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Abstract. We numerically study the dynamics of quasi-two dimensional cholesteric
liquid crystal droplets in the presence of a time-dependent electric field, rotating at
constant angular velocity. A surfactant sitting at the droplet interface is also intro-
duced to prevent droplet coalescence. The dynamics is modeled following a hybrid
numerical approach, where a standard lattice Boltzmann technique solves the Navier-
Stokes equation and a finite difference scheme integrates the evolution equations of
liquid crystal and surfactant. Our results show that, once the field is turned on, the lig-
uid crystal rotates coherently triggering a concurrent orbital motion of both droplets
around each other, an effect due to the momentum transfer to the surrounding fluid.
In addition the topological defects, resulting from the conflict orientation of the lig-
uid crystal within the drops, exhibit a chaotic-like motion in cholesterics with a high
pitch, in contrast with a regular one occurring along circular trajectories observed in
nematics drops. Such behavior is found to depend on magnitude and frequency of the
applied field as well as on the anchoring of the liquid crystal at the droplet interface.
These findings are quantitatively evaluated by measuring the angular velocity of fluid
and drops for various frequencies of the applied field.
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1 Introduction

Nematic liquid crystals are an example of soft material in which the local alignment of
anisotropic-shaped molecules they are made of is described by a unit magnitude director
field n with head-tail symmetry. Cholesteric liquid crystals, on the contrary, are chiral
systems in which the locally favoured state of the director field is a twist deformation in
the direction perpendicular to the molecules [1-3]. Such helical arrangement is character-
ized by a helix pitch po, a quantity measuring the distance over which the director rotates
by 27.

Of particular relevance to us are cholesteric liquid crystal droplets, highly confined
chiral soft fluids that have found vast application in several sectors of modern industry,
ranging from photonics [4,5] and laser beams [6] to microlasers [7], optics [8], displays [9]
and, more recently, as active material [10-12]. In these objects the order of the director is
crucially affected by the anchoring of the liquid crystal at the droplet interface [13-19]. In-
deed, under confinement, the typical helical structure of the cholesteric may conflict with
that imposed at the boundaries, often favouring the formation of topological defects (or
disclinations) whose nature can decisively condition mechanical and optical properties
of the liquid crystal [15,20,21]. While, over the years, considerable efforts have been
addressed to theoretically investigate the physics of cholesteric droplets and their associ-
ated defect structure at equilibrium [15, 16,22-28], only recently a number of numerical
works have been dedicated to pinpointing their response under an external driving, such
as a heat flux [29] or an electric field [30,31]. Such works have been inspired by experi-
ments showing for example that, if subject to a temperature gradient, cholesteric drops
are set into rotation due to either a thermomechanical torque mechanism [32-34] or to
Marangoni flows [29,35]. A rotation can be alternatively triggered by applying a uniform
(i.e. time independent) and large enough electric field, giving rise to a torque applied
to the liquid crystal confined within the drops [36-39]. Further experiments have also
shown that angular velocity and shape of such rotating drops can be controlled by tuning
an oscillatory electric field coupled to the liquid crystal subject to a thermal gradient [40].

In a previous work [30] we numerically studied the response of a quasi-two dimen-
sional cholesteric drop dispersed in an isotropic fluid solely subject to an electric field
coupled to the liquid crystal, and we showed that its dynamics and that of the defects
critically depend on magnitude and direction of the field as well as on elasticity and
pitch of the liquid crystal. If the field is non uniform, such as a rotating one with con-
stant frequency, the defects display a persistent periodic motion occurring with an angu-
lar speed generally lower than that set by the field, due to the anisotropy of the liquid
crystal. In this work we go one step further and consider a couple of cholesteric drops
in an isotropic fluid subject to a time-dependent electric field E(r,t) rotating at constant
frequency w. Droplet coalescence is prevented by including a surfactant accumulated
at their interfaces. The theoretical framework used to describe the droplet physics relies
on well-established continuum prescriptions [41], in which a small number of continuum
fields, such as concentration and ordering of the liquid crystal, amount of surfactant, den-
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sity and velocity of the fluid, capture the coarse-grained behavior of the system. The evo-
lution of these fields is written in terms of a set of hydrodynamic equations in which the
thermodynamic forces (such as pressure tensor and molecular field) stem from functional
differentiation of a free-energy encoding the equilibrium properties. Following previous
studies [42-44], we simulate the droplet dynamics using a hybrid lattice Boltzmann (LB)
formulation [45], in which the Navier-Stokes equation governing the evolution of the
fluid velocity is solved using a standard LB approach, while advection-relaxation equa-
tions of liquid crystal and surfactant are integrated using a finite-difference scheme.

Our results report a complex scenario in which, regardless of the pitch of the cholester-
ics and of its anchoring at the droplet interface (perpendicular or tangential), the rotation
of the liquid crystal triggered by the applied field fosters that of the fluid confined within
and in the surroundings of the drops, an effect overall akin to the dynamics observed
in [30]. However, in a double-drop configuration the fluid also favours the rotation of
both drops around an axis located in the fluid film separating the droplets. Their angu-
lar velocity as well as that of the fluid confined within increase approximately linearly
for low values of frequency of the applied field while, for higher ones, it diminishes and
stabilizes to constant values. This behavior affects the defect dynamics too. While in the
nematic limit (i.e. infinite pitch) topological defects of charge 1/2 follow a circular path
either close to the interface or towards the center of the drops, in the cholesteric phase A
and T defects emerge [20] (see also section III A), the latter firmly anchored to the former
which periodically stretch and shorten under the oscillatory field.

