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Abstract. We review and compare different fluid-structure interaction (FSI) numerical
methods in the context of heart modeling, aiming at assessing their computational ef-
ficiency for cardiac numerical simulations and selecting the most appropriate method
for heart FSI. Blood dynamics within the human heart is characterized by active mus-
cular action, during both contraction and relaxation phases of the heartbeat. The effi-
cient solution of the FSI problem in this context is challenging, due to the added-mass
effect (caused by the comparable densities of fluid and solid, typical of biomechan-
ics) and to the complexity, nonlinearity and anisotropy of cardiac consitutive laws. In
this work, we review existing numerical coupling schemes for FSI in the two classes
of strongly-coupled partitioned and monolithic schemes. The schemes are compared
on numerical tests that mimic the flow regime characterizing the heartbeat in a hu-
man ventricle, during both systole and diastole. Active mechanics is treated in both
the active stress and active strain frameworks. Computational costs suggest the use of
a monolithic method. We employ it to simulate a full heartbeat of a human ventricle,
showing how it allows to efficiently obtain physiologically meaningful results.
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1 Introduction

The aim of this paper is to provide for the first time a systematic review and comparison
of different fluid-structure interaction (FSI) numerical coupling schemes in the context of
cardiac hemodynamics. In particular, we consider partitioned fully-coupled and mono-
lithic algorithms and we analyze their effectiveness in both systolic and diastolic phases,
and with both active stress and active strain modeling frameworks for muscular contrac-
tion. We investigate the performance of the schemes during the different phases of the
heartbeat, in order to assess to which extent they depend on the specific physical features
of such phases, in particular the presence of active forces.

The human heart acts as a pump, driven by the electrical activation of its cells, whose
purpose is to force the blood into the circulatory system, allowing the delivery of oxy-
gen and nutrients to the whole body [66]. The feedback mechanism between blood and
cardiac muscle is relevant in determining the cardiac function and its response to patho-
logical conditions [97, 98]. Numerical simulations offer a valid tool for the investigation
of this mechanism [87].

A large number of computational studies model the fluid-solid feedback in the heart
only in terms of a zero dimensional, lumped model for the blood flow [12, 21, 57, 67],
mostly focusing on the electromechanical processes [12,43,53,92,98]. Alternatively, three-
dimensional models for the blood flow are one-way coupled to mechanical models, re-
ceiving as input results of mechanical simulations to prescribe the boundary displace-
ment of the fluid domain, but without feedback from the three-dimensional fluid model
to the solid [65,106,117]. While FSI models for cardiac valves have been extensively stud-
ied [11, 30, 36, 56, 61, 73, 104], three-dimensional fluid dynamics models of blood in the
cardiac cavities are seldom two-ways coupled with mechanical models for the cardiac
muscle [28,75,81,99,102,111,113], due to the inherent complexity and computational cost
of FSI simulations.

In the context of biomechanics, solving FSI problems poses significant challenges on
the stability and efficiency of the numerical solution, mainly because of the comparable
densities of fluid and solid (resulting in the added mass effect [27]) and the anisotropy
and nonlinearity of the constitutive laws [51, 58]. Appropriate schemes are required to
enforce the fluid-solid coupling in a computationally efficient way.

The FSI numerical coupling schemes that have been proposed in the literature (see,
e.g., [20, 29, 56, 59, 70]) can be roughly classified into partitioned loosely coupled (or
explicit) schemes [18, 24, 25, 40, 49, 50, 52], partitioned fully coupled (or fixed-point, or
implicit) schemes [14, 15, 27, 69, 70, 76, 78] and monolithic (or Newton-based) schemes
[45, 55, 64, 81, 93, 114, 115]. The schemes differ significantly in their modularity and in the
implementation effort that they require, and in terms of their performance [68, 70].

The effectiveness of FSI schemes in the context of vascular hemodynamics has been
widely studied, e.g., in [14,15,68,70]. However, the benchmarks and test cases under con-
sideration were mostly related to the flow of blood within large vessels, rather than to the
flow within cardiac chambers. In the heart, the flow is mostly driven by the interaction of
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the blood with the active muscular action (either contraction or relaxation, changing over
time according to the heartbeat phase), and possibly with cardiac valves. The resulting
flow is characterized by alternating systolic and diastolic phases. The former is charac-
terized by fast dynamics, driven by the contraction of the muscle, with the flow featuring
a transition regime towards turbulence [22, 109, 110, 116]. Diastole on the other hand is
characterized by slower dynamics, and the flow is determined by the interplay between
the ventricle relaxation and passive mechanical properties together with inflow condi-
tions, resulting in a balloon-type problem [15]. Moreover, the material models required
to describe effectively the muscular tissue are characterized by significant nonlinearity
and anisotropy [51, 58]. All these aspects play a role in the effectiveness and efficiency of
the schemes used for the solution of the FSI problem.

After introducing the mathematical models used, we review several existing FSI cou-
pling schemes. We consider benchmark cases that mimic the characteristics of the human
left ventricle, although in a simplified setting from the geometric viewpoint. Different
tests allow us to separately analyze the systolic ejection and diastolic filling phases of the
heartbeat. Concerning in particular the systolic phase, we employ both the active stress
and active strain modeling frameworks for the active contraction of the cardiac muscle,
and for both we compare the effectiveness of the coupling schemes. The computational
times for the different methods indicate that, for all phases and with both activation mod-
els, a monolithic approach is more suited to the strong coupling of fluid and structure in
the cardiac context. Finally, we present a numerical example simulating a full heartbeat,
including isovolumetric phases.

The rest of the paper is organized as follows: Section 2 introduces the mathematical
models that are used in the benchmark cases, and Section 3 briefly describes the tem-
poral and spatial discretization schemes employed. Section 4 reviews the different cou-
pling schemes under consideration. Section 5 discusses the numerical tests, and Section 6
draws some conclusive remarks.

2 Mathematical models for cardiac fluid-structure interaction

We consider a mechanical system defined in an open, bounded, time dependent domain
Ωt ⊂R3 (where t ∈ [0,T) denotes the time variable). Such domain is decomposed into
two subdomains Ωt

f and Ωt
s, the former occupied by a Newtonian, incompressible fluid,

the latter occupied by a hyperelastic structure. We denote by Σt = ∂Ωt
f∩∂Ωt

s the moving
fluid structure interface, and by n the unit vector normal to Σt, outward directed from
the fluid domain, inward directed into the structure domain.

To track the motion over time of the subdomains, we introduce a fixed reference con-
figuration, denoted by a hat (see Fig. 1 for a schematic representation): Ω̂, Ω̂f, Ω̂s, Σ̂ and n̂

represent the reference configurations for the domain Ω, the fluid and solid domains, the
fluid-solid interface and the normal unit vector respectively. We introduce the following
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Figure 1: Schematic representation of the solid and fluid domains, in their reference (left) and current (right)
configurations.

maps from the reference to the time-dependent configurations:

Ls : Ω̂s×(0,T)→Ωt
s, Ωt

s=
{

x=Ls(x̂,t), x̂∈ Ω̂s

}
,

Lf : Ω̂f×(0,T)→Ωt
f, Ωt

f =
{

x=Lf(x̂,t), x̂∈ Ω̂f

}
.

The evolution in time of the time-dependent domains is then expressed by the time-
dependence of the maps Ls and Lf. The precise definition of the maps is different for the
fluid and the solid domains, and is detailed later.

In the following, we will refer to the time-dependent domains as the current config-
uration. We will denote by x∈Ωt spatial coordinates in the current configuration, and
with x̂∈ Ω̂ spatial coordinates in the reference configuration.

2.1 Structure problem

We model the structure as a hyperelastic material in the Lagrangian setting [82]. Let ρs be

the density of the structure, and d̂(x̂,t) be its displacement at point x̂ in the reference con-
figuration and time t. Then, the map Ls from the reference to the current configuration is
given by

x(x̂,t)=Ls(x̂,t)= x̂+d̂(x̂,t), x∈Ωs, x̂∈ Ω̂s, t∈ (0,T).

We will denote by F = I+∇̂d the deformation gradient tensor, and with J = detF its
determinant. The evolution of the structure displacement is described by the following
partial differential equation (PDE), expressing the balance of momentum in the reference
configuration [82]:

ρs
∂2d̂

∂t2
−∇̂·Ps(d̂,t)=0 in Ω̂s×(0,T), (2.1)

endowed with suitable initial conditions prescribing the displacement d̂ and its temporal
derivative at time t=0 and boundary conditions on ∂Ω̂s\Σ̂ (while on Σ̂ the FSI interface

conditions are imposed, as described in Section 2.4). In (2.1), Ps(d̂,t) is the first Piola-

Kirchhoff stress tensor, defined as a function of the displacement d̂ by the constitutive
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relation of the material. Since our aim is the mathematical modeling of cardiac mechanics,
we incorporate active contraction in the stress tensor, either in the active stress [6, 81, 91,
99] or active strain [5, 45, 46, 95] framework.

We remark that in principle active contraction in either framework is generated by
coupling the mechanical model with an electrophysiology model through an active force
generation model, thus resulting in an electromechanical model [13,46,53,87,88,91,95,99].
Since our focus is on the FSI numerical schemes, we prescribe the evolution of active
stress or strain using an analytical law (hence the explicit dependence of Ps on the time t).
In what follows, we address two models considered in the literature for the active con-
traction, together with the passive model.

