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Abstract. In this paper, we develop and analyze two stabilized mixed virtual element
schemes for the Stokes problem based on the lowest-order velocity-pressure pairs (i.e.,
a piecewise constant approximation for pressure and an approximation with an accu-
racy order k = 1 for velocity). By applying local pressure jump and projection stabi-
lization, we ensure the well-posedness of our discrete schemes and obtain the corre-
sponding optimal H1- and L2-error estimates. The proposed schemes offer a number of
attractive computational properties, such as, the use of polygonal/polyhedral meshes
(including non-convex and degenerate elements), yielding a symmetric linear system
that involves neither the calculations of higher-order derivatives nor additional cou-
pling terms, and being parameter-free in the local pressure projection stabilization.
Finally, we present the matrix implementations of the essential ingredients of our sta-
bilized virtual element methods and investigate two- and three-dimensional numeri-
cal experiments for incompressible flow to show the performance of these numerical
schemes.
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1 Introduction

Incompressible Stokes flow, as one of the most important and valuable problems, in-
volves many practical applications, such as oil exploration, pipeline transportation, sed-
imentation, modeling of bio-suspensions, construction of efficient fibrous filters, and de-
velopment of energy efficient micro-fluidic devices. Due to the limitations of fluid ex-
periments, using computer-based numerical simulation remains an effective and flexible
method in practical applications. The classical finite element method, especially with the
lowest-order conforming pair (i.e., piecewise linear/bilinear C0 velocities and piecewise
constant pressures) with convenient construction (i.e., simpler shape functions) and fast
implementation (i.e., fewer degrees of freedom), has become the preferred solution for
such problems; see, e.g., [1–4] and the references cited therein. However, an important
fact is that the lowest-order velocity-pressure pairs violate the LBB [5] (inf-sup) stability
condition, which often leads to unphysical pressure oscillations. To overcome this diffi-
culty, a series of methods have been developed, such as penalty methods [6–8], consis-
tently stabilized methods [9, 10], pressure gradient projection methods [11–13], related
local pressure gradient stabilization methods [14], offset pressure stabilization meth-
ods [15], and projection-based stabilized methods [16, 17], among others.

As an extension of the classical finite elements to general polygonal elements, the
virtual element method (VEM) has gained widespread attention since its theory [18]
and matrix implementation [19] were proposed. Then the authors in [20] enhanced a
discrete space and gave a specific process in calculating an L2-projection operator for a
three-dimensional reaction-diffusion problem. By combing the ideas of VEM with other
methods, the Hα-conforming VEM [21, 22], the nonconforming VEM [23, 24], and the
H(div)/H(curl)-VEM [25, 26] were designed. Due to the advantages of the virtual ele-
ment method in mesh flexibility and structure-preserving spatial construction, the VEM
has been widely used in adaptive mesh refinement [27], elliptic bulk-surface PDEs [28],
structural mechanics elasticity [29, 30] and incompressible fluid problems [31–36].

Combining the widespread practical applications of the lowest-order elements with
the advantages of the virtual element method, it is crucial to construct the lowest-order
virtual element pair, which, in fact, not only faces a similar situation to the lowest-order
mixed finite elements (that is, the pair fails to satisfy the inf-sup stability condition), but
also needs to consider the computability of additional stabilization terms introduced to
meet this stability condition (since the VEM lacks explicit expressions of basis functions).
About these challenges, the authors in [37] have developed the ’equal-order’ stabilized
virtual element pairs for the Stokes problem on polygonal meshes, utilizing a projection-
based stabilization to circumvent the discrete inf-sup condition. In addition, the authors
in [38] have proposed a least-squares type stabilization VEM for the Stokes problem,
which is suitable for arbitrary combinations of velocity and pressure. Also, there is some
research on stabilized virtual element methods for other problems, such as the Navier-
Stokes [39], Oseen [40], advection-diffusion-reaction [41–43] problems, among others.
Furthermore, it is worth mentioning that [31] has also provided a lowest-order virtual el-
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ement pair (which amazingly satisfies the divergence-free property) for the Stokes prob-
lem by constructing a new virtual element space (rather than by adding a stabilization
term), but which requires, in addition to point values at vertices, the point values of nor-
mal components at the midpoints of edges as degrees of freedom for velocity. Also, [31]
also uses the stream formulation of the Stokes problem that naturally leads to a symmet-
ric system.