The paper is organized as follows. In Section 2 we describe the thermodynamics of
a cholesteric droplet hosted in an isotropic medium and the numerical implementation
of the computational model, while in Section 3 we illustrate the results. In particular, we
start off with studying the dynamic response of two nematic drops under an oscillatory
electric field and then we consider two cholesteric drops for various interface anchoring
conditions and frequency of the field. Some final remarks close the manuscript.

2 Model

We consider two cholesteric droplets immersed in an isotropic host in the presence of
a surfactant absorbed onto their interface. The physics of such system is described by
a set of coarse-grained fields, p(r,t), ¢(r,t), c(r,t), u(r,t) and Q,p(r,t) which represent,
respectively, the mass density, the concentration of the cholesteric phase relative to the
isotropic one, the concentration of the surfactant, the average velocity of the fluid, and the
tensor order parameter that, within the Beris-Edwards framework [1,2,46], captures the
ordering of the liquid crystal. In the uniaxial approximation, Qus =q (1.1 — 16,5) (Greek
subscripts denote the Cartesian coordinates), where n is the director field accounting for
the local direction of the molecules and g gauges the amount of the local order which is
proportional to the largest eigenvalue of Q (0<g < %).

The equilibrium properties of this system in the presence of an external electric field
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are described by a Landau-de Gennes free energy F = [, fdV, where the free-energy
density is

f=i¢2(¢—¢o>2+('“”+2m<w>2+clnc

—|—A0[; <1_€(3(P)> iﬂ_é(;))QaﬁQﬁ'yQ’m—kg(f)( iﬁ)z

+ g [(aﬁQaﬁ)z + (€ay507Qsp+200Qup)* | + W (0) Qup (0p¢) — %Ea QupEp.  (21)

The first term, multiplied by the positive constant 4, is the binary fluid bulk free energy
which ensures the existence of two coexisting minima, ¢ = ¢ within the droplet (where
the cholesteric liquid crystal is confined) and ¢ =0 outside. The second term of Eq. (2.1)
describes the interfacial properties of the mixture. The constant xy controls surface ten-
sion and interface width which, in a binary fluid without liquid crystal, are o~  /aky and
¢~ /ky/arespectively, while k. determines whether the surfactant accumulates either at
the droplet interface (x. <0) or in the droplet bulk (x. > 0). Throughout our simulations
k. is kept negative [30,47-49]. The logarithmic term, cInc, stems from the translational
entropy of the surfactant [50].

The bulk properties of the liquid crystal are captured by three further contributions
(where summation over repeated indices is assumed) which contain terms of the Q-
tensor up to the fourth order. The scale factor A is a positive constant while (¢) controls
the isotropic-liquid crystal transition and determines which of the two phases is stable.
For a nematogen without chirality (g0 =0), the global minimum of the free energy is the
nematic state for {(¢) > . =2.7 and the isotropic one for {(¢) < {.. Following previous
works [30,44], we set { =+ (s¢, where (p and {; control the boundary of the coexistence
region. Local distortions of the liquid crystal enter the free energy through first order
gradient terms of Q augmented by a gradient-free contribution which guarantees that
the free energy is positive. K is the elastic constant, ¢, is the Levi-Civita antisymmetric
tensor and qo =277/ py is the chirality which sets the pitch length pg of the cholesteric. The
anchoring of the director field at the droplet interface is ensured by the term proportional
to W whose value gauges the anchoring strength. In our simulations we are in the strong
anchoring regime, meaning that the director field at the interface is only weakly affected
by an external field. The sign of W controls the orientation of the liquid crystal: if posi-
tive, the director is aligned tangentially to the interface (planar or tangential anchoring)
whereas, if negative, it is aligned perpendicularly (homeotropic anchoring). Finally, the
last term of the free energy accounts for the interaction between the liquid crystal and the
external electric field E, where €, > 0 is the dielectric anisotropy.

It is often convenient to write the free energy in terms of a decreased number of di-
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mensionless parameters on which the phase behavior can depend [51]:

B /108Kq3
K= 71‘\0@(4?0)’ (2.2)

_27(1—C(¢o)/3)
i C(¢o) ' 23)

27€
2 a
=—— _EE,. 24
© T RaAl(go) " @4

Here 7 is the reduced temperature, multiplying the quadratic terms of the dimensionless
bulk free energy, « is the chirality multiplying the gradient ones and ¢ is an effective field
strength.

The dynamic equations governing the evolution of the system are [41,46]

drp+u-Vo=MV2p,, (2.5)
dic+u-Ve=V-[L(c)Vucl, (2.6)
(9;+u-V)Q—S(W,Q)=TH, 2.7)
V-u=0, (2.8)
p(0;+updp) ity =g Pyp. (2.9)

The first two equations describe the dynamics of the ¢ and c fields. In Eq. (2.5) py=06F /¢
is the chemical potential and M is the mobility, while in Eq. (2.5) ptc =90F /éc and L(c) =
Dc, where D is the diffusion coefficient of the surfactant. The functional form of L(c) is
necessary to avoid a singularity at c =0 in the surfactant density current j.=—L(c) V.
[49,50]. The dynamics of Q is described by Eq. (2.7), where the term on the left hand
side is a generalized material derivative. In particular S(W,Q) takes into account the fact
that the order parameter distribution can be rotated or stretched by the flow, and can be
written as [46]

S(W,Q)=(ZD+0)(Q+1/3)+(Q+1/3)((D—Q) —2Z(Q+1/3)Tr(QW).  (2.10)