2.1.1 Active mechanics: active stress formulation

Within the active stress framework, the tensor Ps is decomposed as the sum of a pas-
sive and an active part: Ps = Ppas+Pact. The passive part is defined as the derivative of
a suitable strain energy function W(F)

Ppas=
∂W

∂F
,

wherein W characterizes the passive properties of the material.
Let us introduce at each point of Ω̂s a unit vector f that describes the local direction

of the muscular fibers along which active force is generated [84]. The active part of the
stress tensor is defined as

Pact=Tact
Ff⊗f√

I4 f
,

where Tact is an active tension in the direction of fibers [6,91,99], and I4 f =Ff·Ff. As stated
before, Tact is not derived by the coupling with an electrophysiology model, rather, it is
analytically prescribed.

2.1.2 Active mechanics: active strain formulation

In the active strain framework, the deformation gradient is assumed to be decomposed
multiplicatively as F = FpasFact. Fact is the gradient of a deformation from the reference
configuration to a virtual intermediate configuration only determined by the active con-
traction, and Fpas is the gradient of a deformation from this virtual configuration to the
current configuration, due to the passive mechanical behavior of the material [6]. The
stress tensor is defined as the derivative of the strain energy function with respect to the
deformation gradient tensor. The strain energy function is expressed as function of the
passive deformation gradient only, i.e.

Ps=
∂W(Fpas)

∂F
.

The active deformation gradient is defined as

Fact= I+γff⊗f,
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where γf is the strain in the direction of fibers [6,45,46,95]. For γf, the same comments of
above regarding Tact hold true.

2.1.3 Passive mechanics: constitutive model

We consider the Guccione constitutive model [51,92,108], commonly used for cardiac tis-
sue. We introduce at each point of Ω̂s a reference system {f,s,n} describing the direction
of fibers, sheetlets and cross-fibers respectively [84]. Then, the strain energy function is
given by

W=
c

2

(
eQ(F)−1

)
+

k

2
(J−1)log(J), (2.2)

Q(F)= ∑
i,j∈{f,s,n}

ai,j(Ei·j),

E=
1

2

(
FTF− I

)
,

where c and ai,j, i,j∈{f,s,n} are positive parameters and k is the bulk modulus, all tuned
following [51, 92]. The corresponding values are reported in Table 1.

We incorporate the quasi-incompressibility of the material by adding the term k
2(J−

1)log(J) in the strain energy function that penalizes volume variations (i.e. penalizes
values of J that are away from 1) [90, 108].

For ventricular test cases, the reference system {f,s,n} is generated by means of the
rule-based method proposed by Rossi et al. [95].

Table 1: Parameters used for the Guccione constitutive law [51,92].

Parameter Value

c 0.88·103 Pa

k 5·104 Pa

af,f 8

as,s 6

an,n 3

af,s 12

af,n 3

as,n 3

2.2 Displacement of the fluid domain

We model the fluid dynamics in a moving domain in the Arbitrary Lagrangian Eulerian
(ALE) framework [63, 100]. The structure displacement at the fluid-structure interface is
extended to the fluid domain by solving the following harmonic extension problem: for
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every t∈ (0,T), 



−∆̂d̂f=0 in Ω̂f,

d̂f=0 on Γ̂D
f ,

(∇̂d̂f)n̂=0 on Γ̂N
f ,

(2.3)

where Γ̂D
f and Γ̂N

f are subsets of ∂Ω̂f\Σ̂ on which Dirichlet and Neumann conditions,

respectively, are prescribed. On Σ̂, interface conditions are prescribed as detailed in Sec-
tion 2.4. The map Lf from the reference to the current configuration of the fluid domain
is given by

x= x̂+d̂f(x̂,t), x∈Ωf, x̂∈ Ω̂f, t∈ (0,T).

We define the fluid domain velocity uf as the time derivative of the fluid domain dis-
placement, i.e.

ûf=
∂d̂f

∂t
in Ω̂f.

Then, we map it onto the current configuration through Lf

uf= ûf

(
L−1

f (x,t),t
)
.

We remark that the extension of the displacement from the interface to the fluid domain
is arbitrary, and other differential operators (other than the Laplacian) can be considered.
In particular, a linear elasticity lifting operator can be employed to this aim [100].

2.3 Fluid dynamics problem

We model the blood as a Newtonian incompressible fluid. Denoting by ρf the fluid den-
sity and by u and p its velocity and pressure, respectively, the balance of momentum
and mass conservation equations are expressed by the Navier-Stokes equations in ALE
coordinates [86]





ρf

[
∂u

∂t
+
(
(u−uf)·∇

)
u

]
−∇·σf(u,p)=0 in Ωt

f×(0,T),

∇·u=0 in Ωt
f×(0,T),

endowed with initial conditions (u in Ω0
f ), and suitable boundary conditions on ∂Ωt

f\Σt

(while FSI interface conditions are imposed on Σt, see Section 2.4). The Cauchy stress
tensor σf(u,p) is defined as

σf(u,p)=2µε(u)−p I, ε(u)=
1

2

(
∇u+∇uT

)
,

wherein µ is the dynamic viscosity of the fluid.
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2.4 Fluid-structure coupling

A geometric coupling condition is imposed to enforce the continuity of displacements at

the fluid-structure interface: d̂f = d̂ on Σ̂. Besides, two other coupling conditions are
needed. The velocity at the fluid-structure interface must be continuous, i.e. u= ∂d

∂t on Σ;
this corresponds to prescribing a no-slip condition on the fluid-structure interface, and
is referred to as kinematic coupling. Moreover, the traction at the fluid-structure interface
must be continuous, i.e. σf(u,p)n=σs(d)n on Σt, where σs(d)= J−1 FPs(d)T is the Cauchy
stress tensor for the structure; this condition expresses Newton’s third law across the
fluid-structure interface, and is referred to as dynamic coupling.

The fully coupled FSI problem reads: find d̂,d̂f,u,p such that





ρs
∂2d̂

∂t2
−∇̂·Ps(d̂,t)=0 in Ω̂s×(0,T),

−∆̂d̂f=0 in Ω̂f×(0,T),

d̂f= d̂ on Σ̂×(0,T),
(
∇̂d̂f

)
n̂=0 on ∂Ω̂f\Σ̂×(0,T),

ρf

[
∂u

∂t
+
(
(u−uf)·∇

)
u

]
−∇·σf(u,p)=0 in Ωt

f×(0,T),

∇·u=0 in Ωt
f×(0,T),

u=
∂d

∂t
on Σ×(0,T),

σf(u,p)n=σs(d)n on Σ×(0,T),

(2.4)

endowed with suitable initial and boundary conditions for both the fluid and the solid.

To keep the notation light, we shall drop henceforth the hat over d̂ and d̂f. The context
will make clear whether we are considering quantities in reference or current configura-
tion.

3 Time and space discretizations

We use finite differences for the time discretization of the FSI problem (2.4) [86]. Let us
introduce a partition of the time domain (0, T) into Nt intervals of width ∆t of extremes
t0 =0, t1,. . .,tNt =T. In the following, we will denote by a superscript on a solution vari-
able (including the domain Ωf and the interface Σ) the time-discrete approximation of
that variable at that timestep (e.g. un ≈ u(t = tn)). For the Navier-Stokes momentum
equation, we use the implicit Euler scheme together with a semi-implicit discretization
of the advection term [86]. For the structure problem, we use a first order backward finite
difference scheme. For every n=0,1,.. .,Nt−1, and assuming d−1=d0, the time-discrete
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problem reads





ρs
dn+1−2dn+dn−1

∆t2
−∇̂·Ps(d

n+1)=0 in Ω̂s, (3.1a)

−∆̂dn+1
f =0 in Ω̂f, (3.1b)

dn+1
f =dn+1 on Σ̂, (3.1c)

dn+1
f =0 on Γ̂D

f , (3.1d)
(
∇̂dn+1

f

)
n̂=0 on Γ̂N

f , (3.1e)

un+1
f =

dn+1
f −dn

f

∆t
in Ω̂f, (3.1f)

ρf

[
un+1−un

∆t
+
((

un−un+1
f

)
·∇

)
un+1

]
−∇·σf

(
un+1,pn+1

)
=0 in Ωn+1

f , (3.1g)

∇·un+1=0 in Ωn+1
f , (3.1h)

un+1=
dn+1−dn

∆t
on Σn+1, (3.1i)

σf(u
n+1,pn+1)n=σs(d

n+1)n on Σn+1. (3.1j)

We remark that the extension to higher order finite difference schemes such as BDF2 or
theta-schemes is straightforward.

Space discretization is obtained by means of the finite element method [62, 86], us-
ing hexahedral elements for both the fluid and the structure subdomains. We choose
conforming meshes at the fluid-structure interface. We use Streamline Upwind Petrov-
Galerkin, pressure-stabilizing Petrov-Galerkin (SUPG-PSPG) stabilization [31,86,105,116]
for the Navier-Stokes equations, enabling the use of trilinear polynomials (Q1) for both
fluid velocity and pressure, and the stabilization of the advection dominated regime. We
use Q1 polynomials also for the structure displacement and for the fluid domain dis-
placement. We do remark, however, that the extension to higher order polynomials is
straightforward, provided that fluid velocity and solid displacement are discretized with
the same finite element space.