This paper mainly focuses on constructing the lowest-order (i.e., a piecewise constant
approximation for pressure and an approximation with an accuracy order k = 1 for ve-
locity) stabilized virtual elements for the two- and three-dimensional Stokes problems,
which are different from the existing articles on virtual element stabilization. Based on
the local pressure jump stabilization and the local pressure projection stabilization, we
not only prove the two corresponding weaker forms of the inf-sup condition, which leads
to the existence and uniqueness of the discrete solution, but also obtain the optimal H1-
error estimate for the velocity and the optimal L2-error estimates for the velocity and
pressure. Furthermore, we show the simple and straightforward matrix implementation
of the discrete problem, including the local operators, the local stabilization term, and the
suitable projection in the stabilization term. Importantly, our proposed scheme is a sym-
metric linear system that involves neither the calculations of higher-order derivatives nor
additional coupling terms, and can deal with polygonal meshes (including non-convex
and degenerate elements). Especially, our scheme is still parameter-free for the local pres-
sure projection stabilization. Our numerical experiments in two and three dimensions are
shown to confirm the theoretical predictions.

The layout of this paper is as follows: Section 2 presents the stabilized virtual el-
ement discretization. Section 3 gives the well-posedness of our discrete scheme. The
corresponding error estimates are provided in Section 4, while some details of the matrix
implementation are shown in Section 5. The paper concludes with Section 6 in which the
results of a series of numerical experiments are demonstrated.

Throughout the paper, we use the standard notation of the Sobolev spaces, such as
the Sobolev space Hm(D) (when m= 0, H0(D) represents L2(D)) on an open bounded
domain D and the corresponding inner product (·,·)m,D, norm ∥·∥m,D, and seminorm
|·|m,D. When D= Ω, we shall omit index Ω from the subscript for the inner products,
norms and seminorms. Moreover, Pℓ(D) is defined as the set of polynomials of degree
less than or equal to ℓ on D; especially, P−1(D)={0}.

2 Stabilized virtual element approximation

This section considers a stabilized virtual element approximation of the Stokes problem
in an open and bounded polygonal/polyhedral domain Ω⊂Rd (d=2,3):
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−ν∆u+∇p= f in Ω, (2.1a)
∇·u=0 in Ω, (2.1b)

u=0 on ∂Ω, (2.1c)

with the unknown velocity u ∈ [H2(Ω)]d, the unknown pressure p ∈ H1(Ω), the given
viscosity ν, and the given external force f ∈ [L2(Ω)]d. Then, the weak formulation of
problem (2.1) reads as: Find (u,p)∈X×Z=[H1

0(Ω)]d×L2
0(Ω) such that, for all v∈X and

q∈Z,

νa(u,v)+b(v,p)=(f,v), (2.2a)
b(u,q)=0, (2.2b)

or
A(u,p;v,q)=(f,v), (2.3)

where H1
0(Ω) denotes the space of H1(Ω) functions with vanishing trace on the bound-

ary, L2
0(Ω) denotes the set of square integrable functions with a vanishing mean, and

a(u,v)=(∇u,∇v), b(v,p)=−(p,∇·v),
A(u,p;v,q)=νa(u,v)+b(v,p)−b(u,q).

Obviously, the well-posedness of problem (2.2) (c.f. [44–46]) classically hinges on the con-
tinuity and coercivity of the bilinear form a(u,v) on X×X; i.e.,

|a(u,v)|≤C∥u∥1∥v∥1 and a(v,v)≥C∥v∥2
1,

together with the continuity and inf-sup stability of the bilinear form b(v,p) on X×Z, i.e.,

|b(v,p)|≤C∥p∥0∥v∥1 and sup
v∈X

b(v,p)
∥v∥1

≥C∥p∥0.

Here and below, we denote a generic positive constant C independent of a mesh size,
which is different from place to place (unless otherwise stated).

2.1 Virtual element discrete spaces

In the two-dimensional case, let Th be a decomposition of Ω into polygonal elements K
with the maximum element size h = max

K∈Th
diam(K). Then, all edges and vertices in Th

are collected in the sets Eh and Vh, respectively. And the set of all edges of element K
is defined as E(K). If we set hQ = diam(Q) with Q being selected as every polygonal
element K or every edge e, the mesh partition is assumed to be shape-regular in the
following sense:
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Assumption 0 ([18]). We assume that for every h, decomposition Th is made of a finite
number of simple polygons, and there exists a positive real number γ such that the fol-
lowing properties hold: i) for every polygonal element K and edge e∈E(K), he ≥γhK; ii)
every polygonal element K is star-shaped with respect to a disk of radius ≥γhK.

Now, for any two-dimensional polygonal element K ∈Th with ne edges and nv = ne
vertices, we can define the lowest-order enhanced local discrete space for the velocity as

Xh|K ={vh ∈ [H1(K)]2 : ∆vh ∈ [P1(K)]2, vh|∂K ∈C0(∂K), vh|e ∈ [P1(e)]2 for each e∈E(K),
(vh−Π∇

K vh,m)K =0 ∀ m∈ [P1(K)]2},

where the local H1-projection Π∇
K : [H1(K)]d→ [P1(K)]d is computable [20] and defined as

(∇Π∇
K v,∇m)K =(∇v,∇m)K ∀ m∈ [P1(K)]d,

(Π∇
K v,1)∂K =(v,1)∂K.