Here D= (W+WT)/2 and Q = (W—WT)/2 are the symmetric and antisymmetric part
of the velocity gradient tensor W,z = dgu, and I is the identity matrix. The constant ¢
determines the aspect ratio of molecules; if positive, molecules are rod shaped while,
if negative, they are disk-like. It also controls the response of a nematic liquid crystal
under shear flow. Indeed, at the steady state (achieved, for example, after imposing a
homogeneous shear), the director aligns with the flow gradient at an angle 0 fulfilling
the relation {cos(20) = (3q)/(2+¢q) [1]. Real solutions, corresponding to a flow aligning
regime, are obtained if ¢ > 0.6. Finally, I is the collective rotational diffusion constant
which, together g (the scalar order parameter), controls the rotational viscosity ;=242 /T
of the liquid crystal explicitly appearing in the Leslie-Ericksen theory of nematodynamics
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[1,42]. In Eq. (2.7), H is the molecular field which is given by

6F 1. 0F
H=—35+3T5g" (2.11)

The last two equations are the continuity and the Navier-Stokes equation (in the incom-
pressible limit), where P, is the total stress tensor given by

PDC,B:SDCIB_’_NDC‘B' (2.12)

In Eq. (2.12) sup = 17(9a1up+0pu,) is the stress of the background fluid with # isotropic
shear viscosity, while 77,5 can be written as the sum of three further terms [1,43,44, 46]
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with P isotropic pressure. Here 0,5 and 7,5 are the symmetric and antisymmetric part
of the liquid crystal stress tensor, while I1,5 includes stress contributions of binary fluid
and surfactant plus interfacial terms.

2.1 Numerical implementation

Egs. (2.5)-(2.9) are solved by using a hybrid numerical approach, in which Egs. (2.5),
(2.6) and (2.7) are integrated by means of a finite difference-scheme while Egs. (2.8) and
(2.9) by a standard lattice Boltzmann method [45]. We incidentally note that, although a
hybrid LB machinery has been already successfully employed to study binary [52] and
ternary fluids [49], active gels [53-55] and liquid crystals, such as nematics [56,57] and
cholesterics [30,31,58-61], in this work the applicability of the method has been further
extended to study liquid crystal emulsions in the presence of a surfactant whose dynam-
ics is explicitly solved.

Here we shortly outline the details of the computational model. The lattice Boltzmann
method is built starting from a set of distribution functions f;(x,t) (defined on a lattice
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site x at time t) whose sum on each site x gives the density p of the fluid. The f; evolve
following a discrete Boltzmann equation

fi(x+e;At,t+At) :fi(x,t)—i—%[cfi Ot A fi}) +Cr (x et t+AL{f )], (217)

where At is the integration time-step and e; are velocity vectors linking nearest neighbor
sites. In our simulations we employ a D3Q15 scheme, i.e. a cubic lattice with 15 velocity

vectors e\’ =(0,0,0), e!”) = (41,0,0),(0,%1,0),(0,0,+1) and e!” = (+1,%1,+1), where the

i
index i runs from 0 to 14 and is defined so that i =0 corresponds to ego), i=1,---,6 to
efl) (nearest neighbors) and i=7,---,14 to efz) (next-nearest neighbors) [42]. In Eq. (2.17),
the f* are a first order approximation to f;(x+e;At,t+At) and are obtained by apply-
ing AtCr(x,t,{fi}) on the right hand side of Eq. (2.17). Such approach, analogous to a
predictor-corrector scheme, has been proven to enhance the numerical stability of the

method [42,43]. The term Cy, is the collision operator, which is given by

Clot Afil) === ()~ fT (ot D)+ pilut L) 218)

where T is a relaxation time (controlling the fluid viscosity 77 =pt/3 [42,43]), ;" are the
equilibrium distribution functions which can be written as a second order expansion in
the fluid velocity u and the terms p; represent driving contributions. Following previous
works [43,44, 62], a considerable reduction of the spurious velocities (non-zero velocity
field at equilibrium caused by different discretisation of pressure tensor and molecular
field) is ensured if 0, enters the second moment of ffq while 7,5 and I1,4 enter the first
moments of p;. However, as previously mentioned, our method is different from the
ones in Refs. [43] and [44], since it solves the equations of ¢ and ¢, not included in [43],
using a hybrid approach, not adopted in [44]. Finally, imposing conservation of mass
and momentum to f;’, the continuity and the Navier-Stokes equations are recovered via
a Chapman-Enskog expansion of Eq. (2.17).

Unlike Egs. (2.8) and (2.9), Egs. (2.5), (2.6) and (2.7) are solved using a predictor-
corrector scheme, in which the finite difference operators (spatial derivatives and Lapla-
cian) are discretised using a stencil representation and the integration time-step is set
equal to that of the lattice Boltzmann [52]. The advantage of using a hybrid LB method
with respect to a full LB approach (such as the one used in Refs. [42,44]) is that it allows
simulations of large systems with substantially smaller memory requirements. Indeed,
a full LB treatment of our cholesteric droplet would require to store eight sets of fifteen
distribution functions (if a D3Q15 scheme is used), i.e. one set for the fluid, five sets for
the liquid crystal (since the Q tensor has five independent components), one for ¢ and a
further one for c. On the contrary, the hybrid method needs one set of fifteen f; for the
fluid plus seven independent components for the remaining fields.
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2.2 Initial conditions, parameter values and mapping to physical units

Simulations are performed on a quasi-2d squared lattice (Ly =1, L, =250, L, =250), peri-
odic in all directions, in which either an isolated or a couple of cholesteric drops of equal
size are surrounded by an isotropic fluid. In the former system the droplet is placed in the
center of the mesh while in the second case the centers of mass of the drops are initially
located at distance d>2R, where R is the radius of each drop kept fixed to 32 lattice sites.
With respect to a fully 3d study, this quasi-2d setup allows for simulations at a much
reduced computational cost and concurrently preserves the intrinsic three-dimensional
structure of the cholesteric liquid crystal, since it enables out-of-plane components of the
macroscopic fields (along the x-direction).

