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Abstract. Physiological solvent flows surround biological structures triggering therein
collective motions. Notable examples are virus/host-cell interactions and solvent-
mediated allosteric regulation. The present work describes a multiscale approach join-
ing the Lattice Boltzmann fluid dynamics (for solvent flows) with the all-atom atom-
istic molecular dynamics (for proteins) to model functional interactions between flows
and molecules. We present, as an applicative scenario, the study of the SARS-CoV-2
virus spike glycoprotein protein interacting with the surrounding solvent, modeled as
a mesoscopic fluid. The equilibrium properties of the wild-type spike and of the Alpha
variant in implicit solvent are described by suitable observables. The mesoscopic sol-
vent description is critically compared to the all-atom solvent model, to quantify the
advantages and limitations of the mesoscopic fluid description.
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1 Introduction

In the last decades, continuous methodological and technological progress paved the
successful path of computational tools in fighting contagious diseases by providing in
silico simulations of biological molecules and drug design. Further, the graphics process-
ing units (GPUs) granted significant technological progress, boosting the computational
power over large system sizes. In this context, we use a multiscale modeling approach
that couples a mesoscale solvent representation to the molecular dynamics. The final
aim is to deliver an efficient biophysical computational strategy to boost the simulation
power and understand the biological mechanisms at the atomistic level, avoiding the
computational effort due to the atomistic description of the solvent.

Nowadays, the molecular dynamics (MD) method has shown its massive potential
in characterizing the biological mechanisms underlying the activities of several proteins
at the atomistic level. Remarkable examples in computational biophysics are the recent
simulations of an entire cell organelle, a photosynthetic chromatophore vesicle from a
purple bacterium [1] or the study of the N-Methyl-D-Aspartate (NMDA) neurorecep-
tor by the DE Shaw research group [2]. As of today, an enormous scientific effort has
been spent to investigate in-silico the molecular behavior of SARS-CoV-2 proteins, both
for drug repurposing and for antibody design [3]. Standard MD simulations have been
used, for example, to estimate binding free energies of spike in interaction with the hu-
man angiotensin-converting enzyme 2 (ACE2) receptor [4–7] alongside with their inter-
action scores [8]. The effort devoted to SARS-CoV-2 proteins, with the exceptional focus
on its spike protein, somehow put the spotlight on the strengths and limitations of bioin-
formatics and biophysics computational tools [9, 10] in the field of medicine and drug
discovery, bringing these tools also to the attention of the general public.

The widely known and investigated spike protein is here used as a test case to high-
light strengths and drawbacks of a mixed multiscale description scheme. Indeed, despite
the all-atom molecular dynamics description being the method of election to properly de-
scribe the biochemical nature of protein functioning, one of the main issues in its usage
is related to the long time scales of biological mechanisms, and on their rare-event nature
from a statistical mechanics perspective. Normally, the quaternary movements associ-
ated with the allosteric and functional response of biological mechanisms lie in several
microseconds, beyond the standard actual high-performance computational limits to ob-
tain a statistically meaningful description [11, 12], even by exploiting optimised codes
for GPUs clusters [13, 14]. While a possible solution relies on using enhanced sampling
techniques [15], the large simulation size involved in most realistic mechanisms cannot
be taken easily into account. Thus, in the last three decades, the development of coarse-
grained models has shown great scope in overcoming these limits [16, 17]. The coarse-
grained strategy usually aims at reducing the details of the protein structures alongside
their aqueous solvent. Such a reduction shall be made with particular care to preserve
the detailed description, where necessary to appropriately describe the protein structure
and function [18–21].
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A different approach is based on the coupling of different tools, to describe the coex-
istence of different time- and length- scales in a multiscale perspective. Such multiscale
approach could become, once assessed, a powerful biophysical computational tools, with
perspective usage in drug design and biomedicine [22–24].

The present work exploits a multiscale description based on the Lattice Boltzmann
(LB) method for the solvent fluid combined with all-atom molecular dynamics (MD) de-
scription for the protein structures. Several multiscale approaches to coupling LB/MD
have been developed so far [25–29]. In this work, the coupling of the LB velocity field
with MD objects is implemented via a Stokes friction term in the overlay region of the
two descriptions to realise the multiscale description [25].