(2.4)

According to [20], we can introduce the values of vh at the vertices in K as the unisol-
vent degrees of freedom, which coincide with the dimension of Xh|K. Meanwhile, we
can introduce the local L2-orthogonal projection operators Π0

K : [L2(K)]d → [P1(K)]d and
Π00

K div : [H1(K)]d →P0(K)

(Π0
Kv,m)K =(v,m)K ∀ m∈ [P1(K)]d,

(Π00
K divv,m)K =(divv,m)K ∀ m∈P0(K),

(2.5)

and ensure their computability from the degrees of freedom of Xh|K (a discussion on the
computability of Π0

K and Π00
K div is found in Remark 2.1 below).

In the three-dimensional case, we can similarly define the mesh partition Th and ad-
ditionally introduce all faces set Fh, element faces set F (P) and the element size hP for
every polyhedron. Then, the regularity requirement of mesh partitions also requires two
following conditions in addition to Assumption 0: i) for every polyhedral element P and
face K∈F (P), hK ≥γhP with γ being the positive real number present in Assumption 0;
ii) every polyhedral element P is star-shaped with respect to a sphere of radius ≥ γhP.
Now, the local space on every polyhedral element P∈Th (with nv vertices, nK faces, and
ne edges) is defined by

Xh|P ={vh ∈ [H1(P)]3 : ∆vh ∈ [P1(P)]3, vh|∂P ∈H1(∂P), vh|K ∈Xh|K for each K∈F (P)

(vh−Π∇
P vh,m)P =0 ∀ m∈ [P1(P)]3},

which can be endowed with the unisolvent degrees of freedom, i.e., the values at the
vertices of P.

To simplify the notation, in what follows we will use the unified symbol E to represent
a two-dimensional polygonal element K or a three-dimensional polyhedral element P.
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Now, whether the dimension d is 2 or 3, we can define the global virtual element space
Xh for the velocity as a continuous space; i.e.,

Xh ={vh ∈X : vh|E ∈Xh|E for each E∈Th},

whose unisolvent degrees of freedom are chosen as the values of vh at the internal vertices
(remembering that on ∂Ω we set the homogeneous Dirichlet boundary conditions) of the
decomposition. Immediately, the global discrete space for the pressure can be shown as
a piecewise constant space; i.e.,

Zh ={qh ∈Z : qh|E ∈P0(E) for each E∈Th}.

Remark 2.1. It is obvious that these three projections Π∇
E ,Π0

E, and Π00
E div can be com-

puted based on the degrees of freedom of the local discrete virtual element space Xh|E.
More specifically, the right-hand terms of these three projections can be expressed by the
partial integral formula as

(∇v,∇m)E =(v,∇m·nE)∂E ∀ m∈ [P1(E)]d,

(v,m)E =(Π∇
E v,m)E ∀ m∈ [P1(E)]d,

(divv,m)E =(v·nE,m)∂E ∀ m∈P0(E),

with nE being the exterior unit normal vector of element E. Since ∇m·nE∈P0(E) and m∈
P0(E), we can obtain the computability of the H1-projection Π∇

E and composite projection
Π00

E div, which leads to the computability of the L2-projection Π0
E. For more details, the

reader is referred to [19].

2.2 Virtual element discrete schemes

From now on, we only need to discuss how to construct the discrete versions of the local
bilinear forms aE(·,·),bE(·,·) and the right-hand term, which lead to the global virtual
element discrete schemes by simply summing the local contributions. If we number the
degrees of freedom of the local space Xh|E from 1 to Ndof

E =dimXh|E and we define the
operator dofi from Xh|E to R as

dofi(vh) := i-th degree of freedom of vh, i=1,··· ,Ndof
E ,

the discrete counterpart of the bilinear form aE(·,·) can be defined as

aE
h (uh,vh)= aE(Π∇

E uh,Π∇
E vh)K+SE(uh−Π∇

E uh,vh−Π∇
E vh), uh,vh ∈Xh|E, (2.6)

as proposed in [18,20], where the symmetric and positive definite bilinear form SE :Xh|E×
Xh|E →R guarantees

c∗aE(vh,vh)≤SE(vh,vh)≤ c∗aE(vh,vh) ∀ vh ∈ker(Π∇
E ),
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for some positive constants c∗ and c∗ independent of h. A simple choice for SE(·,·) is the
Euclidean inner product between vectors of degrees of freedom (other possible choices
can be found in [47]); i.e.,