After space and time discretization, the FSI problem is expressed as a system of non-
linear algebraic equations: for each n=0,1,.. . ,Nt−1,





Gf(G
n+1)=0,

Ss(D
n+1)=0,

Ff(U
n+1,Gn+1)=0,

Cg(G
n+1,Dn+1)=0,

Ck(U
n+1,Dn+1)=0,

Cd(D
n+1,Un+1,Gn+1)=0.

(3.2)
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In the former system, the vectors G,D and U denote the algebraic numerical represen-
tations of the fluid domain displacement df, structure displacement d and fluid domain
variables (i.e. degrees of freedom associated to the velocity u and pressure p, collected
in a single vector), respectively. The operators Gf, Ss and Ff are the algebraic numeri-
cal representations of the differential operators defining the fluid domain displacement
problem (3.1b), the structure problem (3.1a) and the fluid problem (3.1g) and (3.1h), each
of them restricted to the degrees of freedom on the interior (not on the interface) of the
respective subdomains. To keep our notation light, the dependence of the operators on
solution variables at timesteps until tn is understood. The operators Cg, Ck and Cd, are
the algebraic numerical representations of the geometric (3.1c), kinematic (3.1i) and dy-
namic (3.1j) coupling conditions respectively. The explicit definition of each operator is
given in Appendix A.

We remark that Gf, Cg and Ck are affine, whereas the remaining operators are in gen-
eral nonlinear. In particular, we remark that the dependence of Ff on Gn+1 also accounts
for the fact that the integrals involved in the weak formulation of the fluid problem are
calculated on the deformed configuration (at time tn+1) of the fluid domain.

4 Fluid-structure coupling schemes

The FSI problem is highly nonlinear, due to the nonlinearity of the fluid and structure
problems (especially the latter) taken individually, and to the inherently nonlinear de-
pendency of the fluid problem on the structure displacement through the fluid domain
displacement. Suitable schemes need to be implemented to deal with the three subprob-
lems (geometry, fluid, structure) and their coupling conditions.

In the context of biological tissues, the fluid and the structure have comparable densi-
ties, resulting in the so-called added-mass effect [27]. This typically yields stability issues:
in particular, loosely coupled partitioned schemes (based on explicit time discretization
of the whole FSI problem) may generate blowing-up solutions due to an incorrect en-
ergy balance [27]. Although in recent years stable loosely coupled partitioned schemes
for hemodynamics were studied [18, 24, 25, 40, 49, 50, 52], here we focus on the two most
traditional families of schemes that guarantee stability in hemodynamics:

• the fully coupled partitioned schemes [14, 15, 27, 29, 69, 76, 78, 99], in which at every
timestep the fluid and structure subproblems are solved one independently of the
other, applying suitable interface transmission conditions to each subproblem and
iterating until fulfillment of the interface conditions (in the spirit of fixed-point it-
eration algorithms); for the sake of brevity we will refer to these schemes as parti-
tioned, leaving it understood that we refer to fully coupled partitioned schemes.

• the monolithic schemes [20,29,45,55,64,72,80,81,93,115], in which the nonlinear alge-
braic system arising from the discretization of the FSI problem is solved as a whole
by means of Newton or inexact-Newton schemes.
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In both the cases, the geometric coupling can be treated either implicitly or explicitly
without hindering the time stability of the numerical scheme [78]. The explicit treatment
of the geometric coupling, together with the explicit treatment of the advection term
in Navier-Stokes equations, gives rise to schemes referred to as geometric-convective
explicit [17, 29, 38, 77, 79].

We remark that the classes above are not exhaustive: alternative approaches involve
the use of splitting schemes [38, 85] or the reduction of the FSI problem to an interface
problem [32].

In the following sections, several schemes within the partitioned and monolithic fam-
ilies are described. In each case we will consider the fully discrete problem (3.2), and use
the notation introduced in Section 3.

4.1 Partitioned (P) schemes

The appeal of partitioned schemes lies in their modularity, i.e. in the fact that they reduce
to a sequence of independent calls to fluid dynamics and mechanics solvers. Therefore,
one can leverage available solvers and advanced techniques for the individual subprob-
lems, provided there exists a way to communicate interface data between them. On the
other hand, these are iterative schemes, whose convergence properties are difficult to
assess in the most general case, and depend heavily on the material properties and ge-
ometry of the domain [14, 27, 44].

4.1.1 Partitioned schemes with explicit geometric coupling (PE)

A fixed-point, partitioned scheme with explicit geometric coupling can be outlined as
follows: for each time step n = 1,2,.. . ,Nt, given Gn, Dn and Un, to obtain Gn+1, Dn+1

and Un+1:

1. Compute Gn+1 by solving the fluid domain displacement problem, using the struc-
ture displacement at previous time step

{
Gf(G

n+1)=0,

Cg(G
n+1,Dn)=0,

and update the fluid domain according to the newly computed fluid domain dis-
placement.

2. Set Dn+1
(0)

=Dn and iterate for k=0,1,2,.. . and until convergence:

(a) Compute Un+1
(k+1)

by solving the fluid problem, using the structure displace-

ment and traction at previous iteration to provide suitable boundary data at
the interface 




Ff

(
Un+1

(k+1)
,Gn+1

)
=0,

Cf

(
Dn+1

(k)
,Un+1

(k+1)
,Gn+1

)
=0.
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(b) Compute D̃n+1
(k+1)

by solving the mechanics problem, using the just computed

fluid domain solution to provide suitable boundary data at the interface




Ss

(
D̃n+1

(k+1)

)
=0,

Cs

(
D̃n+1

(k+1),U
n+1
(k+1),G

n+1
)
=0.

(c) Apply relaxation or acceleration to the structure displacement, by setting

Dn+1
(k+1)

=R(k+1)

(
D̃n+1

(k+1)
,Dn+1

(k)
,Dn+1

(k−1)
,. . .
)

,

where R(k+1) is a suitable relaxation or convergence acceleration operator,
which can be either a relaxation with constant coefficient, Aitken acceleration
or Anderson acceleration; more details are given in Appendix B.

Iterations are stopped when the norm of the residual associated to interface conditions
falls below a prescribed tolerance, as described in [14].

The scheme is depicted in Fig. 2(a). The operators Cf and Cs represent suitable bound-
ary conditions at the interface for each problem. Different algorithms are obtained by
different choices of such operators. Two relevant options are the following:

• Dirichlet-Neumann (DN) scheme [14, 27]

Cf

(
Dn+1

(k)
,Un+1

(k+1)
,Gn+1

)
=Ck

(
Un+1

(k+1)
,Dn+1

(k)

)
,

Cs

(
D̃n+1

(k+1)
,Un+1

(k+1)
,Gn+1

)
=Cd

(
D̃n+1

(k+1)
,Un+1

(k+1)
,Gn+1

)
,

resulting in the kinematic coupling condition being applied to the fluid and the
dynamic coupling condition being applied to the structure.

• Robin-Neumann (RN) scheme [14, 15]

Cf

(
Dn+1

(k) ,Un+1
(k+1),G

n+1
)
=αfCk

(
Un+1

(k+1),D
n+1
(k)

)
+Cd

(
Dn+1

(k) ,Un+1
(k+1),G

n+1
)

,

Cs

(
D̃n+1

(k+1)
,Un+1

(k+1)
,Gn+1

)
=Cd

(
D̃n+1

(k+1)
,Un+1

(k+1)
,Gn+1

)
,

where αf>0 is a suitable parameter chosen to improve convergence [44].

Other schemes can be obtained in a similar way (e.g. Robin-Robin schemes, [10,14,15,
48]), by combining the kinematic and dynamic coupling conditions. We mainly consider
these two because on the one hand the DN scheme is extremely simple to formulate and
implement, on the other hand the RN scheme has been shown to perform particularly
well in comparison to other fixed-point schemes, most notably DN [14, 15]. In any case,
such schemes guarantee the fulfillment, up to a prescribed tolerance, of the kinematic
and dynamic conditions.

We remark that the structure subproblem is in general nonlinear, and it must be
solved e.g. by means of Newton’s method at each iteration [86].
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(a) (b)

Figure 2: Partitioned schemes, with explicit geometric coupling (a) and implicit geometric coupling (b): advance-
ment from one timestep to the following one is performed by iterating over the subproblems until convergence.

4.1.2 Partitioned schemes with implicit geometric coupling (PI)

A fixed-point scheme with implicit geometric coupling can be obtained by iterating also
over the geometric interface condition, solving (2.3) within the same loop used to achieve
the convergence of both the kinematic and dynamic conditions. For each n= 1,2,.. .,Nt,
given Gn, Dn and Un, in order to compute Gn+1, Dn+1 and Un+1, we set Dn+1

(0)
=Dn, and

iterate for k=0,1,2,.. . until convergence:

1. Compute Gn+1
(k+1)

by solving the fluid domain displacement problem, using the struc-

ture displacement at previous iteration




Gf

(
Gn+1

(k+1)

)
=0,

Cg

(
Gn+1

(k+1)
,Dn+1

(k)

)
=0,

and update the fluid domain according to the newly computed fluid domain dis-
placement.

