set Q+←Q++△Q′.

9: else

10: Remove△N samples from the positive particles and negative particles respec-
tively. Set Q+←Q+−△Q′.

11: end if

12: end while

Output Q+, ρ+, ρ−, ΦL.

In Algorithm 3, the bulk densities ρ±(x̄) are

ρ±(x̄)=
2N±(Dh)

α(d)hd N±
,

where Dh is a small half ball {x∈ΩL : |x− x̄| ≤ h} around x̄, N±(Dh) is the number of
positive or negative particles in Dh. Due to random fluctuation, the calculation of bulk
densities is not stable, thus the iteration may not converge. A direct way to avoid random
fluctuation is to increase particle number, but this is expensive. Another widely used
approach is time average, which is the average of densities of previous iterations after
reaching equilibrium.

An alternative way to adjust particles adaptively is to take the grand canonical en-
semble [53] into account. This will be explored in the future.
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6 Numerical examples

In this section, we give a 1D example and a symmetric 3D example to show that the
random batch particle methods can be successfully used as the numerical methods for
solving the PNP and PB equations. Then, a non-symmetric 3D example and a colloidal
example are given to illustrate the adaptivity to complicated geometry and complex phe-
nomenon respectively.

6.1 1D case

Consider a 1D example with C = (−R,R). Assume the free charge distribution inside
C is ρ f = ∑

K
i=1qiδ(x−xi), xi ∼U(−R,R), then the total free charge Q f = ∑

K
i=1qi. Out-

side C, the solution is symmetric 1:1 salt. As mentioned before, we truncate the ex-
ternal domain and only focus on the positive half ΩL = (R,L) due to symmetry. We
use −∂xΦL(R) = σf , ∂xΦL(L) = 0 as the BCs for the approximate PNP and PB equa-
tions. By the superposition principle, the effective surface charge for the right half

σf =E f (R)+Er(R)=∑
K
i=1

qi

2
1

2ν−
Q f

2 (− 1
2ν )=

Q f

2ν , where E f =∑
K
i=1

qi

2
1

2ν sgn(x−xi) is the ex-
ternal field for the right half domain, Er is the field generated by particles in solution

with total net charge −Q f

2 . The initial data for the PNP equations are chosen as uniform
distributions in (R,L) with c±=Q±/(L−R) for simplicity. We comment that the initial
distributions do not affect the equilibrium but will affect the dynamics. Besides, ΦL is
unique up to a constant for the PNP equations with Neumann BCs, we further impose
E(ΦL)=0 in computation.

Note that in the simulations, the particles can cross each other. This can be regarded
as a special case in 3D, where the distribution is homogeneous in the y,z directions so
that only the x direction is left. Particles are thus charge sheets in 3D so they can cross
each other freely.

Let ν=1, ρ f =∑
100
i=1qiδ(x−xi) with qi∼U(−3,3), R=1, L=15, Q+=1, q=1e−5. We show

the performance of RBM with batch size p= 2 and p= 100 and step size τ= 0.01. Since
the 1D Coulomb force F = 1

2ν sgn(x) is regular, no splitting strategy is needed. For the
dynamic problem, the reference solution is given by the conservative FD scheme of the
PNP equations. While for the equilibrium, the reference solution is given by Newton’s
iteration using FD to the PB equation. The comparison of distributions at different times
is in Fig. 4. We can observe that the RBM simulation results match well with the reference
solutions to both PNP and PB equations.

Next, we test the weak convergence of RBM. For a given test function f (x),
we compute the estimated expectation for positive and negative charges f̄±(t) =

1
N± ∑i∈I± f (Xi(t)). Define the Mean Square Error (MSE) over M independent repetitive
experiments

MSE±(t) :=
1

M

M

∑
m=1





f̄
(m)
± (t)−Ex∼ρ∗±(t)

f (x)

Ex∼ρ∗±(t) f (x)





2

.
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Figure 4: Comparison of RBM results with PNP at t=5,10 and with PB at t=40.

Here, m means the m-th experiment, ρ∗±(t) are the reference densities of the PNP equa-
tion, Ex∼ρ∗±(t) f (x)=

∫

ΩL
f (x)ρ∗±(t)dx. The weak error is measured via the square root of

average of the MSE of positive and negative charges

E(t)=

√

MSE+(t)+MSE−(t)
2

.