SE(uh−Π∇
E uh,vh−Π∇

E vh)=hd−2
E

Ndof
E

∑
i=1

dofi(uh−Π∇
E uh)dofi(vh−Π∇

E vh). (2.7)

Thanks to the definition of operator Π∇
E and the continuity and coercivity of term SE(·,·),

we can prove the crucial properties of the local discrete bilinear form aE
h (·,·):

i) k-consistency: for all m∈ [Pk(E)]d and for all vh ∈Xh|E, it holds

aE
h (vh,m)= aE(vh,m);

ii) Stability: there exist two positive constants α∗,α∗ independent of h, such that

α∗∥∇vh∥2
0,E ≤ aE

h (vh,vh)≤α∗∥∇vh∥2
0,E ∀vh ∈Xh|E.

At the same time, the local virtual element approximations of bE(·,·) and the local load
term are, respectively, defined as

bE
h (vh,ph)=−(Π00

E divvh,ph)E =−(divvh,ph)E ∀vh ∈Xh|E, ph ∈Zh|E,

(fh,vh)E =(f,Π0
Evh)E =(Π0

Ef,vh)E ∀vh ∈Xh|E.
(2.8)

Next, due to the fact that lowest-order virtual element pairs Xh and Zh violate the discrete
inf-sup condition, a stabilization term has to be designed based on the pressure jump or
the pressure projection. Following the ideas of [48], we can define a stabilization term for
every ph,qh ∈Zh

G1(ph,qh)=δ ∑
e∈Γ0

h

∫
e
he[[ph]][[qh]] ds, (2.9)

where he denotes the size of an element edge (d=2) or face (d=3), Γ0
h indicates the set of

all interior edges/faces in Th, [[·]] is the jump across an edge/face (taken on the interior
edges/faces only), and δ represents a stabilization parameter that is independent of h (but
its most appropriate choice is not known a priori). It is clear that this stabilization term is
computable from degrees of freedom of Zh and is related to the stabilization parameter
δ. Then, if we define a norm

∥q∥Γ0
h
=

 ∑
e∈Γ0

h

∫
e
q2ds

 1
2

,

we can obtain the continuity and coercivity of G1(·,·), i.e.,

G1(qh,qh)≥γ∗min
e∈Γ0

h

(he)∥[[qh]]∥2
Γ0

h
and G1(ph,qh)≤γ∗∥ph∥0∥qh∥0 (2.10)
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by using the standard inverse inequality ∥[[ph]]∥Γ0
h
≤Ch−1/2∥ph∥0 for all functions ph∈Zh

[49].
Furthermore, in order to design a parameter-free stabilization term, we should con-

sider the following pressure projection scheme similar to [17]∫
Ω
(ph−Πph)(qh−Πqh) dx=

∫
Ω

phqh−phΠqh−qhΠph+ΠphΠqh dx ∀ph,qh ∈Zh|K,

where the interpolation operator Π : L2(Ω)→Xh (whose possible choices will be shown
in Section 5) satisfies the continuity hypothesis (as an operator L2(Ω)→L2(Ω))

∥Πq∥0≤C∥q∥0 (2.11)

and the approximation hypothesis

∥q−Πq∥0≤Ch∥q∥1, (2.12)

where Xh is the scalar VEM space defined as

Xh ={v∈H1(Ω) : ∆v|E ∈P1(E) ∀E∈Th, v|e ∈P1(e) ∀e∈Eh,

(v−Π∇
E v,m)E =0 ∀ m∈P1(E), E∈Th}

for d=2 and as

Xh ={v∈H1(Ω) : ∆v|E ∈P1(E) ∀E∈Th, ∆v|F ∈P1(F) ∀F∈Fh, v|e ∈P1(e) ∀e∈Eh,

(v−Π∇
F v,m)F =0 ∀ m∈P1(F), (v−Π∇

E v,m)E =0 ∀ m∈P1(E)}

for d=3. Obviously, it holds that Xh =[Xh]
d. Also, we can similarly introduce the spatial

dimension Ñdof
E = dimXh|E = Ndof

E /d and the i-th degree of freedom d̃ofi for the scalar
space Xh.