2. Compute Un+1
(k+1)

by solving the fluid problem, using the newly computed fluid

domain and the structure displacement at previous iteration to provide suitable
boundary data at the interface





Ff

(
Un+1

(k+1)
,Gn+1

(k+1)

)
=0,

Cf

(
Dn+1

(k)
,Un+1

(k+1)
,Gn+1

(k+1)

)
=0.
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3. Compute D̃n+1
(k+1)

by solving the structure problem, using the just computed fluid

domain solution to provide suitable boundary data at the interface




Ss

(
D̃n+1

(k+1)

)
=0,

Cs

(
D̃n+1

(k+1),U
n+1
(k+1),G

n+1
(k+1)

)
=0.

4. Apply relaxation or acceleration to the structure displacement, by setting

Dn+1
(k+1)

=R(k+1)

(
D̃n+1

(k+1)
,Dn+1

(k)
,Dn+1

(k−1)
,. . .
)

.

We use the same stopping criterion as for PE schemes.
This type of scheme is depicted in Fig. 2(b). As before, different schemes are obtained

by making different choices for the interface conditions Cf and Cs.
We remark that other types of schemes with implicit geometric coupling can be ob-

tained e.g. by performing two nested loops at each timestep: in the outer loop, the geom-
etry problem is solved and the fluid domain updated, and in the inner loop the fluid and
structure problems are solved for a fixed fluid domain [78]. Moreover, an intermediate
approach in this context is obtained by performing a small, fixed number of iterations on
the outer loop for the domain displacement [78].

4.2 Monolithic (M) schemes

Now, we consider schemes based on solving in a single shot the algebraic nonlinear sys-
tem arising from the time and space discretization of the FSI problem. We employ the
Newton scheme for the linearization of such a system. With this purpose, let us rewrite
(3.2) in the following more compact form:





G(Gn+1,Dn+1)=0,

F(Gn+1,Un+1,Dn+1)=0,

S(Gn+1,Un+1,Dn+1)=0,

n=0,1,2,.. . ,Nt, (4.1)

where G includes both Gf and the boundary conditions for the fluid domain displace-
ment, F includes Ff and Ck and S includes Ss and Cd (see Appendix A for the explicit
definition of the operators).

4.2.1 Monolithic scheme with explicit geometric coupling (ME)

Given Gn, Dn and Un, to compute the solution at timestep n+1:

1. Compute Gn+1 by solving the fluid domain displacement problem, using the struc-
ture displacement at previous time step

{
Gf(G

n+1)=0,

Cg(G
n+1,Dn)=0,
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and update the fluid domain according to the newly computed fluid domain dis-
placement.

2. Solve the fluid-structure coupled problem with a Newton loop: set Un+1
(0)

=Un and

Dn+1
(0)

=Dn, then for k=0,1,2,.. . and until convergence,

JFS

(
Gn+1,Un+1

(k)
,Dn+1

(k)

)[δU

δD

]
=R

(
Gn+1,Un+1

(k)
,Dn+1

(k)

)
, (4.2)

Un+1
(k+1)=Un+1

(k) −δU,

Dn+1
(k+1)

=Dn+1
(k)

−δD,

where

JFS=

[
dF

dUn+1
dF

dDn+1

dS
dUn+1

dS
dDn+1

]
, R=

[
F

S

]
.

We remark that in the computation of R and JFS the last available fluid domain
displacement, Gn+1 is used.

4.2.2 Monolithic scheme with implicit geometric coupling (MI)

To obtain a scheme with implicit geometric coupling, it is possible to update the fluid
domain displacement within the Newton loop, resulting in a scheme in which the fluid
domain displacement is treated implicitly. Given Gn, Dn and Un, to compute the solution
at timestep n+1 set Gn+1

(0)
=Gn, Un+1

(0)
=Un and Dn+1

(0)
=Dn, then iterate for k= 0,1,2,.. .

until convergence:

1. Compute Gn+1
(k+1)

by solving the fluid domain displacement problem, using the struc-

ture displacement at previous iteration





Gf

(
Gn+1

(k+1)

)
=0,

Cg

(
Gn+1

(k+1)
,Dn+1

(k)

)
=0,

and update the fluid domain according to the newly computed fluid domain dis-
placement.

2. Compute Un+1
(k+1)

and Dn+1
(k+1)

with a Newton step

JFS

(
Gn+1

(k+1)
,Un+1

(k)
,Dn+1

(k)

)[δU

δD

]
=R

(
Gn+1

(k+1)
,Un+1

(k)
,Dn+1

(k)

)
,

Un+1
(k+1)

=Un+1
(k)

−δU,

Dn+1
(k+1)

=Dn+1
(k)

−δD.



1232 M. Bucelli et al. / Commun. Comput. Phys., 32 (2022), pp. 1217-1256

This corresponds to solving the fully coupled system (4.1) with an inexact-Newton ap-
proach, in which the Jacobian terms involving derivatives with respect to the fluid do-
main displacement (i.e. the shape derivatives [19, 39]) are neglected. Accounting for
shape derivatives, either computed exactly [20, 35, 39, 64, 93, 94, 114] or approximated
through finite differences [55, 60], is another viable option.

4.3 Solution of linear systems and preconditioning

All the numerical schemes presented above involve, in particular, the numerical solution
of the ALE lifting problem. For that, we use the conjugate gradient (CG) method [96],
preconditioned with algebraic multigrid (AMG) [54]. For all other linear systems we rely
on the GMRES method.

When employing partitioned schemes, the linear systems arising from the fluid and
solid problem are solved independently. For the fluid problem, we make use of an ap-
proximate SIMPLE preconditioner [34], which can be interpreted as an inexact block-LU
factorization of the fluid matrix. The inverses of fluid velocity and pressure Schur com-
plement blocks within SIMPLE are approximated with AMG. For the solid problem, we
use instead an AMG preconditioner.

In both the ME and the MI schemes, the discretization of the problem leads to a linear
system with fluid and structure unknowns, with the general block structure

J=

[
Jff Jfs

Jsf Jss

]
. (4.3)

As typical in the FSI literature [16,29,33,55,71], we derive a preconditioner by exploit-
ing the block structure of the matrix J, falling back on inner black box preconditioners for
the approximation of the individual blocks. Typical choices of inner preconditioners are
AMG [55, 71] and geometric multigrid [60, 93] preconditioners. Our chosen precondi-
tioner for (4.3) is a block lower triangular preconditioner

P=

[
Jff 0
Jsf Jss

]
.

The inverse of P is

P−1=

[
J−1
ff 0

−J−1
ss Jsf J−1

ff J−1
ss

]
.

The inverse of fluid and structure blocks, required by the application of P−1, is approxi-
mated by means of suitable inner preconditioners. For the fluid block (both velocity and
pressure variables), we make use of the approximate SIMPLE preconditioner PSIMPLE,
which in turn falls back onto AMG for the approximation of the fluid velocity block and
of the fluid pressure Schur complement. For the structure block, we employ an AMG
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preconditioner Ps, whence

P−1
FSI =

[
P−1

SIMPLE 0

−P−1
s Jsf P−1

SIMPLE P−1
s

]
.

The application of P−1
FSI can be expressed in terms of one application of the SIMPLE pre-

conditioner, one application of the AMG preconditioner for the structure, and a few
matrix-vector multiplications.

Other preconditioners can be derived similarly, e.g. by resorting to a block LU or
block LDU factorization of matrix (4.3) [33, 55, 71] or using a block upper triangular or
block diagonal preconditioners. Among these options, we found the block lower trian-
gular preconditioner to perform slightly better than the others in terms of overall com-
putational cost. Alternative approaches to preconditioning can be derived starting from
domain decomposition formulations, mimicking at the preconditioner level the behavior
of partitioned schemes [15, 16].

For AMG preconditioners we rely on the Trilinos ML package [42].

4.4 Solver parallelization

We implemented the presented solvers in lifex [3,4], a C++ library developed in-house,
tailored to cardiac applications, based on the finite element library deal.II [2, 8, 9]. All
solvers are parallel so as to exploit high-performance computing facilities, allowing for
large scale simulations. As typical in finite element solvers, computational domains are
partitioned across multiple processes. We do so using the mesh handling facilities ex-
posed by deal.II [9], which fall back onto the p4est library [26]. Parallelization acts at
three different levels: the assembly of linear systems, their solution, and the communica-
tion of interface data.

During the assembly phase, each process only loops over the elements of its part of
the computational domain, and communication takes place at the end of the element loop
to distribute to each process the matrix and vector entries it needs for the system solution.
For the parallel solution of linear systems, we rely on the Trilinos library [107].

Interface data communication for partitioned solvers requires point-to-point commu-
nication between processes: indeed, the fluid and structure meshes, although conform-
ing, are distributed across processes in an independent way, and the process that owns
an interface mesh node on the fluid domain might be different from the one that owns it
on the structure domain. However, the point-to-point communication pattern for inter-
face data is precomputed at simulation startup, so that this does not yield a significant
overhead.

Finally, we remark that the different subproblems of partitioned schemes are solved
sequentially, while each individual subproblem is solved in parallel over multiple cores.
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5 Numerical results

We present numerical results on FSI test cases. We aim at comparing the performance
of the coupling schemes presented, in terms of overall computational costs and, for
partitioned schemes, number of iterations required for convergence. We will consider
idealized problems in the context of cardiovascular haemodynamics. In all cases we
will assume the solid to have density ρs = 1000kg/m3, and the fluid to have density
ρf=1060kg/m3 and viscosity µ=3.5·10−3 Pa·s.