We use two test functions f1(x)= x2, f2(x)= exp
(

−(x−(L+R)/2)2/4
)

. Let ν=1, R=1,
ρ f =2δ(x), Q+=1, L=15, τ=0.01, N+=50,100,··· ,12800, M=100, the convergence results
are shown in Fig. 5. Note that at equilibrium, we also have the weak error with ρ∗± being
the solutions to the PB equation. It is obvious that the RBM methods with both p = 2
and p=25 are halfth-order in particle number N, which coincides with the Monte Carlo
convergence rate. Besides, we plot the CPU time per time step in the last column of Fig. 5,
which indicates O(N) computational cost clearly.

In former tests, we check the validity and convergence rate of RBM for PNP and PB
equations with the total positive charge Q+ given. Next, focus on the stationary problem
and consider the problem where ρ∞ is given instead of Q+ and test the iterative RBM-
PB method proposed in Algorithm 3. Given ρ∞ = 0.0218, fix ν = 1, R = 1, L = 30, ρ f =
1
2 δ(x− 1

2)+
3
2 δ(x+ 1

2), q=1e−4, δ=1e−5, τ=0.1, p=2, one test result is shown in Fig. 6.
After 9 iterations, the RBM simulation reaches the equilibrium state in comparison with
the reference result. This verifies that the efficient RBM method can also be applied to the
case where Q+ is unknown.

Moreover, this physical model (a charged object in some electrolyte solution) can be
regarded as a capacitor. The differential capacitance is defined by

C=
dQ f

dV
,

where V=Φ(R)−Φ(L) is the voltage. Fig. 7 shows it is feasible to measure the differential
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Figure 5: The weak error of RBM corresponding to PNP at t= 10 (left) and PB at t= 100 (middle) and the
cost of RBM(right) versus positive particle number N+.

Figure 6: Left: trajectory of ρ̄+; middle: trajectory of Q+; right: equilibrium distributions.

capacitance by iterative RBM-PB method under different scalings. The concentration of
the electrolyte solution, i.e. ρ∞, is set to be 0.0218.

6.2 3D spherical symmetric case

Assume the C is a ball centered at the origin with a free charge Q f at the center, i.e.

C = {x∈R
3 : |x|< R}, ρ f = Q f δ(x). As stated before, we simulate the particles inside a

sufficiently large domain ΩL ={x∈R
3 : R≤|x|≤ L}. Hence, the distributions of positive

and negative charges in Ω (outside C) are spherical symmetric. Denote r= |x|, consider
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Figure 7: Differential capacitance for 1D example with fixed ρ∞ =0.0218.

the approximate PNP equation in the radial axis































































∂tρ+=∂r

(

e−ΦL ∂r(eΦL ρ+)
)

+ 2
r e−ΦL ∂r(eΦL ρ+), r∈ (R,L),

∂tρ−=∂r

(

eΦL ∂r(e−ΦL ρ−)
)

+ 2
r eΦL ∂r(e−ΦL ρ−), r∈ (R,L),

e−ΦL ∂r(eΦL ρ+)=0, r=R,L,

eΦL ∂r(e−ΦL ρ−)=0, r=R,L,

ρ+(r,0)= Q+

4π(L−R)r2 , ρ−(r,0)= Q−
4π(L−R)r2 , r∈ (R,L),

−ν
(

∂rrΦL+
2
r ∂rΦL

)

=ρ+−ρ−, r∈ (R,L),

−∂rΦL(R)=σf , ∂rΦL(L)=0

(6.1)

and the approximate PB equation in the radial axis

{

−ν
(

∂rrΦL+
2
r ∂rΦL

)

=ρ∞(e−ΦL−eΦL), r∈ (R,L),

−∂rΦL(R)=σf , ∂rΦL(L)=0.
(6.2)

Here, σf =
1

4πR2ν
Q f due to symmetry.