The system is initialized as follows. We have set ¢ =0 and Q =0 outside the droplets,
while inside ¢ is kept constant (equal to ¢y =2) and the components of Q are chosen to
accommodate a cholesteric with helix parallel to the horizontal y-axis. This is achieved
by setting

Qxx = (bop—b1/2)cos(2q0y) +b1/2, (2.19)
Quy=—b1, (2.20)
Qxz=—(bo—b1/2)sin(2q0y), (2.21)
Quy=0Qyz=0, (2.22)

where by =0.546, b; =0.272. The parameter qo=27/ po controls the number N of 7 twists
of the liquid crystal in a droplet of diameter 2R. Indeed, to compare py with the size of
the droplet, one can define the pitch length as po =4R/N. If, for instance, R =32 and
go=2m/32, one has N =4, while, if g0 =27/64, N =2. In particular, N =0 corresponds
to a nematic liquid crystal. Finally the concentration of the surfactant c is initially set to a
constant value equal to co =0.02 uniformly on the lattice.

In our simulations the numerical values of the parameters are a = 0.07, xy = 0.14,
M=0.05, x,=-13, D=01, Ag=1, K=0.03, |IW|=0.04, (=07, T=1, =167 and
€, ~10. Also, lattice spacing and integration time step are Ax =1 and At =1. Finally, by
setting {(¢o) =3 and qo={27/32,27t/64}, one has T=0 and x~0.1,0.2, well within the
region of the cholesteric phase according to the phase diagram of Ref. [63,64].

An approximate mapping to real physical values can be obtained by assuming that
one space, time and force in LB units correspond to L =10"'um, T =1us and F = 1nN.
This corresponds to a cholesteric liquid crystal of elastic constant ~30pN and rotational
viscosity of ~ 1 Poise confined within a droplet of diameter ~ 10um. The mapping of
the electric field to real units can be performed by using the dimensionless parameter
e. As in previous works [30, 58], by assuming ﬁ?%) ~1-5x10"°]"1m~3, an electric
field of 1—-10V /um with dielectric constant of the order 10 (a positive value ensures
that the director field aligns parallel to the electric field), gives €2~ 0.001. This value
ensures that non-local effects associated with inhomogeneities of the electric field can be
neglected [65]. Also, the values of the frequency w of the applied rotating field typically



126 F. Fadda, A. Lamura and A. Tiribocchi / Commun. Comput. Phys., 33 (2023), pp. 118-143

vary from 10~° (low frequency regime) to 10! (high frequency regime). If, for example,
w=~10"2, the director field within the droplet would complete a full turn in approximately
600 simulation time steps, which would roughly correspond to 0.5ms in real time. Finally,
the anchoring constant is mapped to a value Wa10~*Jm =2 [30,44, 66].

3 Results

We start by discussing the equilibrium configurations of an isolated cholesteric droplet
and afterwards we focus on the dynamics of couple of droplets under a rotating (or os-
cillatory) electric field.

3.1 Equilibrium states

In Ref. [30] we have extensively described the typical equilibrium configurations of a
quasi-2d isolated cholesteric droplet, whose liquid crystal profile was found to essentially
depends upon elasticity, direction of surface anchoring (perpendicular or tangential) and
number N of 7T twists of the cholesteric. Here we shortly recap the essential features.

In Fig. 1 we show a number of selected cases observed for N=0 (a,b,c), N=2 (def)
and N =4 (gh,i), where W = 0.04 (tangential direction) in Fig. 1a,d,g, W = —0.04 (per-
pendicular direction) in Fig. 1b,e,h and W =0 (no fixed anchoring) in Fig. 1cf,i with no
surfactant (its presence does not alter the equilibrium states).

If N=0 (i.e. a nematic state) and W # 0, two topological defects (highlighted with
white circles), placed on opposite sides and near the interface, emerge due to the conflict
orientation between the direction of the liquid crystal in the bulk and that at the edge.
In particular, for both tangential and perpendicular anchoring (Fig. 1a-b), the topolog-
ical charge is 1/2. On the contrary, if W =0 (Fig. 1c) the pattern remains uniform and
defect-free. For increasing values of N, defects akin to those experimentally observed in
cholesterics emerge [13, 15,18, 20, 67]. They are caused either by the conflict anchoring
at the droplet boundary or by the marked modification of the liquid crystal orientation
in the bulk. More specifically, in 2d defects can be broadly classified into three groups,
namely A TEM (where m is the topological charge taking values £1/2 and +1) and
twist disclinations of charge —1/2 [4,15,30].

If N=2, an example of a A*! defect is given in Fig. 1d where tangential anchoring is
set. Here the director arranges in a quasi-2d circular fashion gradually escaping into the
third dimension in the middle of the droplet, a structure similar to the one observed in
axial drops [13,20]. Note that, unlike the defects in nematics, here it is the local cholesteric
pitch axis, rather than the director field, that winds around the defect and is discontin-
uous at it. The value of the topological charge is the one required to satisfy its global
conservation within the droplet [68]. Examples of T defects and twist disclinations are
shown in Fig. le, where perpendicular anchoring is set at the droplet interface. Two
T+1/2 defects (blue circles) appear along the equator due to conflict orientation of the
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Figure 1: Equilibrium configurations of nematic and cholesteric liquid crystal droplets in an isotropic fluid. The
radius is R =32, the anchoring strengths are W =0.04 (a,d,g), W= —0.04 (b,e,h) and W =0 (c,f,i), while
the number of 7 twists is N=0 (a,b,c), N=2 (d,e,f) and N=4 (g,h,i). Topological defects, where the
orientational order drops, are highlighted with circles; the white ones indicate generic in-plane defects, the grey
ones twist-disclinations and the blue ones T defects. The black spot marks the lambda regions. The colour
map of (a)-(b)-(c) (nematic droplets) shows the largest eigenvalue of the Q-tensor and ranges from 0 (blue,
the isotropic region) to ~0.33 (red, the liquid crystal). The color map of (d)-(e)-(f)-(g)-(h)-(i) (cholesteric
droplets) shows the x-component of the director multiplied by the largest eigenvalue of the Q-tensor. This is
to highlight regions where the director field has components out of the y—z plane. The red zone, in particular,
marks the exit from the plane towards the reader.