For each test, we consider the ME (Section 4.2.1) and MI (Section 4.2.2) schemes, as
well as DN and RN partitioned schemes with static relaxation (B.1), Aitken acceleration
(B.2) and Anderson acceleration. We sum up in Table 2 the considered schemes and the
associated abbreviations.

Unless otherwise specified, the simulations ran on 48 cores from CINECA GALI-
LEO100 [1].

We consider an idealized left ventricle shaped as a prolate ellipsoid. The correspond-
ing fluid and structure computational domains are represented in Fig. 3, left and right
respectively. On the top surface of the fluid domain, we identify two intersecting circular
regions ΓAV, ΓMV that represent in this idealized context the aortic and mitral valve ori-
fice, respectively, similarly to the test case considered in [103] for a computational fluid
dynamics (CFD) ventricular simulation.

Table 2: Legend of the abbreviations used for the coupling schemes in numerical experiments.

Abbreviation Meaning

PE Partitioned, explicit geometry (Section 4.1.1)

PI Partitioned, implicit geometry (Section 4.1.2)

ME Monolithic, explicit geometry (Section 4.2.1)

MI Monolithic, implicit geometry (Section 4.2.2)

DN Dirichlet-Neumann partitioned scheme

RN Robin-Neumann partitioned scheme

SR Partitioned schemes with static relaxation (Appendix B)

AitA Partitioned schemes with Aitken acceleration (Appendix B)

AndA Partitioned schemes with Anderson acceleration (Appendix B)

5.1 Test A: idealized left ventricle in systole

In this test case, we reproduce the systolic phase during which the ventricle contracts
and blood is ejected through the aortic valve. Therefore, we impose the no-slip condition
u=0 on ΓMV\ΓAV and on Γf,b, and a resistance boundary condition on ΓAV [45, 103]

σfn=−

(
p0+R

∫

ΓAV

u·ndΓ

)
n on ΓAV, (5.1)
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(a) (b)

Figure 3: Fluid (a) and structure (b) meshes for the prolate ellipsoid (tests A, B and C)

.

where p0 = 6000Pa represents the minimum aortic pressure and R= 1·107 kg/(s·m4) is
a resistance parameter, calibrated in accordance with [89]. We impose a no-slip condition
u=0 on Γf,b as well.

The material model of the solid is the Guccione law (2.2). As boundary conditions
for the structure problem, we use a homogeneous Dirichlet condition d= 0 on the base
Γs,b, and consistently keep the fluid domain base fixed, that is we impose df = 0 on
Γf,b∪ΓAV∪ΓMV. We remark that this condition is not physiological, but in this simplified
test case avoids issues related to having moving inlet or outlet sections for the fluid. In
a more realistic case, boundary conditions allowing for the displacement of the structure
base should be employed, such as Robin boundary conditions [45] or more sophisticated
conditions modeling the presence of the neglected part of the ventricle [90,91]. Finally, on
the epicardium Γs,epi of the ventricle, we impose generalized Robin boundary conditions
that mimic the presence of the pericardium, a sac containing the heart [45, 83, 90, 101]

P(d)n=−(n⊗n)

(
K⊥d+C⊥

∂d

∂t

)
−(I−n⊗n)

(
K‖d+C‖

∂d

∂t

)
, (5.2)

in which K⊥ = 2·105 Pa/m, K‖ = 2·104 Pa/m are constant elasticity coefficients for the

directions normal and parallel to the boundary respectively, and C⊥=2·104 Pa·s/m and
C‖=2·103 Pa·s/m are constant viscosity coefficients for the directions normal and parallel
to the boundary, tuned in accordance with [92].

We discretize the fluid domain with a mesh composed of 20980 hexahedral elements,
for a total of 100412 degrees of freedom. The solid domain is discretized with a mesh of
24712 hexahedral elements, with 94485 degrees of freedom in total. This corresponds to
an average mesh size of h=4mm on both the fluid and solid domains.

We run two tests in this setting, prescribing active contraction in the active stress for-
mulation in one case (Test A1) and in the active strain formulation in the other (Test A2).
The active contraction of the myocardium is achieved by defining the active stress or
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(a) (b)

Figure 4: Analytical activation functions for the active stress (a) and active strain (b) test cases.

strain to be constant in space and variable in time according to a prescribed analytical
function. Similarly to what done in [81], we choose a function of the form

A(t)=





0, t< t0,

Amax

(
t−t0

Tpeak

)p

exp

{
p

(
1−

t−t0

Tpeak

)}
, t≥ t0,

(5.3)

where t0 is the time at which contraction starts, Tpeak is the time of activation peak and
p is a positive parameter. The graph of A(t) is shown in Fig. 4. For the active stress test
case, we choose t0 = 0s, Tpeak = 0.1s, Amax = 60kPa and p = 1. For the active strain test
case we use t0 = 0s, Tpeak = 0.2s, Amax = 0.3 and p = 0.25. These values do not lead to
physiological deformations of the idealized ventricle, but are chosen so that the resulting
velocities, both of the myocardium and of the blood, have the same orders of magnitude
that can be expected in a physiological simulation.

Due to the nonlinearity and anisotropy of the constitutive law of the solid structure,
optimal relaxation and acceleration parameters are not available. They were tuned so
as to obtain convergence, although it is worth observing that tuning parameters is itself
a major issue with these schemes. Refer to Appendix B for the chosen values of accel-
eration and relaxation parameters. The same argument holds true for the αf coefficient
in RN schemes as well. Although optimal values of the parameter αf have been studied
for spherical geometries and linear elasticity in [47], their application here is not trivial
due to the non-linearity of the structure. We selected αf = 5000kg/(m2 ·s) as the value
that experimentally provided the best performance for our setup. More investigations
are needed on this point.

For these tests, we choose a final time of T=0.2s, and a time step ∆t=2·10−4 s.
The solution at a few time instants, computed using the ME solver, is reported in

Figs. 5 and 6, and the computational times associated to the different coupling schemes
are reported in Tables 3 and 4.
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Table 3: Performance of the different schemes for the systole test case with active stress formulation (Test A1).
For each scheme we report: the total wall time required for the solution of the test case, as well as the average
wall time per time step, the total time spent assembling linear systems and the time spent solving them; the
minimum, average and maximum of the number of iterations per timestep required for convergence of the
Newton method, for monolithic schemes, and of the fixed-point (FP) method, for partitioned schemes; the
average number of fluid and solid assembly calls per timestep; the average number of linear solver iterations per
timestep (across all Newton or partitioned iterations). Refer to Table 2 for the explanation of the abbreviations
used.

Scheme
Wall time [s] (relative to best) Newton/FP iter. Avg. assembly calls Avg. GMRES iter.

total avg. assembly linear sol. min. avg. max. fluid solid monol. fluid solid

ME 6850 (1.00) 6.85 4270 (1.00) 1640 (1.0) 2 2.1 3 3.1 3.1 165.9 - -

PE-DN-SR Wall time > 24 h

PE-DN-AitA convergence failure

PE-DN-AndA convergence failure

PE-RN-SR Wall time > 24 h

PE-RN-AitA 60120 (8.77) 60.1 28300 (6.63) 6443 (3.93) 13 15.6 17 15.6 34.1 - 808.6 643.4

PE-RN-AndA 54090 (7.89) 54.1 25500 (5.97) 5810 (3.54) 13 14.0 15 14.0 30.7 - 657.8 616.4

MI 16500 (1.00) 16.5 4262 (1.00) 3820 (1.00) 4 6.4 7 7.4 7.4 396.2 - -

PI-DN-SR Wall time > 24 h

PI-DN-AitA convergence failure

PI-DN-AndA convergence failure

PI-RN-SR Wall time > 24 h

PI-RN-AitA 74890 (4.53) 74.9 34770 (8.16) 7368 (1.92) 14 15.9 18 15.9 34.8 - 827.8 654.9

PI-RN-AndA 58180 (3.52) 58.2 26980 (6.33) 6028 (1.57) 13 14.2 15 14.2 31.3 - 751.6 582.7

Table 4: Performance of the different schemes for the systole test case with active strain formulation (Test A2).
For each scheme we report: the total wall time required for the solution of the test case, as well as the average
wall time per time step, the total time spent assembling linear systems and the time spent solving them; the
minimum, average and maximum of the number of iterations per timestep required for convergence of the
Newton method, for monolithic schemes, and of the fixed-point (FP) method, for partitioned schemes; the
average number of fluid and solid assembly calls per timestep; the average number of linear solver iterations per
timestep (across all Newton or partitioned iterations). Refer to Table 2 for the explanation of the abbreviations
used.