Our test case is the well known and characterized SARS-CoV-2 spike protein S, a
heavily glycosylated protein anchored in the viral membrane. It is constituted by three
chains, each one made of an identical primary sequence of more than 1200 amino acids
of which 1146 form the extracellular domain. Each chain of the trimer is composed of
two fragments: the receptor-binding fragment S1, containing the receptor-binding do-
main (RBD), interacting with ACE2, and the fusion fragment S2 [30]. The S protein is
cleaved by a furin-like protease at residue 686 into the S1 and S2 fragments [31], initi-
ating the membrane fusion process. We also study the Variant of Concern 202012/01
(lineage B.1.1.7), also commonly referred to as Alpha variant (α-Spike).

Equilibrium properties, such as rigidity and elasticity of specific sites, are pivotal for
binding and other functional activities of the viral protein [30, 32], therefore they must
be properly described within the multiscale model. We compare equilibrium state prop-
erties from LB/MD with data obtained by all-atom molecular dynamics, to assess the
quality and efficiency of the multiscale description. The key role of water molecules
for protein structure and function is highlighted [33]. In perspective, our multiscale ap-
proach could permit us to overcome the statistical sampling limitation affecting current
explicit solvent atomistic description, in particular providing a unique tool to investigate
large conformational changes and dynamics solvent flow effects. However, despite main
features of the protein structure and motion are reproduced in the mixed approach, a
strong refinement is still necessary to properly reproduce the flexibility and fluctuations
that, allowing a correct conformational sampling, are related to the proper functioning of
the proteins.

2 Methodology

2.1 Simulated systems

We used cryo-EM data [34, 35] to build the two models of the wild-type and mutated
protein, hereafter called Spike (S) and α-Spike (αS), respectively. We started from the
6vsb.pdb structure [12] of the spike protein in prefusion state, and we added the miss-
ing loops in the receptor-binding domain (RBD) as obtained from the 6m17.pdb struc-
ture [35]. We kept the glycans from the 6vsb.pdb structure in these simulations. The α-
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Figure 1: Secondary structure of the spike protein, wild-type (blue) and Alpha variant (orange) as obtained
from experimental pdb (6vsb.pdb) and homology modelling, respectively. In yellow and green, deletions and
mutations of the wild-type giving the Alpha variant are highlighted.

spike has been modelled via I-Tasser [36], using the wild-type as template, by including
in the sequence [37] three deletions: ∆H69/∆V70 and ∆Y144, and six mutations; N501Y,
A570D, P681H, T716I, S982A, and D1118H (see Fig. 1). The protonation states have been
calculated via Playmolecule webserver [38], based on PROPKA 3.1 [39] to determine pro-
tein pKa values, and on PDBTOPQR 2.1 [40] to optimize the protein for favourable hy-
drogen bonding. The cell of the LB/MD systems is a cubic box of 19.2 nm side length,
surrounding the all-atom glycosylated-protein (53k atoms). The same box size is used for
the all-atom simulations (676k atoms). The cell is built and neutralized (100 nM solution)
via the Solvate and Ionize plugins included in Visual Molecular Dynamics (VMD) [41].
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2.2 Coupled Lattice-Boltzmann and Molecular Dynamics (LB/MD)

LB/MD simulations have been performed with LAMMPS (stable release 3 March 2020)
[42] on a cluster based on Intel(R) Xeon(R) Platinum 8160 with 24 cores and two CPUs
per computing node.

The two systems (wild-type and mutant) endured an initial 10000 steps of conjugate
gradient minimization and were afterwards equilibrated in an NVT ensemble, with the
temperature increased to 310 K over 2.0 nanoseconds of MD simulations. Hence, both
systems were evolved in time for 1 microsecond (NVT, 310 K). The direct summation
method was exploited to assess the Coulomb interactions. In particular, the additional
screening of the solvent was modelled by a Coulomb correction for implicit solvent in-
teractions which exploits a distance-dependent dielectric permittivity, scaling with an
additional 1/r term included in the Coulomb formula. The cut-off of the intermolecu-
lar interactions was set to 7 Å corresponding to the Bjerrum length in water [43]. The
CHARMM36 force field [44] has been used to model inter- and intra-molecular interac-
tions, including the glycan and N-linked glycan bond descriptions.