We adopt the splitting strategies introduced in Section 5.2 to deal with the singular
Coulomb interaction. Here, we do RBM simulations with batch size p = 2 using time
splitting in Algorithm 1 and RBM simulations including Lennard-Jones potential with
batch size p=100 using kernel splitting in Algorithm 2. The reference solutions are also
given by the conservative FD scheme to the PNP Eq. (6.1) and Newton’s iteration to the
PB Eq. (6.2). Take ν=1, R=1, L=10, Q f =20ν, Q+=400, in RBM simulations q=4e−3,
τ=0.01, the cut-off radius is rc=0.05, the parameters in the Lennard-Jones are chosen as
ǫ=1e−6q, σ=0.01. The results are shown in Fig. 8. Again, we can conclude that RBM with
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Figure 8: Comparison of RBM results with PNP at t=1,10 and with PB at t=50.

Figure 9: The weak error of RBM corresponding to PNP at t=10 (left), to PB at t=50 (middle) and the cost
of RBM (right) versus positive particle number N+.

proper splitting strategies can be used as numerical methods for both time-dependent
PNP and stationary PB equations in 3D. Also, we can see that the simulation results with
or without Lennard-Jones potential are comparable. This verifies our discussions that the
use of random batch idea can avoid unphysical attraction in Section 5.

As in 1D case, we test the weak convergence of RBM. Let ν = 1, R = 1, Q f = 20ν,
Q+=400, L=10, τ=0.01, N+=200,400,··· ,6400, rc=0.05, σ=0.01, ǫ=1e−6q, M=100, the
convergence results are shown in Fig. 9. Similarly, the RBM methods with both p=2 and
p=10 including Lennard-Jones potential are halfth-order in particle number N, the cost
is O(N). In terms of computational time, RBM with p=2 is more efficient, so we prefer
time splitting RBM method (Algorithm 1) in real computation.

Similarly, given the ionic concentration ρ∞ of the electrolyte solution, one can com-
pute the differential capacitance using the iterative RBM-PB method (Algorithm 3) in dif-
ferent scalings. We take ρ∞ =0.005, R=1, L=10, q=1e−3, τ=0.01, ǫ=1e−5 and use the
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Figure 10: Differential capacitance for 3D spherical symmetric example with fixed ρ∞ =0.005.

time splitting RBM to sample from the equilibrium. To weaken the random fluctuation,
we collect the samples from 100 time steps after the system reaches the equilibrium state.
Therefore, we can use relatively small number of particles. The results for ν= 1 and 0.1
are shown in Fig. 10. It is clear that the differential capacitance can be well approximated
by RBM simulation for 3D spherical symmetric case.

6.3 3D non-symmetric case

In this example, we apply time splitting RBM to the non-symmetric case. Consider C
with a dumbbell-shaped interface

Γ={(x,y,z)∈R
3, (x2+y2+z2)2= a2(x2−y2−z2)+c}.

Take a = 4, c = 17, Γ is shown in Fig. 11. The free charge distribution is given by two
singular charges

ρ f =
2

∑
i=1

qiδ(x−xi), q1=20, q2=−1, x1=[2,0,0], x2=[−2,0,0].

Again, we simulate particles inside truncated domain ΩL=BL\C̄ and collect samples
from 100 different time steps after the equilibrium to get more samples. Let ν=1, L=10,
Q+=10, q=10−3, N+=104, τ=0.01. Since Γ is rotational symmetry about the x-axis, x1,x2

are located in the x-axis, then the positive and negative distributions are symmetric in the
yOz plane. The density distributions in the xOy plane are in Fig. 12 (similar to those in
the xOz plane). The same colorbar is used in the two subfigures. It is obvious that the
density of positive charges is higher around x2 due to attraction, while lower around x1

due to repulsion. Meanwhile, the density of negative charges is higher around x1 and
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Figure 11: The interface Γ.

Figure 12: The kernel density estimates in the xOy planes. Left: positive charges; right: negative charges.
The red pentagrams represent for the two singular free charges, the black curves denote the inner and outer
boundaries of the truncated domain.

Figure 13: The kernel density estimates in the r−φ plane. Left: positive charges; right: negative charges. The
red pentagrams represent for the two singular free charges.

lower around x2. In the spherical coordinates (r,θ,φ), one can observe non-symmetry in
the φ direction, see Fig. 13. As φ(x1)=0, φ(x2)=π, the negative charge density is lower
around φ=π while higher around φ=0. The attraction and repulsion are stronger around
φ=0 than φ=π because |q1| is much larger than |q2|. Furthermore, in order to show the



70 L. Li, J.-G. Liu and Y. Tang / Commun. Comput. Phys., 32 (2022), pp. 41-82

Figure 14: The isosurface of density distribution. Left: ρ+=8e−4; right: ρ−=8e−4.

distribution intuitively, we plot the isosurface ρ±=8e−4 in Fig. 14. This example shows
that random batch particle methods can be easily applied to complex geometry.