Scheme
Wall time [s] (relative to best) Newton/FP iter. Avg. assembly calls Avg. GMRES iter.

total avg. assembly linear sol. min. avg. max. fluid solid monol. fluid solid

ME 7230 (1.00) 7.23 4090 (1.00) 2100 (1.00) 2 2.0 3 3.0 3.0 201.5 - -

PE-DN-SR Wall time > 24 h

PE-DN-AitA convergence failure

PE-DN-AndA convergence failure

PE-RN-SR 79110 (10.9) 79.1 36090 (8.82) 8855 (4.21) 19 20.5 25 20.5 43.5 - 951.1 1115.6

PE-RN-AitA 46920 (6.49) 46.9 21300 (5.21) 5628 (2.68) 11 12.1 21 12.1 26.4 - 612.5 685.7

PE-RN-AndA 46380 (6.41) 46.4 21000 (5.13) 5592 (2.66) 11 11.8 14 11.8 25.2 - 607.2 677.5

MI 17100 (1.00) 17.1 8790 (1.00) 5010 (1.00) 4 5.5 7 6.5 6.5 428.6 - -

PI-DN-SR Wall time > 24 h

PI-DN-AitA convergence failure

PI-DN-AndA convergence failure

PI-RN-SR 79340 (4.63) 79.3 36260 (4.13) 9044 (1.81) 19 20.4 24 20.4 44.2 - 964.1 1130.1

PI-RN-AitA 50020 (2.93) 50.0 22400 (2.55) 5878 (1.17) 11 12.5 22 12.5 27.3 - 633.7 717.6

PI-RN-AndA 48760 (2.85) 48.8 21630 (2.46) 5767 (1.15) 11 12.3 14 12.3 26.0 - 632.3 706.2
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(a) t=0ms (b) t=100ms (c) t=200ms

Figure 5: Snapshots of the fluid velocity (top) and pressure (bottom) of the idealized ventricle test case, in
systole with the active stress formulation (Test A1).

Partitioned schemes with static relaxation require more time than 24 h to converge,
except for RN in the active strain test case. The DN scheme fails to converge with all
acceleration schemes, for explicit and implicit geometric coupling, and in both the active
stress and active strain cases. Conversely, the RN scheme converges successfully when
using Aitken and Anderson acceleration, with Anderson acceleration slightly improving
over Aitken acceleration. In all cases considered the monolithic approach was several
times faster than any of the partitioned schemes. The MI scheme is more costly than
its explicit counterpart, while no significant increase in number of iterations is observed
for RN schemes with implicit geometric coupling. No relevant difference is observed
between the active stress and active strain approaches, in terms of relative efficiency of
the monolithic and partitioned schemes.

5.2 Performance when varying the number of cores

We compare the performance of the ME solver with our best partitioned solver from
previous section, namely the PE-RN-AndA solver, when the number of cores used in the
computation varies. We consider the systolic setup of Test A1 (Section 5.1), but using
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(a) t=0ms (b) t=100ms (c) t=200ms

Figure 6: Snapshots of the fluid velocity (top) and pressure (bottom) of the idealized ventricle test case, in
systole with the active strain formulation (Test A2).

a mesh with a higher resolution (57080 elements and 264692 degrees of freedom for the
fluid, 61296 elements and 227019 degrees of freedom for the structure) and set the final
time to T=0.01s. Fig. 7 reports the wall times needed for the whole simulation, as well as
the ones spent during the assembly phase and during calls to the linear solvers varying
the number of cores. Results suggest that, regardless of the number of processes used, the
ME scheme is significantly faster. Indeed, for all the tests performed, the PE-RN-AndA
scheme completed the simulation in approximately 5.5 times longer wall times.

5.3 Test B: idealized left ventricle in diastole

In this case we use the same geometry and the same mesh as described for Test A in
Section 5.1. Boundary conditions on the structure and on the fluid domain are also the
same. For the fluid problem, we impose an inlet condition through ΓMV, to reproduce
the diastolic filling of the ventricle. In particular, we set σfn = −pMVn on ΓMV, with
pMV = 1333Pa. Conversely, we set u= 0 on ΓAV\ΓMV and on Γf,b. Since during diastole
the ventricle is relaxing, we do not prescribe any activation, neither in the active stress
nor in the active strain approach (i.e. the stress tensor in (2.1) only includes the passive
contribution for the present test).
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Figure 7: Comparison of ME and PE-RN-AndA schemes with varying number of cores. From left to right, we
report the total wall time, the time spent for assembly and the time spent for solving linear systems. Refer to
Table 2 for an explanation of the abbreviations used.

We remark that the initial conditions of this test case are not consistent with end-
systolic conditions as found at the end of the previous test case. The aim of this test is to
assess the performance of the algorithms in the context of a slow inflow and in absence
of the active contraction, rather than providing physiologically meaningful insight.

For this test, we choose a final time of T=0.2s and a time step of ∆t=2·10−4 s.
A few snapshots of the solution, computed with the ME solver, are reported in Fig. 8,

and computational times for the different schemes are reported in Table 5.

Table 5: Performance of the different schemes for the diastole test case (Test B). For each scheme we report: the
total wall time required for the solution of the test case, as well as the average wall time per time step, the total
time spent assembling linear systems and the time spent solving them; the minimum, average and maximum of
the number of iterations per timestep required for convergence of the Newton method, for monolithic schemes,
and of the fixed-point (FP) method, for partitioned schemes; the average number of fluid and solid assembly
calls per timestep; the average number of linear solver iterations per timestep (across all Newton or partitioned
iterations). Refer to Table 2 for the explanation of the abbreviations used.

Scheme
Wall time [s] (relative to best) Newton/FP iter. Avg. assembly calls Avg. GMRES iter.

total avg. assembly linear sol. min. avg. max. fluid solid monol. fluid solid

ME 6560 (1.00) 6.56 3830 (1.00) 1730 (1.00) 2 2.0 2 3.0 3.0 157.7 - -

PE-DN-SR Wall time > 24 h

PE-DN-AitA convergence failure

PE-DN-AndA convergence failure

PE-RN-SR Wall time > 24 h

PE-RN-AitA 50050 (7.63) 50.1 22677 (5.92) 4811 (2.78) 12 14.1 15 14.1 28.3 - 575.0 426.6

PE-RN-AndA 46650 (7.11) 46.7 21235 (5.54) 4148 (2.39) 12 13.4 14 13.4 26.1 - 543.0 390.3

MI 10900 (1.00) 10.9 6150 (1.00) 2660 (1.00) 3 4.0 4 5.0 5.0 262.7 - -

PI-DN-SR Wall time> 24 h

PI-DN-AitA convergence failure

PI-DN-AndA convergence failure

PI-RN-SR Wall time > 24 h

PI-RN-AitA 50870 (4.67) 50.9 22780 (3.70) 4773 (1.79) 12 14.0 15 14.0 28.6 - 583.6 432.6

PI-RN-AndA 49700 (4.56) 49.7 22168 (3.60) 4617 (1.73) 12 13.7 14 13.7 27.0 - 562.1 405.9
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(a) t=0.2ms (b) t=100ms (c) t=200ms

Figure 8: Snapshots of the fluid velocity (top) and pressure (bottom) of the idealized ventricle test case, in
diastole (Test B).

From there, it is again evident that the monolithic approach outperforms the partitioned
approach, both with an explicit and with an implicit treatment of the geometry, even
during the relatively slow diastolic phase.

5.4 Test C: idealized left ventricle, full heartbeat

In this test we assess the reliability of the ME scheme for the simulation of a full heartbeat
on an idealized ventricle geometry. This is of particular interest since specific features
arise when both systolic and diastolic are considered. In particular, during the heartbeat,
the opening and closing of valves determine four distinct phases [66]:

• isovolumetric contraction; both valves are closed; the ventricle starts contracting,
resulting in a rapid increase of ventricular pressure; when the pressure inside the
chamber becomes larger than that of the aorta, the aortic valve opens and ejection
phase begins;

• ejection; the aortic valve is open, and the mitral valve is closed; blood exits from the
ventricle into the aorta. The aortic valve closes to prevent reverse flow, starting the
isovolumetric relaxation phase;
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• isovolumetric relaxation; both valves are closed, and the ventricle relaxes, resulting
in the decrease of ventricular pressure; when the pressure falls below the atrial
pressure, mitral valve opens and the filling phase starts;

• filling; the mitral valve is open, and the aortic valve is closed; blood flows from the
atrium into the ventricle, increasing its volume; the mitral valve closes to prevent
reverse flow, and a new isovolumetric contraction phase begins.

We reproduce these phases by switching the boundary conditions applied on ΓAV

and ΓMV according to the ventricular pressure and to the flow through the valve orifices.
Specifically, we represent open valves with the resistance condition (5.1) for the aortic
valve and the Neumann condition for the mitral valve, and closed valves with the no-
slip condition u= 0. Valves are opened according to the average pressure p̄ in the fluid
domain: the aortic valve is opened when p̄ ≥ pAV, and the mitral valve when p̄ ≤ pMV.
Conversely, valves are closed when reverse flow occurs through their section.

We treat active contraction in the active stress framework for this test, using the same
analytically prescribed activation function as in Test A (Section 5.1). We consider the
same mesh as the one used for Tests A and B. With respect to previous tests, we also
change boundary and initial conditions. On the ventricular base of the structure, we
impose a Robin-like condition as in (5.2), to allow for the base to move towards the apex
as the ventricle contracts, as is the case in healthy hearts. We remark that this leads
inlet and outlet boundaries for the fluid domain to move, and this can be problematic in
more complex test cases with realistic geometries. Moreover, we start the simulation by
inflating the structure with a pressure of 1333 Pa, roughly corresponding to the pressure
at the end of the diastolic phase. This allows to start from a more realistic initial condition.

We use an active stress formulation for active mechanics. The final simulation time is
T=0.8s, and we set ∆t=2·10−4 s. Overall, the total wall time needed for the simulation
was 14 h.

We report ventricular volume and pressure in Fig. 9. The evolution of volume and
pressure is qualitatively consistent with the behavior of a normal human heart [66]. Some
snapshots of the solution are shown in Figs. 10 and 11. It can be seen how the ventricle
deforms and contracts during systole by shortening and thickening, and how the original
volume and shape are recovered at the end of the heartbeat, after relaxation.