However, it is unfortunate that the stabilization term designed above, essentially the
term

∫
Ω ΠphΠqh dx, is not computable in the framework of virtual element method, so

we need to replace it with the following computable stabilization term:

G2(ph,qh)= ∑
E∈Th

[(ph,qh)E−(ph,Πqh)E−(Πph,qh)E

+(Π0
EΠph,Π0

EΠqh)E+S̃E((I−Π0
E)Πph,(I−Π0

E)Πqh)
]

, (2.13)

where the symmetric and positive definite bilinear form S̃E :Xh|E×Xh|E→R can be simply
defined as

S̃E((I−Π0
E)Πph,(I−Π0

E)Πqh)= |E|
Ñdof

E

∑
i=1

d̃ofi((I−Π0
E)Πph)d̃ofi((I−Π0

E)Πqh). (2.14)
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It can be seen from [50] that

c̃∗((I−Π0
E)Πph,(I−Π0

E)Πph)E ≤ S̃E((I−Π0
E)Πph,(I−Π0

E)Πph)

≤ c̃∗((I−Π0
E)Πph,(I−Π0

E)Πph)E

for some positive constants c̃∗ and c̃∗ independent of h. Then, we know the continuity
and coercivity of G2(·,·), i.e.,

G2(qh,qh)≥γ∗∥qh−Πqh∥2
0 and G2(ph,qh)≤γ∗∥ph−Πph∥0∥qh−Πqh∥0. (2.15)

In the end, we show the stabilized virtual element scheme for the Stokes problem: Find
(uh,ph)∈Xh×Zh such that

νah(uh,vh)+bh(vh,ph)=(fh,vh) ∀ vh ∈Xh, (2.16a)
bh(uh,qh)−G(ph,qh)=0 ∀ qh ∈Zh, (2.16b)

where the stabilization term G(·,·) is either G1(·,·) or G2(·,·). Equivalently, we can write
(2.16) in the following form: Find (uh,ph)∈Xh×Zh such that

Ah(uh,ph;vh,qh)=(fh,vh) ∀ (vh,qh)∈Xh×Zh, (2.17)

where
Ah(uh,ph;vh,qh)=νah(uh,vh)+bh(vh,ph)−bh(uh,qh)+G(ph,qh).

Remark 2.2. When E is a triangle (d= 2) or tetrahedron (d= 3), the proposed stabilized
virtual element method is the finite element case in [17], except for an approximation of
the load term.

3 Well-posedness of the Discrete scheme

This section is devoted to recall the projection and interpolation errors, and prove the
well-posedness of (2.17).

Lemma 3.1 ([51]). If Assumption 0 is satisfied, then for every E∈Th and v∈[Hs+1(K)]d, it holds
that

∥v−Π∇
E v∥m,E ≤Chs+1−m

E ∥v∥s+1,E, m∈N, max(m−1,0)≤ s≤ k,

∥v−Π0
Ev∥m,E ≤Chs+1−m

E ∥v∥s+1,E, m∈N, m−1≤ s≤ k.

Lemma 3.2 ([27, 52]). If Assumption 0 is satisfied, then for every E∈Th and v∈ [Hs+1(E)]d,
there exist vπ ∈Pk(E) and vI ∈Xh|E satisfying dofi(v−vI)=0,i=1,··· ,Ndof

E such that

∥v−vπ∥0,E+hE|v−vπ|1,E ≤Chs+1
E |v|s+1,E, 0≤ s≤ k,

∥v−vI∥0,E+hE|v−vI |1,E ≤Chs+1
E |v|s+1,E, 1≤ s≤ k.
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Lemma 3.3 ([27, 52]). If Assumption 0 is satisfied and Ẽ is a partition of E into triangles or
tetrahedra, then for every E∈Th and v∈ [H1(Ω)]d, there exists vc ∈Xh such that

∥v−vc∥0,E+hE|v−vc|1,E ≤C(γ)hE|v|1,Ẽ.

To show that (2.17) is a stable variational problem, we have to show that Ah is contin-
uous, i.e., that there exists C> 0 such that for all (uh,ph) and (vh,qh) in Xh×Zh, it holds
that

Ah(uh,ph;vh,qh)≤C(∥uh∥1+∥ph∥0)(∥vh∥1+∥qh∥0), (3.1)

where the hypothesis (2.11) is used for the case G(·,·)=G2(·,·). Then, we need to prove
two weaker forms of the inf-sup condition corresponding to G1(·,·) and G2(·,·).

Lemma 3.4. If Assumption 0 is satisfied, there exist positive constants β1 and β̂1 independent of
h such that

sup
vh∈Xh

|(∇·vh,qh)|
∥vh∥1

≥β1∥qh∥0− β̂1h1/2∥[[qh]]∥Γ0
h

∀ qh ∈Zh.

Proof. Due to the fact that qh ∈Zh ⊂Z, there exists w∈ [H1
0(Ω)]d such that∣∣∣∣∫Ω

qh∇·wdx
∣∣∣∣≥C1∥qh∥0∥w∥1.

Then, from Lemma 3.3, it is known that there exists a wc ∈ Xh ⊂ [H1
0(Ω)]d satisfying

∥wc∥1≤C2∥w∥1, which leads to

|(∇·wc,qh)|
∥wc∥1

≥ |(∇·wc,qh)|
C2∥w∥1

≥ C1

C2
∥qh∥0−

|(∇·(w−wc),qh)|
C2∥w∥1

.