The aqueous solvent is described by a specific mesoscale technique, known as the Lat-
tice Boltzmann (LB) method, namely a minimal lattice version of the Boltzmann equation.
The LB approach allows modelling the dynamic behaviour of fluid flows without directly
solving the Navier-Stokes equations of continuum fluid mechanics. In this framework,
the solvent is treated via a fictitious ensemble of particles, whose motion and interac-
tions are confined to a regular space-time lattice. The dramatic reduction of the degrees
of freedom associated with the velocity space is the main advantage of the LB approach.
Thus, the solvent is described in terms of probability to find a certain quantity of solvent
particle at position~r and time t moving with velocity ~ci along a possible grid direction.
In the LB approach, the particle collisions are represented through a relaxation to the lo-
cal equilibrium. Here, we rely on the simplest form of the collision operator that is the
celebrated Bhatnagar-Gross-Krook operator, where the operator is a simple single-time
relaxation term [45].

The standard LB scheme in single-relaxation time (BGK) form reads as follows:

fi (~r+~ci∆t, t+∆t)= fi (~r, t)+ω
[

fi (~r, t)− f
eq
i (~r, t)

]

+Si(~r, t), (2.1)

where fi is the discrete Boltzmann distribution associated with the discrete velocity ~ci,
with i = 0,b running over the discrete lattice, in our case 19-speed lattices, commonly
denoted D3Q19. In (2.1), the relaxation frequency ω is used to set the kinematic viscosity
ν of the fluid by the relation ω = 2/(6ν+1), while f

eq
i is the lattice local equilibrium,

basically the local Maxwell-Boltzmann distribution truncated to the second order in the
Mach number. Mass density and mass flow are obtained in terms of moments of the
distribution functions:

ρ(~r, t)=∑
i

fi (~r, t), (2.2)
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ρ(~r, t)~u(~r, t)=∑
i

fi (~r, t)~ci, (2.3)

where m denotes a scaling mass factor set to obtain the correct water density of 993.4
kg/m3 at 1 atm and 310 K.

It is worth to highlight that, denoted T the finite temperature of the fluid, the standard
LB algorithm does not include the thermal fluctuations which produce spontaneous local
stresses in the fluid. Following the seminal work by Adhikari et al. [46], the forcing term
in Eq. (2.1) is here generalised to Si(~r, t) = pi+ξi, where pi counts for the external and
coupling forces (see below), while ξi represents a set of random noise terms modelling
the fluctuating stress tensor compensated by the dissipation and preserving the mass
and momentum conservation in the system. Further details of the actual fluctuating LB
implementation are reported in references [47, 48]. Thus, as a result of the thermal noise
implementation, the fluid behaves as a heat bath for the MD particle, as already observed
in the literature [20, 26, 49].

The fluid and particles are coupled as follows. The effect of the particle on the sur-
rounding fluid is modelled via a friction force term, ~Fnj = γ(~υn−~uj), where ~υn denotes
the particle velocity and ~uj the fluid velocity at the particle position obtained by a linear
interpolation over the nearest eight lattice points. The coupling force is then added to
Eq. (2.1) by the extra force term S(~r, t). Hence, an equal and opposite force is applied to
the particle to model the counterpart of the coupling term (from the fluid to the particle).
Following the literature [20], the friction coefficient γ is taken equal to 0.1 fs−1, while the

kinematic viscosity was set equal to 0.07 Å
2
/fs corresponding to the water kinematic vis-

cosity at 310 K. The LB scheme is evolved in time step by step with the MD integration
scheme, with a timestep equal to 2.0 femtoseconds.

2.2.1 All-atom molecular dynamics (AA-MD)

AA-MD simulations have been performed with GROMACS-2020.6 [50] on a cluster based
on IBM Power9 architecture and Volta NVIDIA GPUs. Both spike and α-spike endured
an initial 10000 steps of conjugate gradient minimization. Hence, the systems were equi-
librated up to 310 K over 2.0 nanoseconds, as in the LB/MD simulations. The MD simu-
lations last 1 microsecond (NPT, 310 K, 1 atm). The simulation timestep is 1.6 femtosec-
onds. Periodic boundary conditions were used, with particle-mesh Ewald long-range
electrostatics, using a grid spacing of 1.5 Å along with a fourth-order B-spline charge in-
terpolation scheme. Both the Coulomb and Lennard-Jones interactions use a cut-off of 12
Å with a force switching function acting from 10 Å [51]. The CHARMM36 force field [44]
has been used to model inter- and intra-molecular interactions, including the glycan and
N-linked glycan bond descriptions. The water is described via the TIP3P water model
as implemented in CHARMM [52] which specifies a 3-site rigid water molecule with
Lennard-Jones parameters and charges assigned to each of the 3 atoms.
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3 Results