6.4 Charge reversal in salty environment

Though aiming at solving the PNP and PB equations using random batch particle sim-
ulations in this work, we emphasize that the random batch idea can be applied to other
situations. In this example, we consider the case when a highly charged colloid is put into
a solution containing trivalent counterions and monovalent coions. It has been observed
in experiments [4], theories [25] and MD simulations [37, 42] that the effective charge of
the colloid-ion complex becomes oppositely charged, which is the so-called charge rever-
sal phenomenon. This is because the multivalent ions form a strongly correlated liquid
on the surface of the colloid, so its charge can be overcompensated. Also, the inversion
can not be predicted by the classical PB theory [25].

Following the model setup in [42], we consider a spherical colloid of radius R= 50
with a point charge Q f =−300 at its center, in a solution of asymmetric 3 : 1 salt, i.e.,
z+ = 3, z− =−1. There are N+ = 200 trivalent counterions and N− = 300 monovalent
coions, which are treated as uniform-sized with radius Ro = 4. Thus, the total particle
number N = 500. The simulation domain is a spherical of radius L = 140. The colloid
is fixed in the center of the simulation domain. It is clear that the system is neutral, the
colloidal surface charge density is σf =

1
4πR2 Q f = 0.0095 due to symmetry. Particles of

charges qi and qj interact via the Coulomb interaction φij = ℓb
qiq j

rij
with Bjerrum length

ℓb =7.1 (a number due to scaling using suitable units). Furthermore, the repulsive force
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Figure 15: Charge reversal test. Left: radial density distributions of different ion types; right: integrated charge
against the distance r from the colloid center.

is modeled via the shifted Lennard-Jones potential

φLJ=











4ǫ

[

(

σ

r−roff

)12

−
(

σ

r−roff

)6
]

+ǫ, r−roff < rc,

0, otherwise,

where the offset is roff = R+Ro between colloid and ion and roff = 2Ro between ions. In
the simulation, ǫ=1, σ=1, rc =21/6σ.

Let τ=0.005, the results of random batch simulation with batch size p=50 are shown
in Fig. 15, the full particle simulation is used as the reference solution. From the left sub-
figure, we can see that the distribution of trivalent counterions is highly peaked around
the colloid due to strong attraction. In the right subfigure, the integrated charge distribu-
tion, which is the total charge within the distance r from the colloidal center, is plotted.
It clearly depicts that the charge of colloid is overcompensated up to 16 in about two ion
diameters from the colloidal surface. This tells that our random batch particle method
can effectively capture the charge reversal phenomenon.

As a comparison, we increase the particle numbers N± so that the charge a particle
carries is q±=Q±/N± 6=z±. In this case, the particle is numerical particle instead of phys-
ical particle. As N±→∞, the ion size tends to zero, the system arrives at the mean-field
regime, we can expect the simulation result gives an approximation to the PB equation
of asymmetric 3 :1 salt. Namely, the following PB equation in the radial axis















−ν
(

∂rrΦ+ 2
r ∂rΦ

)

=3ρ+−ρ−, r∈ (R,L),

ρ+=ρ∞e−3Φ, ρ−=3ρ∞eΦ,

−ν∂rΦ(R)=σf , ∂rΦ(L)=0.

(6.3)
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Figure 16: Integrated charge against the distance r from the colloid center. Comparison of RBM systems when
N=500 and N=5000.

The parameter ν in (6.3) is 1/(4πℓb) after rescaling. Increasing the particle number by 10
times, we can observe a transition from the charge reversal phenomenon to the monotone
PB regime in Fig. 16. The curves for N = 500 (N+ = 200, N−= 300) are exactly those in
the second plot of Fig. 15. When N=5000, the ions are assumed volumeless, i.e., Ro =0,
the parameters of φLJ are chosen as ǫ=1/100, σ=1/ 3

√
10, rc=21/6σ (we roughly took the

lengths by scaling like N−1/3 while ǫ by scaling like q2
± or N−2), the FD solution to the

PB Eq. (6.3) is used as reference.