liquid crystal at the edge and in the bulk, while two twist disclinations of charge —1/2
(grey circles) are located on opposite sides along the vertical direction. The director of
these twist disclinations shows a slight splay in the y—z plane at the top of the defect
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(where it is actually pinned at the droplet interface), while it twists around the x axis at
the bottom [4]. Such defects are connected by a stretched A*! disclination which sepa-
rates two mirroring splay-bend distortions located symmetrically with respect to the A
defect. Once again, the global topological charge is +1, as required by these boundary
conditions. Note incidentally that, since in T defects the director is singular, the orienta-
tional order drops at their core, thus they can be easily tracked numerically (computing
the order at each point). On the contrary, A lines are more difficult to locate exactly on
the lattice since, for reasons of computational efficiency, only a limited number of lattice
points can be used to correctly resolve the size of their core, whose radius is comparable
to the helix pitch pg. Hence, we prefer referring to a “+1 charged region” the one contain-
ing either a A1 defect or a couple of A1/ defects, the latter ones often found to merge
(especially in the presence of an external electric field [30]).

Finally, in the absence of anchoring, no defects arise (the global topological charge is
zero, see Fig. 1f) and the director relaxes towards a state exhibiting an almost full-bend
arrangement along the vertical direction linked to two symmetric splay-bend distortions
in the bulk.

If N =4, a more complex arrangement of the director field is observed. For tangential
anchoring (Fig. 1g), for example, three stretched A ™! regions connect couples of defects
of charge —1/2 localized symmetrically near the interface. With respect to the N =2
case, a 2d twisted pattern of the director field, resembling the bipolar cholesteric struc-
ture observed, for example, in [15,69], forms in the bulk of the droplet. For perpendicular
anchoring (Fig. 1h) one has, once again, three A ™! regions linking couples of twist discli-
nations of charge —1/2 plus two 7+1/2 defects located along the equator, a structure par-
tially comparable to that observed in short-pitch cholesteric drops reported in Ref. [18].
Such defects disappear if the interface anchoring is absent (Fig. 1i).

3.2 Couples of nematic droplets subject to an oscillatory electric field (N =0)

In this section we focus on the dynamics of couples of drops of liquid crystal hosted in
an isotropic fluid and in the presence of an oscillatory electric field. The two droplets
are accommodated in the middle of the lattice at a distance d ~2.5R between their cen-
ters of mass and are relaxed towards their equilibrium state (the ones described in the
previous section). The value of such distance is sufficient to minimize contacts between
the interfaces of the equilibrated droplets and to prevent coalescence. If the drops come
into close contact, their merging is significantly reduced by including a surfactant solute.
This is initially set to a constant value uniformly on the lattice and, after relaxation, it
accumulates at the droplet interfaces.

Once the equilibrium is attained, a rotating electric field is switched on. The func-
tional form of the components of the field is given by

AV AV
E,=———sin(wt), E,=——cos(wt), 3.1)
L, L.
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Figure 2: Couple of nematic droplets with tangential anchoring (W =0.04), AV ~8 and w=2x10"2. The
oscillatory field, besides fostering a rotation of the director field within each drop, triggers a counterclockwise
rotation of both droplets (identified by numbers 1 and 2) around an axis (b,c,d). In each configuration the
director field is aligned with the instantaneous direction of the electric field, indicated by a black arrow. Defects
of topological charge 1/2 (highlighted by white circles) rotate counterclockwise and essentially remain near the
fluid interface. Their motion is sustained by two separate fluid recirculations (e-f-g-h) which affect the local
orientation of the liquid crystal and drag the defects. Simulation times are t =4x10° (a,e), t=7x10° ((b,f),

t=1.2x10° ((c,g) and t=1.46x10° (d,h). The color map is the one of Fig. la-c.

causing a counter-clockwise rotation of the droplets. Here AV is the applied potential, w
is the frequency of the field and ¢ is the simulation time. The potential AV ranges between
4 and 10, since if AV <4 the field is too weak to produce a substantial modification of the
equilibrium orientation of the liquid crystal, while if AV > 10 the cholesteric phase turns
to a nematic one where the director is aligned along the direction of the electric field. As
described in Section II, the values of w are varied between 10> (low frequency regime)
and 107! (high frequency regime).

As benchmark case, we start from two nematic liquid crystal drops with tangential
anchoring (W = 0.04) subject to an oscillatory electric field with AV ~ 8 and frequency
w=2x1072 (see Fig. 2 and Movie SM1). The droplets are marked with numbers 1 and
2 and are originally placed horizontally in the middle of the lattice. Once the electric
field is turned on, the director rotates counterclockwise remaining almost everywhere
aligned with the field, except where two +1/2 defects appear (white circles in Fig. 2a-d),
which rotate essentially following a circular trajectory close to the interface. Such motion
is sustained by two separate vortices triggering a counterclockwise rotation of the fluid
located within the drops. The vortices also modify the velocity field in the surroundings
of the drops, where intense streams promote a counterclockwise rotation of both droplets
around an axis located in intermediate fluid film. This effect, in particular, has a purely
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Figure 3: Couple of nematic droplets with homeotropic anchoring (W= —0.04), AV ~8 and w=3x%x10"2. The
top row (a-d) shows the time evolution of the director field and the defects in a half turn of both droplets
(marked with numbers 1 and 2) around an axis located in the intermediate fluid film (the blue region). Here
defects of charge —1/2 rotate counterclockwise moving towards the bulk of the drops. The bottom row (e-h)
shows the corresponding velocity field. The black arrow indicates the instantaneous direction of the applied
field. Simulation times are t =4x10° (a,e), t=7x10° (b,f), t=10° (c,g) and t=1.22x10° (d,h). The color
map is the one of Fig. la-c.

hydrodynamic nature since it is essentially caused by the momentum transfer from the
fast rotating liquid crystal to the droplets and mediated by the fluid located in the middle.