We present in this section some quantities, normally used to assess protein structures,
analyzed for the two used methods and for the two considered variants. We also com-
pare the AA-MD wild-type results with data available in literature. We can anticipate
here that our model properly reproduces main features of the protein, as obtained from
similar all-atom or coarse grained calculations with explicit solvent. Then, we highlight
the main structural and dynamics differences between wild-type and mutated spike,
mainly in terms of rigidity, fluctuations and correlation, and relate them, when possible,
to aminoacids mutations. Finally, the main objective of this work, we analyze to which
extent the features, characterizing the protein, are properly reproduced by the hybrid
LB-MD description, and discuss the motivation for possible differences.

The Root Mean Square Deviation (RMSD) and the Root Mean Square Fluctuations
(RMSFs) of AA-MD and LB-MD for Spike and α-Spike are reported in Figs. 2-3. The
RMSD (see Fig. 2) is shown for the full trajectory, lasting 1 µs.

In the AA-MD case, the RMSD of both structures are similar, with a large initial de-
viation from the cryo-EM structure, and a most stable behaviour from 200 ns to 1000 ns,
with oscillations in the region 8 Å – 10 Å. The RMSD analyzed per chains (not shown) has
similar behaviours for chains A and B when native and mutated are compared. Chain C
of the mutated relaxes faster than chain C of the native. Moving to the LB-MD results,
the first clear information is the stability of the structure with respect to the cryo-EM
reference. The overall change is 3.5 Å – 4 Å, with the mutated reaching a stable plateau
faster than the native structure. Chain A (not shown) of the mutated has RMSD values
larger than the native, of almost 1 Å, while the opposite is true for chain B, whose native
RMSD has a plateau at 5 Å, much higher than the mutated plateau at 2 Å. Chain C is
similar for the two structures. Differences among RMSD evaluated for different chains
have been reported [53], in agreement with our findings. The RMSD values of the wild-

Figure 2: Root Mean Square Deviation of the Cα atoms, for LB-MD (left panel) and AA-MD (right panel)
simulations, for the 1 µs long trajectories. Slightly differences are observed between wild and mutated. The
intensity decrease for the LB-MD case is related to the lower mobility of the protein in the mesoscopic solvent
with respect to the explicit solvent.
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type in all-atom description is similar to results obtained with a similar approach [53],
but larger that other reference data [54, 55]. However, these differences could depend on
the configuration used as reference in papers [53–55]. In our case, given the overall size
of the protein, containing 3 chains of more than 1000 residues each, and the fact that our
reference structure is the model as obtained from cryo-EM and homology modeling, the
RMSD value is reasonable. At variance with the mutations considered in Ref. [54], which
induce larger deviations with respect to the native, in the case of the α-spike here studied
the RMSD over the whole structure is comparable or lower than the native protein.

In any case, RMSD has to be considered, more than for its absolute values, for its
trend, to verify that the structure is not drifting and that equilibrium is reached.

Overall, the conformational equilibration of the AA-MD is quite slow, with large
changes from the initial models as obtained from cryo-EM data and homology mod-
elling. The relaxation is much faster in LB-MD, and changes are smaller with respect to
starting structure. Also, RMSD fluctuations are larger in AA-MD than in LB-MD. The
observed differences are partially ascribable to the intrinsic rigidity of the LB-MD de-
scription. Also, we cannot exclude a role of the starting cryo-EM structure which could
represent a micro-state of the protein conformational space far from the equilibrium. The
long drift in the RMSD profile of the AA-MD simulations for spike and α-spike hints that
the starting protein structure, as obtained from cryo-EM, is not close to the equilibrium
structure of the open state.

To have a good quality sampling, we evaluate the following quantities using the last
500 ns of the four trajectories, disregarding the first half of each trajectory.