This example shows that our random batch particle methods inherit the following
advantages of the MD simulations. First, some additional concerned physical effects like
the Lennard-Jones interaction can be conveniently incorporated into our methods, which
is not easy to be done in the PDE model. Second, while our methods can be used as nu-
merical methods for the PNP and PB equations in the mean-field scaling, they can capture
some interesting physics in MD simulations (like the charge reversal phenomenon) when
the scaling is far away from the mean-field regime. Hence, our methods are far beyond
being numerical methods for the PNP and PB equations.

7 Conclusions

In this paper, we proposed some random batch particle methods with O(N) cost per
time step for the PNP and PB equations using RBM. By direct particle simulation, we
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can keep track of the dynamics of the particle as well as the equilibrium. Meanwhile,
the particle methods are insensitive to dimension and applicable to complex geometry.
We do the particle simulation in a truncated domain and give an estimate saying that
such a truncation makes sense for the PB equation in the symmetric case. Two splitting
strategies are given to deal with the singular Coulomb potential. Also, it is feasible to
take Lennard-Jones potential into account for physical purpose.

Though we mainly illustrated the methods using the 1 : 1 electrolytes, the particle
methods can be easily extended to solutions with multi-ionic species. Besides, it is inter-
esting to do simulation for the problem with different dielectric constants in and outside
the interface Γ, as discussed in Appendix A.
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A Discussion about different dielectric constants

In this section, we discuss the effects if the dielectric constant ε inside C is different from
the one outside.

First of all, recall the classical electrodynamics theory [24]. By Gauss’s law,

ε0∇·E=ρF+ρp, ρp=−∇·P,

where ε0 is the dielectric constant in the vacuum, P is the induced electric field, E is the
total electric field, and ρF, ρp and ρF+ρp represent for the free charge distribution, the
induced charge distribution and the total charge distribution respectively. Introducing
the electric displacement vector

D= ε0E+P= εE

yields

∇·D=∇·(εE)=ρF .

In other words, the total field E is related to the free charge distribution if we put the
varying electricity inside. The effects of induced charge are included in ε.
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Suppose that ε is piece-wise constant inside and outside C, i.e.

ε(x)=

{

ε1, x∈C,

ε2, x∈Ω.

The interface condition on Γ is given by

n×(E2−E1)=0, n·(D2−D1)=0, (A.1)

where we assume there is no free surface charge on the interface. Here, E1, E2 and D1, D2

are the total electric field and the electric displacement on the interior and exterior side
of the cell respectively; n is the unit normal vector on the interface Γ pointing to Ω. This
means the tangential components of E are continuous on two sides of the matter, while
the normal components of E satisfy ε1E1 ·n= ε2E2 ·n. Hence, the Poisson equation in the
entire space for our problem reads



















−ε1∆Φ= eρ f , x∈C,

−ε2∆Φ= e
J

∑
j=1

zjρj, x∈Ω,

[Φ]
∣

∣

Γ
=0, [ε(x)∇Φ·n]

∣

∣

Γ
=0.

(A.2)

where ρ f is supported in C and ρj is supported in Ω. In order to solve (A.2), one needs to
find the fundamental solution of

−∇·(ε(x)∇Φ)=δ(x−x0), x0∈Ω. (A.3)

Clearly, the fundamental solution in Ω is not given by

Φ2(x)=







− 1
2πε2

ln|x−x0|, d=2,

1
d(d−2)α(d)ε2|x−x0|d−2 , d≥3,

any more. Suppose otherwise. It follows from [ε(x)∇Φ·n]
∣

∣

Γ
=0 that the solution to (A.3)

in C is

Φ1(x)=







− 1
2πε1

ln|x−x0|+C, d=2,

1
d(d−2)α(d)ε1|x−x0|d−2 +C, d≥3,

where C is an arbitrary constant. However, a simple computation shows that there does
not exist a C such that [Φ] = 0 on the interface Γ if ε1 6= ε2. Therefore, when we apply
RBM for variable ε cases directly, the interaction between two charges outside the cell
no longer has a simple formula. In this case, we may use the image charge method
to compute the interaction. For example, in [7], many dielectric objects with different
geometries are considered. In the case that the geometry is not a ball, the free charge
ρ f in C (macromolecule or cell) can be modeled by multiple balls and the corresponding
image charge method has been discussed in [60].
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B Some missing proofs

Proof of Lemma 4.2. Given x∈Ω. Since lim|x|→∞ u(x)=0, we have

∀ ǫ>0 ∃ L sufficiently large, s.t. x∈BL, |u(x
′)|<ǫ for |x′|∈∂BL.