By using integrating by parts and the fact that qh is constant on each element, we have

(∇·(w−wc),qh)= ∑
E∈Th

∫
E
∇·(w−wc)qhdx= ∑

E∈Th

∫
∂E

nE·(w−wc)qhds

= ∑
e∈Γ0

h

∫
e
[[qh]]ne·(w−wc)ds≤C3h1/2∥[[qh]]∥Γ0

h
∥w∥1,

where in the last step the Cauchy-Schwarz inequality, the trace inequality (c.f. (2.18) in
[53]) and Lemma 3.3 are used. Now, since

sup
vh∈Xh,vh ̸=0

|(∇·vh,qh)|
∥vh∥1

≥ |(∇·wc,qh)|
∥wc∥1

,

the lemma is proved.
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Lemma 3.5. If Assumption 0 is satisfied, there exist positive constants β2 and β̂2 independent of
h such that

sup
vh∈Xh

|(∇·vh,qh)|
∥vh∥1

≥β2∥qh∥0− β̂2∥qh−Πqh∥0 ∀ qh ∈Zh.

Proof. To prove this lemma, we only need to show h1/2∥[[qh]]∥Γ0
h
≤C∥qh−Πqh∥0. From

the definition of Π, it holds that Πqh∈C0(Ω) and [[Πqh|e]]=0 for every e∈Γ0
h. Then, using

the standard inverse inequality ∥[[ph]]∥Γ0
h
≤Ch−1/2∥ph∥0, we have

h∥[[qh]]∥2
Γ0

h
=h ∑

e∈Γ0
h

∫
e
([[qh−Πqh]]+[[Πqh]])

2 ds≤C∥qh−Πqh∥2
0,

which leads to the desired result.

Now, the existence and uniqueness of the solution of (2.17) follow from the following
lemma, together with (3.1):

Lemma 3.6. If Assumption 0 is satisfied, it holds for each (uh,ph)∈Xh×Zh

sup
(vh,qh)∈Xh×Zh

|Ah(uh,ph;vh,qh)|
∥vh∥1+∥qh∥0

≥C(∥uh∥1+∥ph∥0).

Proof. For a given arbitrary but fixed pressure ph∈Zh, we can find w∈[H1
0(Ω)]d satisfying

−∇·w= ph,∥w∥1 ≤C4∥ph∥0 and introduce a corresponding wc from Lemma 3.4. Now,
we can set (vh,qh)=(uh+ϑwc,ph) with ϑ>0 being a real parameter, which satisfies

∥vh∥1+∥qh∥0≤∥uh∥1+ϑ∥wc∥1+∥ph∥0

≤∥uh∥1+ϑC2∥w∥1+∥ph∥0≤C(∥uh∥1+∥ph∥0). (3.2)

By using the equality ∥ph∥2
0+(ph,∇·w)= 0, the coercivity of ah(·,·) and the Young’s in-

equality, we have the bound

Ah(uh,ph;uh+ϑwc,ph)

=νah(uh,uh)+νϑah(uh,wc)+ϑbh(wc,ph)+G(ph,ph)+ϑ∥ph∥2
0+ϑ(ph,∇·w)

≥να∗∥uh∥2
1+ϑ∥ph∥2

0+G(ph,ph)+νϑah(uh,wc)+ϑ(ph,∇·(w−wc))

≥να∗

(
1−νϑα∗2C2

2C2
4

α∗

)
∥uh∥2

1+
ϑ

2
∥ph∥2

0+
(
1−ϑC2

3C2
4
)

G(ph,ph). (3.3)

Choosing

ϑ=min
{

α∗
2να∗2C2

2C2
4

,
1

2C2
3C2

4

}
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guarantees that (
1−νϑα∗2C2

2C2
4

α∗

)
≥ 1

2
and

(
1−ϑC2

3C2
4
)
≥ 1

2
,

which leads to
Ah(uh,ph;uh+ϑwc,ph)

≥1
4

(√
να∗∥uh∥1+

√
ϑ∥ph∥0

)2

≥C(∥uh∥1+∥ph∥0)
2 .

Combing with (3.2), we get the desired discrete inf-sup condition.

Remark 3.1. It is clear that the constant C in Lemma 3.6 (and subsequently in Theorems
4.1-4.2) is related to the viscosity parameter ν. If one wants to further ensure that the
conforming discrete velocity can be exactly divergence-free, we can refer to the ideas
in [54], which will be our future work.

4 Error estimates

The goal of this section is to achieve the H1-error estimation for the velocity and the
L2-error estimation for the velocity and pressure.