It is worth remarking that this simplified model includes isovolumetric phases of the
heartbeat, as can be seen from Fig. 9. Such phases are usually neglected in purely CFD
simulations, in which the endocardial wall displacement is provided as data [41,103,106].
Indeed, because of the fluid incompressibility and the fact that both valves are closed,
in isovolumetric phases prescribing a Dirichlet condition on the whole boundary would
generally be incompatible with the divergence-free constraint. As a matter of fact, Dirich-
let data should satisfy a compatibility condition [86], often not satisfied by noisy imag-
ing†. Moreover, pressure would be defined only up to a constant, in that setting. There-
fore, isovolumetric phases cannot be treated in a CFD model, unless special techniques

†Notice that this is true only for physiological cases, where the valves are perfectly closed. In regurgitant



M. Bucelli et al. / Commun. Comput. Phys., 32 (2022), pp. 1217-1256 1243

Figure 9: Pressure and volume plots of the full heartbeat test case (Test C).

are implemented to obtain a well-posed problem [106]. An FSI model is instead capable
of representing isovolumetric phases [81, 106], thanks to the fact that the velocity at the
endocardial wall is not known from data but is itself an unknown of the problem, and
the model also accounts for the stresses exchanged at the fluid-structure interface.

However, after time and space discretizations, in our computational model the fluid
volume is not exactly preserved over time. This is due mostly to two different sources of
spurious volume variations:

• explicit treatment of the geometry: the use of the structure displacement at previ-
ous timestep to compute the fluid domain at current timestep leads to a mismatch
between the fluid volume and the fluid velocity at the boundary;

• SUPG stabilization terms: these can be interpreted as artificial compressibility, so
that at the discrete level the fluid is not strictly incompressible, and a small variation
in volume is observed.

Both effects reduce as ∆t→ 0. Moreover, the volume variations that they introduce are
several orders of magnitude smaller than the characteristic variations in volume of the
ventricle over a heartbeat: in this test case, during isovolumetric contraction, the total
volume variation was of 0.07 mL, corresponding to 0.075 % of the initial volume. Overall,
these spurious effects can be considered negligible.

cases, such as mitral valve regurgitation, a Neumann boundary would appear in correspondence of the
regurgitation orifice.
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(a) t=0ms (b) t=5ms (c) t=10ms

(d) t=25ms (e) t=35ms (f) t=75ms

Figure 10: Snapshots of the fluid velocity of the idealized ventricle test case, for the full heartbeat (Test C).

6 Conclusions

In the context of FSI heart modeling, we compare in a systematic way fully coupled par-
titioned and monolithic FSI coupling schemes on benchmark cases that mimic, in an
idealized setting, the flow regime characteristic of a human ventricle. For all the cases
considered, the performance of the monolithic scheme was significantly better than that
of partitioned iterations, resulting in a total computational time several times smaller for
the whole heartbeat simulation. Partitioned schemes based on Dirichlet-Neumann in-
terface conditions suffer from convergence issues, and have proven to be impractical for
the cardiac tests. Robin-Neumann schemes performed slightly better, and benefit from
acceleration methods, but they still require parameter tuning to be used effectively. For
the complex geometries and material models characterizing the heart, this tuning is not
trivial. Conversely, the monolithic approach is parameter-free, and is consequently more
robust and flexible.

In the monolithic approach, using an implicit discretization for fluid domain dis-
placement entails a higher computational cost than using an explicit discretization. Fully
coupled partitioned schemes, on the contrary, have similar costs with both explicit and
implicit geometric coupling. Nonetheless, he monolithic scheme is more efficient than
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(a) t=0ms (b) t=5ms (c) t=10ms

(d) t=15ms (e) t=35ms (f) t=75ms

Figure 11: Snapshots of the fluid pressure of the idealized ventricle test case, for the full heartbeat (Test C).

the partitioned ones even if an implicit geometric coupling is used. We also found that
Anderson acceleration is capable of slightly improving the results of partitioned schemes.
Moreover, the relative performance of the schemes does not vary depending on the choice
of active mechanics formulation: indeed, with both with active stress and active strain
formulations, the monolithic scheme performed significantly faster than the partitioned
ones. The relative efficiency of monolithic schemes compared to the partitioned ones is
verified in a significant case even as the number of parallel processes is changed.

Finally, using the monolithic scheme, we run a simulation of a full heartbeat on the
idealized geometry, switching inlet and outlet boundary conditions to simulate in a sim-
plified way the opening and closing of cardiac valves. This test case shows the ability
of the computational model to replicate a full heartbeat. In particular, we reproduce the
isovolumetric phases, which is a challenge in other simulation settings involving three-
dimensional modeling of the cardiac blood flow.

Overall, this study indicates that, for strongly coupled FSI simulations in the cardiac
context, a monolithic approach seems to be preferable to a partitioned one, thanks to
its robustness and efficiency. However, more specific studies on the Robin interface pa-
rameters for the cardiac case are mandatory to improve the corresponding partitioned
schemes.
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Appendix A Definition of algebraic operators

In this section we will give the explicit definition of each of the operators introduced in
Section 3. We will not give details on the derivation of the operators, as it follows the
classical finite elements procedure, and refer the interested reader to [62, 86].

In the following, we shall use the subscripts f,s and Σ for the vectors G,D and U to
denote their entries that correspond to nodes located on the interior (not on the interface)
of the fluid domain, on the interior of the structure domain and on the fluid-structure
interface respectively.

We shall assume that the same discretization is used for the fluid domain displace-
ment and fluid velocity, so that both are described using the same set of basis functions.
We partition the basis functions as done for the solution vectors into a subset for interior
nodes and a subset for interface nodes. We will denote the basis functions as follows:

• ϕs
s,i, for i∈{1,.. . ,Ns

s}, are the basis functions for the structure displacement corre-
sponding to the interior nodes of the structure domain (i.e. such that their support
does not intersect Σ);

• ϕs
Σ,i, for i∈{1,.. . ,Ns

Σ}, are the basis functions for the structure displacement corre-
sponding to the interface nodes of the structure domain (i.e. such that their support
intersects Σ);

• ϕf
f,i, for i∈{1,.. . ,Nf

f}, are the basis functions for the fluid velocity and fluid domain
displacement corresponding to the interior nodes of the fluid domain;

• ϕf
Σ,i, for i∈{1,.. . ,Nf

Σ}, are the basis functions for the fluid velocity and fluid domain
displacement corresponding to the interface nodes of the fluid domain;
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• ψi, for i∈{1,.. . ,NP}, are the basis function for the fluid pressure.

We assume that the fluid and structure meshes are conforming, so that there exists a one-
to-one correspondence between interface nodes on the two subdomains. This entails
Ns

Σ = Nf
Σ. We will assume that the numbering of interface basis functions on the two

subdomains is the same, so that ϕs
Σ,i=ϕf

Σ,i on Σ.

A.1 Structure displacement

The operator Ss is defined as

Ss(D
n+1)=

ρs

∆t
Ms

ss

(
Dn+1

s −2Dn
s +Dn−1

s

)
+

ρs

∆t
Ms

sΣ

(
Dn+1

Σ −2Dn
Σ+Dn−1

Σ

)
+Ks

s(D
n+1),

where

Ms
kl∈RNs

k×Ns
l ,

(
Ms

kl

)
i,j
=
∫

Ω̂s

ϕ
s
k,i ·ϕ

s
l,j, i∈

{
1,.. . ,Ns

k

}
, j∈

{
1,.. .,Ns

l

}
, k,l∈{s,Σ}

are the structure mass matrix blocks corresponding to the different combinations of inte-
rior and interface basis functions, and

Ks
k(D

n+1)∈RNs
k ,

(
Ks

k

)
i
=
∫

Ω̂s

P(dn+1) :∇ϕ
s
k,i, i∈

{
1,.. .,Ns

k

}
, k∈{s,Σ}

is the nonlinear stiffness operator, corresponding to either the interior or interface basis
functions.

A.2 Fluid domain displacement

The operators Gf and Cg are defined as

Gf(G
n+1)=K

g
ffG

n+1
f +K

g
fΣGn+1

Σ ,

Cg(G
n+1,Dn+1)=Gn+1

Σ −Dn+1
Σ ,

where

K
g
kl∈RNf

k×Nf
l ,

(
K

g
kl

)
i,j
=
∫

Ω̂f

∇ϕ
f
k,i :∇ϕ

f
l,j, i∈

{
1,.. .,Nf

k

}
, j∈

{
1,.. . ,Nf

l

}
, k,l∈{f,Σ}

are the stiffness matrix blocks corresponding to the different combinations of interior and
interface basis functions. The operator G reads

G(Gn+1,Dn+1)=

[
G(Gn+1)

Cg(Gn+1,Dn+1)

]
.
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A.3 Fluid problem

Let us denote by V and P the subset of fluid degrees of freedom U related to velocity and

pressure respectively. The operator Ff =
[
FU

f ,FP
f

]T
has two blocks, corresponding to the

discretization of the momentum and incompressibility equations respectively. The first
block reads

FU
f (U

n+1,Gn+1)=
ρf

∆t
Mf

ff

(
Vn+1

f −Vn
f

)
+

ρf

∆t
Mf

fΣ

(
Vn+1

Σ −Vn
Σ

)

+Cff(V
n,Gn+1,Gn)Vn+1

f +CfΣ(V
n,Gn+1,Gn)Vn+1

Σ

+Kf
ffU

n+1
f +Kf

fΣUn+1
Σ +BT

f Pn+1,

while the second one is given by

FP
f (U

n+1,Un,Gn+1,Gn)=BfV
n+1
f +BΣVn+1

Σ .