Let ΩL =BL\C̄ . Then


















Lu≤0, x∈ΩL,

−∂u

∂n
≤0, x∈Γ,

|u|<ǫ, x∈∂BL.

By the maximum principle, u attains its nonnegative maximum on ∂ΩL.

If u attains its nonnegative maximum on x0∈ Γ, apply Hopf’s lemma, − ∂u
∂n

∣

∣

∣

x=x0

> 0,

this contradicts with − ∂u
∂n

∣

∣

Γ
≤ 0. Otherwise, u attains its nonnegative maximum on ∂BL,

so u(x)≤|u|∂BL
<ǫ.

By the arbitrariness of ǫ, u≤0.

Proof of Proposition 4.1 in 3D. Throughout this proof, we will denote any generic con-
stants as C, which may change from line to line.

STEP 1: Introduce a function of s∈R,

p(s)=







es−e−s

s
ρ∞, s 6=0,

2ρ∞, s=0.

Then p(s)≥2ρ∞ >0 is a continuous even function.

So (4.1) can be rewritten as











−ν∆Φ+p(Φ)Φ=0, x∈Ω,

−∂Φ

∂n

∣

∣

∣

Γ
=σf , Φ(x)→0 as |x|→∞.

Denote Σ f =‖σf ‖L∞(Γ)<+∞ and consider the linear problem











−ν∆Φ̄+2ρ∞Φ̄=0, x∈Ω,

−∂Φ̄

∂n

∣

∣

∣

Γ
=Σ f , Φ̄(x)→0 as |x|→∞.

(B.1)

By Lemma 4.2, Φ̄≥0.
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Let u±= Φ̄±Φ, then










−ν∆u±+p(Φ)u±=(p(Φ)−2ρ∞)Φ̄≥0, x∈Ω,

−∂u±

∂n

∣

∣

∣

Γ
=Σ f±σf ≥0, u±→0 as |x|→∞.

By Lemma 4.2, u±≥0. That is,
|Φ|≤ Φ̄, x∈Ω.

STEP 2: In order to express the solution Φ̄ of the exterior Neumann problem (B.1),
first construct the interior Dirichlet problem







−ν∆Φ̄+2ρ∞Φ̄=0, x∈C,

Φ̄= Φ̄e, x∈Γ.

Recall that for x∈Γ, Φ̄e(x) and Φ̄i(x) represent the limits from exterior and interior side.
Hence, [Φ̄]=0. Then, by the representation formula (4.3), we have

Φ̄(x)=
∫

Γ
q(y)G(x−y)dSy, (B.2)

where q=
[

∂Φ̄
∂n

]

and

G(x)=
e−
√

2ρ∞/ν|x|

4π|x| (B.3)

is the three-dimensional Green function.
As for x∈Γ,

∂Φ̄e

∂n
(x)=

∂Φ̄e

∂n
(x)+ ∂Φ̄i

∂n
(x)

2
+

∂Φ̄e

∂n
(x)− ∂Φ̄i

∂n
(x)

2
,

q satisfies

−Σ f =
∫

Γ
q(y)

∂G(x−y)

∂nx

dSx−
q(x)

2
.

Define a kernel k : Γ×Γ→R as

k(x,y)=2
∂G(x−y)

∂nx

(B.4)

and define an integral operator K by

K f (x)=
∫

Γ
k(x,y) f (y)dSy, x∈Γ. (B.5)

Then we are led to the Fredholm equation of the second kind:

(I−K)q=2Σ f . (B.6)
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From Lemma B.1, we know K is compact as operators in L2(Γ)→L2(Γ) and also in C(Γ)→
C(Γ). I−K is a Fredholm operator. Therefore, given Σ f ∈ L2(Γ), there exists a unique

q∈ L2(Γ) such that (I−K)q=2Σ f . Besides, since K is compact in C(Γ)→C(Γ), q∈C(Γ).