Theorem 4.1. Under the Assumption 0 for the family of meshes Th, let (u,p)∈{X∩[H2(Ω)]d}×
{Z∩H1(Ω)} and (uh,ph)∈Xh×Zh denote the solutions of (2.2) and (2.16), respectively. Then,
it holds

∥u−uh∥1+∥p−ph∥0≤Ch(∥u∥2+∥p∥1+∥f∥1).

Proof. Taking v=vh ∈Xh, q= qh ∈Zh in (2.3) and subtracting the obtained equation from
(2.17), we can derive

ν(a(u,vh)−ah(uh,vh))+(b(vh,p)−bh(vh,ph))

−(b(u,qh)−bh(uh,qh))−G(ph,qh)=(f−fh,vh), (4.1)

which leads to

Ah(uh−uI ,ph−pI ;vh,qh)=ν ∑
E∈Th

[
aE(u−uπ,vh)+aE

h (uπ−u,vh)+aE
h (u−uI ,vh)

]
+b(vh,p−pI)−b(u−uI ,qh)+(fh−f,vh)−G(pI ,qh). (4.2)

Obviously, by using Lemmas 3.1-3.2, the continuity and stability of the continuous and
discrete bilinear forms, it holds

aE(u−uπ,vh)+aE
h (uπ−u,vh)+aE

h (u−uI ,vh)≤Ch∥u∥2,E∥vh∥1,E,

b(vh,p−pI)+(fh−f,vh)≤C
(
∥p−pI∥0+ ∑

E∈Th

∥f−Π0
Ef∥0,E

)
∥vh∥1≤Ch(∥p∥1+∥f∥1)∥vh∥1,

−b(u−uI ,qh)≤C∥u−uI∥1∥qh∥0≤Ch∥u∥2∥qh∥0. (4.3)
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Also, according to the fact that [[p|e]]=0 ∀e∈Γ0
h, the Cauchy-Schwarz inequality and the

trace inequality (c.f. (2.18) in [53]), we have the following estimation for the local pressure
jump stabilization G(·,·)=G1(·,·)

|−G(pI ,qh)|≤|G(p−pI ,qh)|+

∣∣∣∣∣∣ ∑
e∈Γ0

h

∫
e
δhe[[p]][[qh]] ds

∣∣∣∣∣∣
≤C(∥p−pI∥0+h|p−pI |1)∥qh∥0≤Ch∥p∥1∥qh∥0, (4.4)

or get the following estimation from (2.11), (2.12), and (2.15) for the local pressure projec-
tion stabilization G(·,·)=G2(·,·)

|−G(pI ,qh)|≤C(∥pI−p∥0+∥p−Πp∥0+∥Π(p−pI)∥0)∥qh−Πqh∥0≤Ch∥p∥1∥qh∥0.
(4.5)

It is immediate from Lemma 3.6, together with (4.3)-(4.5) to obtain

∥uh−uI∥1+∥ph−pI∥0≤
Ah(uh−uI ,ph−pI ;vh,qh)

∥vh∥1+∥qh∥0
≤Ch(∥u∥2+∥p∥1+∥f∥1). (4.6)

Then, by applying the triangle inequality, we can get the desired result.

In order to show the L2-velocity error estimation, we need the following reasonable
elliptic regularity assumption [44–46]: when the domain Ω is convex, there exists ρ de-
pending only on Ω, such that for all g∈[L2(Ω)]d, the unique solution of the dual problem

−ν∆ϖ−∇χ=g, in Ω, (4.7a)
divϖ=0, in Ω, (4.7b)

ϖ=0, on ∂Ω, (4.7c)

satisfies the regularity estimate

ν∥ϖ∥2+∥χ∥1≤ρ∥g∥0. (4.8)

Theorem 4.2. Under the assumptions of Theorem 4.1 and the above elliptic regularity assump-
tion, it holds

∥u−uh∥0≤Ch2(∥u∥2+∥p∥1+∥f∥1).

Proof. If we set g=u−uh in (4.7), a direct calculation shows that

∥u−uh∥2
0=(−ν∆ϖ−∇χ,u−uh)=νa(ϖ,u−uh)−b(u−uh,χ)
=νa(ϖ−ϖI ,u−uh)−b(u−uh,χ−χI)+νa(ϖI ,u−uh)−b(u−uh,χI). (4.9)
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It is easy to obtain

νa(ϖ−ϖI ,u−uh)−b(u−uh,χ−χI)≤C(ν∥ϖ−ϖI∥1+∥χ−χI∥0)∥u−uh∥1

≤Ch∥u−uh∥0∥u−uh∥1. (4.10)

Now, the key is the estimation of the remainder νa(ϖI ,u−uh)−b(u−uh,χI), which can
be rewritten as