In the above equations,

Mf
kl∈RNf

k×Nf
l ,

(
Mf

kl

)
i,j
=
∫

Ωt
f

ϕ
f
k,i ·ϕ

f
l,j, i∈

{
1,.. . ,Nf

k

}
, j∈

{
1,.. .,Nf

l

}
, k,l∈{f,Σ}

are the fluid velocity mass matrix blocks corresponding to the different combinations
of interior and interface basis functions. Cff and CfΣ arise from the discretization of the
advection term of the momentum equation, and are given by

Ckl∈RNf
k×Nf

l ,
(
Cf

kl

)
i,j
=
∫

Ωt
f

(w·∇)ϕf
l,k ·ϕ

f
k,i, i∈

{
1,.. . ,Nf

k

}
, j∈

{
1,.. .,Nf

l

}
, k,l∈{f,Σ},

in which w is the advection velocity, computed from the discrete velocity and fluid do-
main displacement vectors through

w=
Nf

f

∑
i=1

(
Un

f,i−
Gn+1

f,i −Gn
f,i

∆t

)
ϕ

f
f,i+

Nf
Σ

∑
i=1

(
Un

Σ,i−
Gn+1

Σ,i −Gn
Σ,i

∆t

)
ϕ

f
Σ,i.

Matrices Kf
ff and Kf

fΣ are stiffness matrices for the fluid, defined by

Kf
kl∈RNf

k×Nf
l ,

(
K

g
kl

)
i,j
=
∫

Ω̂f

2µε
(
ϕ

f
l,j

)
:∇ϕ

f
k,i, i∈

{
1,.. . ,Nf

k

}
, j∈

{
1,.. . ,Nf

l

}
, k,l∈{f,Σ},

and the matrices Bf and BΣ are defined by

Bk∈RNP×Nf
k , (Bk)i,j=

∫

Ωt
f

ψi∇·ϕ
f
k,j, i∈

{
1,.. . ,NP

}
, j∈

{
1,.. . ,Nf

k

}
, k∈{f,Σ}.

Terms arising from the SUPG stabilization are not reported here for the sake of brevity,
but they are discussed e.g. in [31, 86, 105, 116].
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A.4 Coupling conditions

The kinematic coupling operator Ck is defined as

Ck(U
n+1,Dn+1)=MΣΣ

(
Vn+1

Σ −
Dn+1

Σ −Dn
Σ

∆t

)
.

We remark that in the implementation of DN scheme and of monolithic scheme, the con-
tinuity of velocity is applied essentially, i.e. we strongly impose the constraint that fluid
and structure velocity interface degrees of freedom are equal. However, this formulation
of the kinematic coupling operator is relevant when defining the interface conditions in-
volved in partitioned schemes based on Robin conditions [14, 15].

Dynamic coupling is imposed in residual form [14], so that the dynamic coupling
operator Cd reads

Cd(D
n+1,Un+1,Gn+1)=

ρs

∆t
Ms

Σs

(
Dn+1

s −2Dn
s +Dn−1

s

)
+

ρs

∆t
Ms

ΣΣ

(
Dn+1

Σ −2Dn
Σ+Dn−1

Σ

)

+Ks
Σ(D

n+1)+
ρf

∆t
Mf

Σf

(
Vn+1

f −Vn
f

)
+

ρf

∆t
Mf

ΣΣ

(
Vn+1

Σ −Vn
Σ

)

+CΣf(V
n,Gn+1,Gn)Vn+1

f +CΣΣ(V
n,Gn+1,Gn)Vn+1

Σ

+Kf
ΣfU

n+1
f +Kf

ΣΣUn+1
Σ +BT

ΣPn+1.

Appendix B Relaxation and convergence acceleration

The convergence properties of PE and PI schemes can be enhanced by using suitable re-
laxation or convergence acceleration schemes. We embed such schemes in the operator
R(k+1)(D̃

n+1
(k+1)

,Dn+1
(k)

,Dn+1
(k−1)

,. . .) that, for a given guess D̃n+1
(k+1)

for the structure displace-

ment at next iteration and the structure displacements of previous iterations, computes
Dn+1

(k+1)
. We consider three different relaxation operators.

B.1 Static relaxation (SR)

The relaxation operator is given by [14, 27, 69]

R(k+1)

(
D̃n+1

(k+1)
,Dn+1

(k)
,Dn+1

(k−1)
,. . .
)
=λD̃n+1

(k+1)
+(1−λ)Dn+1

(k)
, k=0,1,2,.. . , (B.1)

where λ ∈ (0,1] is a suitable parameter whose choice is critical to the convergence of
the scheme; in particular, large values of λ typically lead to a fast convergence (when
convergence occurs), but too large values of λ may cause the scheme to diverge [27].

In our numerical simulations, we used a relaxation of λ= 0.005 for all DN schemes,
and a relaxation λ=1.0 for RN schemes.
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B.2 Aitken acceleration (AitA)

The relaxation operator is defined as [14, 69, 76]

R(k+1)

(
D̃n+1

(k+1),D
n+1
(k) ,Dn+1

(k−1),. . .
)
=λ(k+1)D̃

n+1
(k+1)+(1−λ(k+1))D

n+1
(k) , k=0,1,2,.. . (B.2)

with λ(k+1) computed as [69]

λ(k+1)=λ(k)

D̃n+1
k ·

(
D̃n+1

(k+1)
−Dn+1

(k)
−D̃n+1

k +−Dn+1
(k−1)

)
∥∥D̃n+1

(k+1)
−Dn+1

(k)
−D̃n+1

k +−Dn+1
(k−1)

∥∥ , k=0,1,2,.. .

for λ0 given. This scheme typically improves the convergence with respect to static re-
laxation [69]. However, the choice of the initial relaxation parameter λ0 is still problem
dependent and needs to be manually tuned [69].

In our numerical simulations, we used a relaxation of λ0 =0.005 for all DN schemes,
and a relaxation λ0=1.0 for RN schemes.

B.3 Anderson acceleration (AndA)

Anderson acceleration (AndA) [7, 37, 112], also known as Anderson mixing, can be in-
terpreted as a multi-secant method [37] or as a nonlinear generalization of GMRES [112]
and is based on computing the new iterate making use of the previous m ones, with m
a suitable integer parameter. While generally used for self-consistent field iterations in
the computation of electronic structures [37], it has been also been applied to domain
decomposition [112] and multiphysics problems [23] and can be used to accelerate the
convergence of FSI fixed-point schemes [74].

The procedure behind Anderson acceleration can be detailed as follows [112]. Con-
sider the fixed-point iteration

x(k+1)= g(xk)

used to compute the solution of x = g(x). Then, given m ∈ N and an initial guess x0,
Anderson acceleration of the sequence x(k+1) can be computed as follows:

1. Set m(k)=min{m,k}.

2. Set F(k)=[ fk−m(k)
, fk−m(k)+1,. . ., f(k)], where fi = g(xi)−xi.

3. Find α(k)=[α
(k)
0 ,α

(k)
1 ,. . .,α

(k)
m(k)

]T =argminα∈A‖F(k)α‖, with

A=

{
α=

[
α0,α1,. . .,αm(k)

]T
such that

m(k)

∑
i=0

αi=1

}
.

4. Set x(k+1)=∑
m(k)

i=0 α
(k)
i g(xk−m(k)+i).

Details on how to interpret the method, as well as alternative formulations, criteria for
the choice of m and implementation details can be found in [112].

In all numerical simulations involving Anderson acceleration, we used m=10.



M. Bucelli et al. / Commun. Comput. Phys., 32 (2022), pp. 1217-1256 1251

References

[1] CINECA GALILEO100 technical specifications, https://wiki.u-gov.it/confluence/

display/SCAIUS/UG3.3

[2] Official deal.ii website https://www.dealii.org/

[3] Official lifex website https://lifex.gitlab.io/lifex/

[4] P. C. Africa, R. Piersanti, M. Fedele, L. Dede, and A. Quarteroni, Lifex-heart module:
a high-performance simulator for the cardiac function package 1: Fiber generation, arXiv:
2201.03303, 2022.

[5] D. Ambrosi, G. Arioli, F. Nobile, and A. Quarteroni, Electromechanical coupling in cardiac
dynamics: the active strain approach, SIAM J. Appl. Math, 71(2):605–621, 2011.

[6] D. Ambrosi and S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive
issues, J. Elast., 107(2):199–212, 2012.

[7] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM, 1965.
[8] D. Arndt et al., The deal.II library, version 9.2, J. Numer. Math., 28(3):131–146, 2020.
[9] D. Arndt et al., The deal.II finite element library: design, features, and insights, Comput.

Math. Appl., 2020.
[10] M. Astorino, F. Chouly, and M. A. Fernández, Robin based semi-implicit coupling in fluid-

structure interaction: Stability analysis and numerics, SIAM J. Sci. Comput., 31(6):4041–
4065, 2010.

[11] M. Astorino, J. F. Gerbeau, O. Pantz, and K. F. Traoré, Fluid-structure interaction and multi-
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