Hence, Φ̄∈C2(Ω)
⋂

C(Ω̄) from (B.2).
Now we are in a position to show the exponential decay of Φ̄. For all x∈Ω satisfying

|x|≥2sup
y∈Γ |y|, it follows from (B.2) that

|Φ̄(x)|≤‖q‖L2(Γ)

(

∫

Γ

e−2
√

2ρ∞/ν|x−y|
42π2|x−y|2 dSy

)

1
2

≤‖q‖L2(Γ)

√

|Γ| e
−
√

ρ∞/2ν|x|

2π|x| ,

where |Γ| is the area of Γ. Thus, there exists R1=2sup
y∈Γ |y| such that

|Φ(x)|≤ |Φ̄(x)|≤ C

|x| e
− C√

ν
|x|

, |x|>R1.

Besides, Φ∈L∞(Ω) as Φ̄∈C(Ω̄).

STEP 3: Look back to the original PB Eq. (4.1)

−ν∆Φ+2ρ∞Φ=2ρ∞(Φ−sinhΦ), x∈Ω.

Let f := 2ρ∞(Φ−sinhΦ)∈ L∞(Ω). Then, since Φ∈ L∞(Ω), there exists R2 large enough
such that

| f (x)|≤CΦ2≤ C

|x|2 e
− C√

ν
|x|

, |x|>R2. (B.7)

Next, by similar arguments with STEP 2, we show the exponential decay property of∇Φ.
Construct the interior Dirichlet problem







−ν∆Φ+2ρ∞Φ=0, x∈C,

Φ=Φe, x∈Γ.

Then [Φ]=0 and by the representation formula (4.3), we have

Φ(x)=
∫

Γ
q̃(y)G(x−y)dSy+

1

ν

∫

Ω
G(x−y) f (y)dy, (B.8)

where q̃=
[

∂Φ
∂n

]

. Similarly, we are led to the Fredholm equation of the second kind

(I−K)q̃=2(g+σf ) (B.9)

with g= 1
ν

∫

Ω

∂G(x−y)
∂nx

f (y)dy∈ L2(Γ). Therefore, there exists a unique q̃∈ L2(Γ) satisfying
(B.9).



78 L. Li, J.-G. Liu and Y. Tang / Commun. Comput. Phys., 32 (2022), pp. 41-82

Now we estimate the gradient of Φ. One can deduce from (B.8) that

∇Φ(x)=
1

ν

∫

Ω
∇xG(x−y) f (y)dy+

∫

Γ
∇xG(x−y)q̃(y)dSy. (B.10)

According to (B.3), one has

|∇xG(x−y)|≤
√

2ρ∞/ν|x−y|+1

4π|x−y|2 e−
√

2ρ∞/ν|x−y|. (B.11)

For x∈Ω satisfying |x|≥2R2, consider

I :=
∫

Ω

∣

∣∇xG(x−y) f (y)
∣

∣dy

=

(

∫

Ω1

+
∫

Ω2

+
∫

Ω3

)

∣

∣∇xG(x−y) f (y)
∣

∣dy := I1+ I2+ I3,

where Ω1 = {|x|/2≤|y|≤2|x|}, Ω2 = {|y|≥2|x|}, Ω3 = {|y|≤ |x|/2}∩Ω. Then, by (B.7)
and (B.11), one can obtain that

I1≤‖ f‖L∞(Ω1)

∫

Ω1

|∇xG(x−y)|dy≤ C

|x|2 e
− C√

ν
|x|(

2
√

ν−(2
√

ν+C|x|)e−
C√

ν
|x|)≤ C

√
ν

|x|2 e
− C√

ν
|x|

,

I2≤‖ f‖L1(Ω2)sup
Ω2

|∇xG(x−y)|≤C
√

νe
− C√

ν
|x|

C√
ν
|x|+1

|x|2 e
− C√

ν
|x|≤ C

√
ν

|x|2 e
− C√

ν
|x|

,

I3≤‖ f‖L1(Ω3)sup
Ω3

|∇xG(x−y)|≤C
√

ν
(

1−e
− C√

ν
|x|)

C√
ν
|x|+1

|x|2 e
− C√

ν
|x|≤ C

√
ν

|x|2 e
− C√

ν
|x|

.