If the interface anchoring is perpendicular a similar dynamic behavior is observed,
once again triggered by two separate fluid vortices generated by the repeated change of
orientation of the liquid crystal (see Fig. 3 and movie SM2, where w =3 x1072). Unlike
the previous case, here the topological defects, while rotating, move towards the bulk of
the drops, a region where larger distortions occur due to the conflict orientation of the
liquid crystal with respect to the one imposed at the droplet interface.

These two examples clearly suggest that the application of an external oscillatory
electric field induces a complex dynamics, consisting of a rotation of each separate drop
alongside a circular motion of both drops around each other, plus a persistent rotation of

the liquid crystal confined within. To quantitatively evaluate the dynamics of the drops,

dVerxu
v
ing their centers of mass, defined as w** =d0/dt. Here r is the distance from the center of
mass of each drop and 0 is the angle the axis forms with the horizontal direction (i.e. the
y-axis). In Fig. 4 and Fig. 5 we plot w* and w** (measured over a time interval of approx-
imately 3.5 x 10° times steps) as a function of the frequency w of the applied field and for
three different anchoring conditions. For increasing values of w, the angular speed w*

we compute their angular velocity w* = and the angular velocity of the axis join-
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Figure 4: Angular velocity w* of each droplet as function of the frequency w of the applied field for N=0 and
anchoring W=0.04 (red circle), W= —0.04 (green square) and W=0 (blue triangle).
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Figure 5: Angular velocity w** of the axis joining the centers of mass of the two droplets as function of the

frequency w of the applied field for N=0 and anchoring W=0.04 (red circle), W= —0.04 (green square) and
W =0 (blue triangle).

augments almost linearly, essentially regardless of the anchoring at the interface. This
behavior lasts as long as w is approximately less than 0.05 whereas, for higher values, w*
displays a slight decrease, an effect due to a robust counter-rotating vortex emerging in
the fluid between the drops (see Section 3.5). Note, in particular, that the values of w* are
about three orders of magnitude lower than those of w, an indication that a substantial
motion of the droplets can be achieved using high frequency fields. Indeed, these ones
trigger a fast rotation of the liquid crystal which, in turn, favours the formation of an
intense fluid recirculation capable of generating the rotation of the droplet. The axis join-
ing the centers of mass is generally found to rotate at a lower angular speed than that of
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each droplet (i.e. w* is smaller than w*), although it is faster for the free-anchoring case.
This occurs because the topological defects modify the local orientation of the director,
an effect that slightly alters the structure of the velocity field and slows down the speed
of rotation of the axis.

It is finally worth noting that the dynamic behavior of the topological defects in a
droplet essentially mirrors that in the other one. This is not surprising, since defects of
equal topological charge subject to the same applied field are expected to display analo-
gous dynamical features. However, unlike nematics, in cholesteric drops defects of dif-
ferent classes come into play, considerably affecting the response under an applied field.
The next section is precisely dedicated to investigating these systems.

3.3 Cholesterics (N =2)

Here we consider the dynamic response of two cholesteric droplets subject to an oscilla-
tory electric field. We discuss the case in which drops have N =2 twists of the director
and homeotropic anchoring (W < 0) is set on their interface (see Fig. 6 and movie SM3).
In Fig. 6a the equilibrated droplets show two 7+1/2 defects (blue circles) along the equa-
torial line (y direction) and two twist disclinations of charge —1/2 (grey circles) along the

() ()
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Figure 6: Couple of cholesteric droplets in isotropic fluid for N=2, W=—0.04, AV~8 and w=2x10"2. Once
again, under the oscillatory field, liquid crystal and droplets rotate counterclockwise. During the rotation (a-d)
sustained by two vortices (e-g), a T defects of charge 1/2 and a twist disclinations of charge —1/2 (highlighted
by blue and grey circles, respectively) annihilate each other, while the remaining two move circularly linked to
a stretched AT region (marked with a black spot in its center). The black arrow at the bottom right indicates
the instantaneous direction of the applied field. The snapshots are taken at t=4x10° (a,e), t=8x10° (b,f),
t=1.4x10° (c,g) and t=1.7x10° (d,h). The color map of (a)-(d) is the one of Fig. 1d-i while the color map
of (e)-(h) is the one of Fig. la-c.
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Figure 7: Angular velocity w* of each rotating droplet as function of the frequency w of the applied field for
N =2 and anchoring W=0.04 (red circle), W=—0.04 (green square) and W =0 (blue triangle).

vertical line (z-direction), located on opposite sides of a central +1 charged region. Once
the field is switched on, both director and defects acquire motion and rotate counter-
clockwise (Fig. 6b-d). This behavior is triggered by two vortices which, in turn, foster the
concurrent rotation of the fluid within the drops and of the drops around each other, akin
to that observed in the nematic case. However, here only two defects of opposite charge
(a twist disclination of charge —1/2 and a 71/2) survive and move towards the bulk of
the droplets, while the other two annihilate each other during their motion. This occurs
because the droplet is initialized in a metastable state (Fig. 6a) having an excess of elastic
energy provided by the additional defects, subsequently eliminated by the application of
the oscillatory electric field. Such dynamics occurs in both drops (which basically mirror
each other) and persists as long as the field is on (Fig. 6¢c-d and g-h). The behavior is
considerably simpler if tangential anchoring (W >0) is set at the interface. Alongside the
orbital motion, within each drop the director aligns with the applied field and rotates as
well, bending near the interface to comply with the anchoring conditions. This fosters
the concurrent rotation of a bend A*! region (initially located at the center of each drop,
see Fig. 1d) which, under field, attains a stretched configuration.