The secondary structures of the spike and α-spike proteins were analyzed by the pro-
gram STRIDE [56], taking into consideration 500 configurations placed at one nanosec-
ond of interval in the last 500 ns of the trajectories. In both the AA-MD and LB-MD sys-
tems, we do not observe a substantial difference between Spike and α-Spike. Nonethe-
less, we observe a slight distortion of the α-helix in the LB-MD simulations as already ob-
served in the literature [57,58]. In particular, while the secondary structure in the AA-MD
simulations contains about 20% of the residues in α-helix, the program STRIDE classifies
almost the entire α-helix structures in the LB-MD trajectories as turn units continuously
repeated in several segments of the main chain, forming distorted helices. Instead, the
classification of β-sheet conformations appears to be preserved in both AA-MD and LB-
MD systems, with an average value of around 20%. The percentage of coils, denoting the
degree of disorder in the secondary structure, is not increased in the LB-MD, meaning
that the overall structure is preserved even in presence of the mesoscopic solvent.

The protein rigidity in the LB-MD description is confirmed by the RMSFs (see Fig. 3,
results shown for chain A, that corresponds to the RBD in open conformation). The
RMSFs of the individual chains (only chain A shown here) in AA-MD native are com-
parable to similar data from all-atom or coarse grained simulations [55,59]. We highlight
the three peaks in the NTD region (up to 300) [55, 59], and the main peak in the region
476-486 of the RBD [55, 60], containing the S477 whose role is pivotal in the interaction
with human ACE2. The cleavage site, at 682-689, is not flexible in the chain A, with RBD
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Figure 3: Root Mean Square Fluctuations (Cα atoms, RBD) for LB-MD (left panel) and AA-MD (right panel)
simulations of chain A. Top panel, full chain A. Bottom panel, RBD of chain A. The initial 500 nanoseconds
of the simulations were discarded. Slightly differences are observed between wild and mutated. The significant
intensity decrease in the LB/MD is due to the low protein mobility. This result, expected on qualitative grounds,
to the best of our knowledge was never inspected on quantitative grounds before.

in open conformation, while it is mobile in the other two considered chains (data not
shown). The most striking difference between Spike and α-Spike is in the region 476-486
of the RBD in chains A and B (latter not shown). In chain A, the mutated region is much
more flexible, while the rest of the sequence is less mobile. In chain A, the 476-486 region
is more flexible in the native, and in general the mutated structure is less flexible but
around 850.

Fluctuations in LB-MD are less intense than in AA-MD. Importantly, in the RBD re-
gion, main features are reproduced by LB-MD, in particular the recognition of the loop
L3 (residues from 475 to 487), of interest because related to a stable interaction with
ACE2 [32, 60, 61], and also because of the high frequency of mutations observed in this
region. In general, LB-MD is able to obtain a qualitative agreement with AA-MD, with
fluctuations observed in the same regions. Nonetheless, there are occasional peaks in
the LB-MD fluctuations over the whole sequence (at T470, Q920, S940, I980, from differ-
ent chains and mainly for the native structure), comparable with the AA-MD descrip-
tion, that deserve to be investigated, in particular in the RBD region. We examine the
RMSFs peaks corresponding to the residues G339 and L368, which are quite intense in
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Figure 4: Receptor binding domain (RBD) of the chain A in the wild-type spike protein showing the fluctuations
of the residues G339 and L368 highlighted in atomistic representation for the LB/MD simulation (panels a, b)
and the AA/MD simulation (panels c, d).

the wild-type spike protein. In Fig. 4, representative snapshots of the fluctuations of the
residues G339 and L368 are reported for both the LB-MD and AA-MD simulations. The
residues G339 and L368 are located in two alpha-helices placed side by side, and possibly
interacting. In the two simulations the amplitude of the fluctuation is comparable, but
we observe an unsound behaviour in the LB-MD case. The two residues remains close
(Fig. 4(a)) for the initial 600 nanoseconds of the entire LB-MD trajectory, whereupon the
two residues move further apart (Fig. 4(b)) for the remaining simulation time, probably
due to the presence of a high energy barrier hindering the free fluctuation over the two
positions. On the other hand, the residues G339 and L368 distance fluctuates in the same
range much more in the AA-MD simulation (panels (c) and (d) Fig. 4). This behaviour
emblematically demonstrates as the local free energy surface is biased by the explicit sol-
vent, which mediates the fluctuation of the protein structure. Instead, the mesoscopic
solvent promotes likely the roughness of the free-energy landscape, which restrains the
free fluctuations of the structure, and promotes the presence of hindered fluctuations (bi-
modal distributions) in the residue positions, as here observed in the case of the G339
and L368 residues in the LB-MD simulation.