For x∈Ω satisfying |x|≥R1, it follows from (B.11) that

J :=
∫

Γ
|∇xG(x−y)q̃(y)|dSy≤‖q̃‖L2(Γ)

(

∫

Γ
|∇xG(x−y)|2dSy

) 1
2

≤C

C√
ν
|x|+1

|x|2 e
− C√

ν
|x|

.

Therefore, there exists a large R=max{R1,2R2} such that for all |x|≥R,

|∇Φ(x)|≤ I

ν
+ J≤ C√

ν|x|2 e
− C√

ν
|x|

.

This completes the proof.

Lemma B.1. For smooth boundary Γ⊂R
2, the operator K defined by (B.3), (B.4), (B.5) is compact

both in B(L2(Γ)) and B(C(Γ)).
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Proof. For compactness in C(Γ)→C(Γ), it is similar to the Laplacian case, and see [27] for
the latter.

Now consider the compactness in L2(Γ)→ L2(Γ):

k(x,y)=2n(x)·∇G(x−y)=
−n(x)·(x−y)

2π

√

2ρ∞/ν|x−y|+1

|x−y|3 e−
√

2ρ∞/ν|x−y|.

Since Γ is smooth, n(x) is almost orthogonal to (x−y) for y close to x, there exists a
bounded continuous function c(x,y) such that

−n(x)·(x−y)= |x−y|2c(x,y).

Thus the kernel is weakly singular (behaves like |x−y|−1 as x→y).
For ε>0, let

kε(x,y)=
c(x,y)

2π

√

2ρ∞/ν|x−y|+1

|x−y|+ε
e−
√

2ρ∞/ν|x−y|, x,y∈Γ,

Kε f (x)=
∫

Γ
kε(x,y) f (y)dSy, f ∈L2(Γ).

Then kε∈L2(Γ×Γ), so Kε:L
2(Γ)→L2(Γ) is a Hilbert-Schmidt operator with norm ‖Kε‖HS=

‖kε‖L2 <∞, and hence compact.
Next, we estimate ‖Kε−K‖B(L2(Γ)). For smooth surface Γ, there exist n local charts

Di⊂R
2 and mapping ϕi, i=1,··· ,n such that

ϕi◦kε∼
Ci|u−v|+C′i
|u−v|+ε

=: k̄i,ε, ϕi◦k∼ Ci|u−v|+C′i
|u−v| =: k̄i, u,v∈Di.

Since f ∈L2(Γ), f̄i = ϕi◦ f ∈L2(Di). Define

K̄i,ε f̄i(v)=
∫

Di

k̄i,ε(u,v) f̄i(u)du, K̄i f̄i(v)=
∫

Di

k̄i(u,v) f̄i(u)du.

Let

gi,ε(u)=
Ci|u|+C′i
|u|+ε

1Bi
(u), gi(u)=

Ci|u|+C′i
|u| 1Bi

(u),

with bounded sets Bi⊂R
2 s.t. Di⊂Bi, i=1,··· ,n. Then,

K̄i,ε f̄i = gi,ε∗1Di
f̄i, K̄i f̄i = gi∗1Di

f̄i.

Using local charts, it suffices to consider the operators K̄i,ε, K̄i. Applying Young’s convo-
lution inequality, one has

‖(K̄i,ε−K̄i) f̄i‖L2(Di)
≤‖(gi,ε−gi)∗1Di

f̄i‖L2(R2)≤‖gi,ε−gi‖L1(R2)‖ f̄i‖L2(Di)
.
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This implies ‖K̄i,ε−K̄i‖B(L2(Di))
≤‖gi,ε−gi‖L1(R2)→ 0 as ε→ 0 by dominant convergence

theorem. Therefore,

‖Kε−K‖B(L2(Γ))≤
n

∑
i=1

‖K̄i,ε−K̄i‖B(L2(Di))
→0 as ε→0,

i.e. Kε→K in B(L2(Γ)) as ε→0. Hence, K : L2(Γ)→ L2(Γ) is a compact operator.
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