In Fig. 7 and Fig. 8 we show the plots of the angular velocities w* and w** as function
of the frequency w of the applied field for three different interface anchoring conditions.
The former shows features akin to the nematic case where, for various W, an approximate
linear growth for w <0.05 is followed by a mild decrease for higher frequencies, with w*
much smaller than w. On the contrary, the angular speed w** of the axis joining the
centers of mass of drops with homeotropic anchoring is lower than that of drops with
tangential anchoring. This is because the capability of the velocity field to modify the
local orientation of the liquid crystal is considerably reduced in the vicinity of the defects,
an effect significantly mitigated in drops with tangential anchoring (see Fig. 1d), since the
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Figure 8: Angular velocity w** of the two droplets as function of the frequency w of the applied field for N=2
and anchoring W=0.04 (red circle), W=—0.04 (green square) and W =0 (blue triangle).

director is continuous near the A defect (see Fig. 1d). Note finally that w** is higher for
W =0, since here topological defects are absent.

3.4 Cholesterics (N =4)

A considerably more complex dynamics is observed when N =4. In Fig. 9 and Fig. 10
we show a sequence of configurations of two cholesteric drops with tangential and
homeotropic anchoring subject to a rotating electric field (see also movie SM4 and SM5).

In the former, the two equilibrated drops, accommodated symmetrically with respect
to the z-axis, show four —1/2 defects (white circles) located near the interface and con-
nected to three internal “+1 charged regions” (Fig. 9a-e). Once the field is turned on,
both drops are set in motion following a trajectory essentially akin to the cases afore-
mentioned. However, the defect dynamics displays fully distinctive features. The four
—1/2 defects rotate and move towards the bulk of the droplets, while the three A defects
initially shorten, attaining an almost spot-like configuration (Fig. 9b-f), and afterwards
stretch (Fig. 9c-g) exhibiting pronounced bends induced by the curvature of the inter-
face. Note, in particular, that the typical mirror dynamic behavior of the defects in both
drops is temporarily lost and partially restored later on (Fig. 9d). Here the four —1/2
defects arrange momentarily in a single file, two at the center of the drop linked by a
spot-like A defect and the remaining two, near the interface, connected by a couple of
elongated A regions.

If the interface anchoring is homeotropic, at equilibrium each droplet displays two
T1/2 defects (blue circles) located along the equatorial line and six twist disclinations,
(grey circles) placed near opposite parts of the interface and linked by three elongated A
regions (see Fig. 10a). The application of the oscillatory electric field, besides fostering
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Figure 9: Couple of cholesteric droplets in isotropic fluid for N=4, W=0.04, AV ~8 and w=10"2. Once the
field is turned on, four defects of charge —1/2 (white circles, a) initially accumulate in the bulk of each drop
(b,c) remaining linked to A regions (marked with black spots). Afterwards, they temporarily align essentially
mirroring their position within each drop (d). Snapshots are taken at t=4x10% (a,e), t=10° (b,f), t=1.6x10°
(c,g) and t=1.95x10° (d,h). The bottom row (e-h) shows the velocity field. The color map of (a)-(d) is the
one of Fig. 1d-i while the color map of (e)-(h) is the one of Fig. la-c.

the typical dynamics of the drops overall akin to the previous cases (see Fig. 10b-d and
f-h), also induces annihilation among defects of opposite charges, thus diminishing their
number. Indeed one observes a temporary state in which three A coexist either with four
twist disclinations (Fig. 10b, drop 2) or with five twist disclinations plus a single 7!/2
(Fig. 10b, drop 1) which, later on, annihilates with a twist disclination of charge —1/2
(Fig. 10c). This leaves both droplets with three A and four twist disclinations (Fig. 10b), i.e.
the minimum number of defects required to preserve the topological charge in a droplet
with homeotropic anchoring and N=4 twists. Note also that the rotational motion of both
drops around an axis, located in the film of fluid, arrests. This occurs because the non-
uniform orientation of the liquid crystal favours a temporary shift of the fluid vortexes
off center (see, for instance, Fig. 10g), an effect promoting the formation of repulsive fluid
flows located within the film separating the droplets. Afterwards, the vortices regain
their approximately central position (Fig. 10h), considerably weakening the momentum
transfer between the drops thus hindering any further rotation.

In Fig. 11 and Fig. 12, we show the plots of w* and w**, which share analogous fea-
tures with the ones obtained for N =2. The values of w* and w**, for example, are
once again significantly lower in the homeotropic anchoring case, because of the larger
resistance opposed by the liquid crystal to change its orientation. Also, the usual linear
growth observed for w <0.02 is followed, at higher frequencies, either by a short decrease
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Figure 10: Couple of cholesteric droplets in isotropic fluid for N
drops and remain firmly linked to A regions (marked with black spots). Snapshots are taken at ¢

t=1.6x10° (b,f), t=2x10° (c,g) and t=2.902x10°
The color map of (a)-(d) is the one of Fig. 1d-i while the color map of (e)

green square) and W =0 (blue triangle).
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* (Fig. 11) or by a steep descent for w** (Fig. 12).

quickly stabilized to constant values for w

an effect

2,

However, here their values are much smaller than the ones computed for N

due to the larger number of defects produced in cholesterics drops with a higher pitch.
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Figure 12: Angular velocity w** of the two droplets as function of the frequency w of the applied field for N=4
and anchoring W=0.04 (red circle), W= —0.04 (green square) and W=0 (blue triangle).