The effects on free energy sampling related to different models of solvent, implicit
or explicit, have been widely investigated, for studying folding processes and the stabil-
ity of native structures [57, 62–65]. Further, it is worth highlighting that hybrid solvent
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Figure 5: Top panel: Square root of the eigenvalues (SRE) of the largest 40 modes from the PCA, for chain A of
LB/MD (left panel) and AA/MD (right panel) simulations. Slightly differences are observed between wild and
mutated. A strong intensity decrease is observed for the LB-MD cases, corresponding to the reduced mobility
of the protein. Bottom panel: The main variation mode in principal component analysis (PCA) for chain A of
the wild-type Spike protein in the LB/MD simulation (a) and in the AA/MD simulation (b).

approaches have also been proposed in several references [66–69]. In particular, these
approaches exploit an explicit atomistic representation of the water molecules in the first
solvation shell while the bulk solvent is modeled at the continuum level. Nonetheless,
the LAMMPS code used in the present work does not yet include hybrid solvent repre-
sentations.

To gain some insights into the quaternary motion of the trimer, we performed the
principal component analysis (PCA) of the internal motion involving the linked S1 and
S2 fragments and also evaluated the cross-correlation matrix (CCM) between pairs of Cα.

The PCA (see Fig. 5) is quite indicative, for the sake of methods’ comparison. Focus-
ing on Spike/α-Spike comparison, their description is quite similar in the framework of
the same method. Obviously, due to the lower flexibility of the LB-MD protein, the size of
the modes is almost 3-4 times larger in AA-MD. Moreover, also the weight of the various
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Figure 6: Cross-correlation map of the cross-correlation matrix for chain A of Spike and α-Spike in LB/MD
simulations (panels a, b), and in AA/MD simulations (panels c, d). All cases show a significant correlation
block associated with residues from the RBD (residues 331-528). The higher mobility of the protein in the
all-atom simulations is reflected by the richer structure of the CCM (panels c,d), yet the qualitative structure
of the patterns is preserved in LB/MD.

modes is different, meaning that different regions of the protein show different flexibility
changes when the solvent is described all-atom or at the mesoscale. For example, the first
mode involves mainly the NTD in the AA-MD description, and the RBD in the LB-MD
model.

The PCA analysis has been used, in an all-atom simulation, to demonstrate that the
active form of the CoV-2 spike protein is more stable than the active CoV-1 spike pro-
tein [70], with the first normal mode associated to the motion of RBD, as here correctly
described by LB. A concerted motion of NTD and RBD is observed as second normal
mode. In a different simulation [53], similar involvement of NTD and RBD in the first
normal mode has been observed.

Complementary information can be obtained from the correlation (CC) maps (Fig. 6).
At a first glance, the maps for the two methods and the two protein variants show sim-
ilar macroscopic behaviour, also comparable with data in literature [70]. Correlations
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between residues are reasonably described by LB-MD with respect to AA-MD. This re-
sult is due to the fact that intramolecular local interactions, not mediated by solvent,
are kept and well described in the LB-MD method. To note that, in both methods, the
α-Spike presents higher correlation values with respect to the wild-type, denoting that
mutations indeed affect the protein structure and interaction propensity, and that these
fundamental features are kept in the mesoscale description. High correlation regions are
well related to protein domains.

4 Discussion and conclusions

In this work, we demonstrate how some fundamental protein structural and dynamical
features are correctly described in the scheme LB-MD, that couples the atomistic descrip-
tion of the protein to the mesoscale model for the solvent. However, some critical points
can be clearly enucleated and quantified.

First of all, due to the implicit solvent model, the H-bonds, both intra-protein and
between protein and solvent molecules, are completely missing in the LB-MD scheme.
The H-bonds and the interaction with water molecules are fundamental for protein sta-
bility and conformational flexibility, and also for protein-protein interactions. In this spe-
cific case, for example, the H-bonds formation is at the basis of the spike-ACE2 interac-
tion [71]. Also, as a consequence of the mesoscale solvent model, the protein flexibility
and conformational fluctuations are strongly inhibited. Conformational fluctuations are
fundamental because they are related to the possibility of a protein to change structural
conformation and therefore to function. For the specific case of the spike protein, the
fluctuations of the L3 loop, containing S477, in the RBD, are fundamental to guarantee
the spike ancoring to ACE [60]. A reliable structural description and analysis of the RBD
in the prefusion, unbound spike, is therefore a very critical step, for example to design
inhibitors or antibodies to block hACE2 and RBD interactions [60]. The motion of RBD is
only partially guaranteed by the LB-MD, which provides a description intrinsically more
rigid than the AA-MD. However, LB-MD properly identifies the region as more flexible,
and cross-correlated, with respect to the rest of the sequence, as shown for instance by the
CC map and the RMSFs. The RMSFs, despite being quantitatively different between the
two methods, show similar qualitative behaviour when comparing Spike and α-Spike.
In particular, we observe an increased rigidity of the RBD in the α-Spike compared to
the wild-type Spike. The main correlations inside the sub-domains are preserved, and
the large correlation of the RBD block in the CC map for the α-Spike reinforces the in-
formation on the stability of the mutated structure. Indeed, the capability of the α-Spike
RBD to maintain a rigid structure can be related, from the statistical point of view, with
its remarkable human-to human transmissibility [32], since the smaller fluctuations are
limiting the sampling of possible RBD configuration basins to the subregion where the
structure more efficiently binds to ACE2. This behaviour is somehow similar to what is
observed for RBD rigidity of SARS-CoV-2 with respect to the Sars virus [32]. Moreover,
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the same correlation trends over Spike and α-Spike structures are found in the LB/MD
simulations, showing the capability of the multiscale approach to preserve essential in-
formation even if at a lower description level of the solvent.

Furthermore, we performed preliminary simulations (not shown) where the ACE2-
RBD interaction is successfully realized also in the LB-MD approach, overcoming both
the scarce loop flexibility and the lack of H-bonds.

Overall, the comparison with the other reductionist method, the coarse grained de-
scription [17] shows that similar results can be obtained with LB-MD. We investigated
here only the open state of spike. Most recent investigations [59] on different confor-
mational states show that locked and closed states are more rigid than the open state.
So, the LB-MD model would be probably more effective in describing those functional
states, than the more flexible open state. Despite its limitations, LB-MD can keep trace of
structural changes in flexibility related to mutations, therefore potentially preserving the
biological information related to the virus behaviour for different lineages.

Overall, from our investigation, two main results emerge: a) the in nuce potential
of the multiscale approach to describe large systems, with the possibility of including
flow motion effects in the protein dynamics; b) the needing for a more refined cou-
pling scheme at the protein/solvent interface, possibly a scheme where the solvent is
explicitly described only close to the protein interface, providing a reliable description of
the interaction among water molecules and amino acids, a pivotal interaction in deter-
mining both equilibrium and dynamic properties of biological molecules. This needing
still poses problems, as testified by the continuous publication of research papers on the
topic [62, 63, 72–74]. Further, the LB method could also be extended to include hydrogen
bond interactions directly on the lattice representation. For instance, several water-like
potentials have been developed in the last decades to describe water molecules’ polarity
on a lattice representation. In these potentials, each cubic box could contain about one
water molecule [75, 76] or also a cluster of several water molecules [77, 78]. Hence, an
effective Hamiltonian is usually defined to model the hydrogen bond interaction in the
bulk water and in the protein hydration shell [79, 80]. As a practical example, the three-
dimensional Ben-Naim [81] water potential was included in the LB method to model
hydrogen bonds in water bulk [82]. However, the use of coarse-grained potentials na-
tively developed to treat the solvent implicitly makes unnecessary the use of hydrogen
bond extensions in the LB model. Notable examples of implicit-solvent coarse-grained
models are OPEP [83] and dry-Martini [84] force fields. In particular, the OPEP force
field was successfully combined to LB method to investigate the protein unfolding under
high shear rate [85]. Moreover, coarse-grained force fields could allow the simulation of
large system sizes, where laminar flows could be fully developed beyond the effects of
the local thermal fluctuations due to the simultaneous presence of large structures, such
as planar membranes, receptors, and viral capsids.

To conclude, on one side our simulations demonstrate and quantitatively estimate
the pivotal role of the explicit water molecules treatment to obtain a statistically reliable
characterization of biological molecules. In this respect the use of the LB solvent, while
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computationally advantageous, does not deliver quantitatively accurate information. On
the other hand, our study highlights that many structural features, important in biologi-
cal activities, are preserved in the LB-MD mesoscale solvent description.

Possible future development could include a new class of LB models, capable of sup-
porting larger fluctuations than presently possible. A promising direction along this line
is the resort to higher-order sets of discrete velocities as well as extension to account
properly the Hydrogen bond formations.
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