We finally note that, regardless of nature of the liquid crystal (whether nematic or
cholesteric) and interface anchoring, both w* and w** show a distinctive feature for
w ~0.02, a value after which they generally diminish either gently (such as Fig. 9) or
more rapidly (as in Fig. 12). An analogous result has been also experimentally observed,
for example, in cholesteric samples subject to a temperature gradient and additionally
exposed to an AC field [40]. Before concluding, we dedicate the next section to clarifying
this behavior.

3.5 Fluid velocity at high frequency

In Fig. 13 we show, for example, the instantaneous configurations of two cholesteric
drops with N =4 and W = 0.04, subject to a rotating electric field for different values
of frequency w. While in (a) and (b) (where w is 0.01 and 0.02, respectively) the struc-
ture of the fluid velocity closely resembles the ones previously observed (i.e. two well-
defined vortices located within each drop), in (c) and (d) (where w is 0.03 and 0.06) a
robust counter-rotating vortex emerges in the film of fluid located between the drops.
This one essentially results from the combination of opposite branches of the two fluid
vortices facing each other. Thus, at high frequency of the applied field, the velocity ex-
hibits three distinct vortices (see Fig. 13d), two placed within the drops favouring their
rotation and a further one located in between hampering the motion. Such effect is am-
plified for increasing values of w, since a faster rotating liquid crystal would transfer a
larger momentum to the surrounding fluid strengthening the vortices and thus slowing
down the droplets rotation.
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Figure 13: Instantaneous configurations, taken at t=7.5x10° for different values of w, of two cholesteric drops

In particular, w is equal to 0.01 (a), 0.02 (b), 0.03 (c) and 0.06 (d). The green

rectangle in (c) and (d) highlights a fluid vortex formed within the film separating the drops. The color map is

the one of Fig. la-c.

=0.04.

4 and W

with N

tal droplets (nematic and cholesteric with weak dielectric anisotropy) immersed in an
isotropic phase and subject to an oscillatory electric field. We have considered liquid

crystals made of rod-like shaped molecules whose orientation

To summarize, we have numerically studied the dynamics of a couple of liquid crys-
parameter Q) couples quadratically to the electric field,

4 Conclusions

(described by the order

a description which holds as

long as flexoelectricity (an elastic distortion generated by the polarization induced by
the electric field) and ionic effects are weak [38]. Simulations are run using a hybrid LB

approach, in which the Navier-Stokes equation for the fluid velocity is integrated using
liquid crystal plus that governing the orientation of the latter are solved adopting a finite

a standard LB algorithm while the equations of the concentration of the surfactant and
difference scheme.

Drops are selected in terms of the number N of 7 twists of the liquid crystal (i.e. the

pitch) as well as the direction of the interface anchoring, either perpendicular or tan-
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gential. We have specifically focused on nematic (N = 0) and cholesterics (N =2 and
N = 4) with strong tangential (W = 0.04) and perpendicular (W = —0.04) anchoring. If
N =0, for example, the liquid crystal preferentially aligns along the direction of the ap-
plied field and rotates coherently at an angular speed w equivalent to the one imposed
by the field. Topological defects of charge £1/2 generally follow a circular trajectory,
either near the interface (with tangential anchoring) or closer to the center of the drops
(with homeotropic anchoring), mirroring each other during the motion. In both cases,
the velocity field exhibits two vortices approximately centered within each drop, which
trigger the rotation of the fluid confined within as well as that to the drops around each
other. This is a fully hydrodynamic effects since it is originated by the momentum trans-
fer of the liquid crystal to the surrounding fluid. In the cholesteric phase, further defects
emerge due to the combination of an increased number of twists (N =2 and N =4) of
the director field and its conflict orientation with that imposed at the interface anchor-
ing. Under an oscillatory field, A defects periodically elongate and shorten while T ones
follow a complex trajectory, remaining anchored at the extremities of each A defect. The
velocity field shows a structure akin to that observed for the nematic counterpart and it
is, once again, capable of triggering the orbital rotation of drops and of the fluid located
within. Our results also show that the angular speed at which these two processes occur
augments approximately linearly for low values of w while, for increasing values, it de-
creases and then stabilizes to roughly constant values, basically regardless of the nature
of the liquid crystal considered. This last behavior is shown to have a purely hydrody-
namic origin, since it is caused by the formation, in the middle of the drops, of a further
counter-rotating vortex hindering their rotation.

The results discussed in this work show that, alongside magnitude and frequency
of the applied field, the motion of the drops is decisively affected by the nature of the
topological defects, the pitch and the elasticity of the liquid crystal. However a number
of questions remains open. It would be of interest, for example, investigating to which
extent the size of the droplets may affect the defect dynamics and the complex rotational
motion described in this paper. In addition, diminishing the reciprocal distance may alter
the structure of the velocity field in fluid film separating the drops and, in the worst case
scenario, favour their merging, especially for strong enough electric fields. An alterna-
tive dynamic behavior is also expected to occur if the approximation of strong interface
anchoring is released or, even more intriguingly, if the effects of the three bulk elastic
constant (splay, twist and bend) are separately considered. Finally, although quasi-2d
chiral samples can be experimentally realized [70], a more realistic picture could be con-
veyed by fully three dimensional simulations, where further complex defect patterns can
significantly enrich the dynamics under an external field.
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