νa(ϖI ,u−uh)−b(u−uh,χI)=−ν ∑
E∈Th

[
aE(uh−uπ,ϖI−ϖπ)−aE

h (uh−uπ,ϖI−ϖπ)
]

+[(f−fh,ϖI)−b(ϖI ,p−ph)]+G(ph,χI) (4.11)

by using (4.1) with vh=ϖI ,qh=χI , the k-consistency of aE
h (·,·), and the fact that b(uh,χI)=

bh(uh,χI). Then, the first term of (4.11) can be estimated by adding or subtracting u, i.e.,

aE(uh−uπ,ϖI−ϖπ)−aE
h (uh−uπ,ϖI−ϖπ)

≤C(∥u−uh∥1+∥u−uπ∥1)(∥ϖI−ϖ∥1+∥ϖ−ϖπ∥1)

≤Ch(∥u−uh∥1+h∥u∥2)∥u−uh∥0. (4.12)

The second term of (4.11) can be estimated by the definition of Π0
E and the fact that

b(ϖ,p−ph)=0, i.e.,

(f−fh,ϖI)−b(ϖI ,p−ph)= ∑
E∈Th

(f−Π0
Ef,ϖI−Π0

EϖI)E−b(ϖI−ϖ,p−ph)

≤Ch(∥p−ph∥0+ ∑
E∈Th

∥f−Π0
Ef∥0,E)∥ϖ∥2

≤Ch(∥p−ph∥0+h∥f∥1)∥u−uh∥0. (4.13)

The third term of (4.11) can be estimated by using the fact that [[p|e]]=0 and [[χ|e]]=0 for
all e∈Γ0

h, and (2.11), (2.12), (2.15), i.e., for the case G(·,·)=G1(·,·), it holds that

G(ph,χI)=G(ph−p,χI−χ)+G(p,χI)+G(ph−p,χ)
≤C∥ph−p∥0∥χI−χ∥0≤Ch∥p−ph∥0∥u−uh∥0, (4.14)

and for the case G(·,·)=G2(·,·), it holds that

G(ph,χI)≤C(∥ph−p∥0+∥p−Πp∥0+∥Π(p−ph)∥0)∥χI−ΠχI∥0

≤Ch(∥p−ph∥0+h∥p∥1)∥u−uh∥0. (4.15)

Therefore, substituting (4.10)-(4.15) into (4.9) and combining with Theorem 4.2, we end
this proof.
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5 Matrix implementation

In order to show the matrix expression for the VEM local stiffness matrix, we take the
two-dimensional case as an example (the three-dimensional case can be obtained simi-
larly) and first introduce two sets {ψi} and {φi} with cardinalities Nu and Np as the basis
functions of the virtual element spaces Xh and Zh, respectively, which means the set{(

ψi
0

)
,
(

0
ψi

)}
:=ϕj, j=1,··· ,2Nu

is a basis of the virtual element space Xh. Then, we have three Lagrange-type interpola-
tion identities:

uh=

(
u1h
u2h

)
=


Nu

∑
j=1

u1jψj

Nu

∑
j=1

u2jψj

=
2Nu

∑
j=1

ujϕj∈Xh, vh=
Nu

∑
j=1

vjψj∈Xh, ph=
Np

∑
j=1

pj φj∈Zh, (5.1)

where uj =u1j for j= 1,··· ,Nu and uj =u2j for j= Nu+1,··· ,2Nu. Also, we introduce the
basis functions of Pk(E) as

m1=1, m2=
x−xE

hE
, m3=

y−yE

hE
, m4=

(x−xE)
2

h2
E

, m5=
(x−xE)(y−yE)

h2
E

, m6=
(y−yE)

2

h2
E

,··· ,

i.e., {mλ}1≤λ≤nk with nk =
(k+2)(k+1)

2 .
From the relationship between the scalar space Xh and the vector space Xh, it is clear

that we only need to guarantee the computability of the local operators Π∇
E ,Π0

E on the
space Xh, which helps to achieve their computability on Xh. More specifically, for the
operator Π∇

E , the linear system arising from its definition (2.4) can be written in the fol-
lowing matrix form:

G


s1

1 s1
2 ··· s1

Nu

s2
1 s2

2 ··· s2
Nu

...
...

. . .
...

snk
1 snk

2 ··· snk
Nu

=B,

where the elements in row 1, column j and row i ∈ [2,nk], column j of G are (mj,1)∂E,
j= 1,··· ,nk and (∇mj,∇mi)E, j= 1,··· ,nk, respectively; the elements in row 1, column j
and row i∈ [2,nk], column j of B are (ψj,1)∂E, j= 1,··· ,Nu and (∇ψj,∇mi)E, j= 1,··· ,Nu,
respectively; the coefficients of Π∇

E in the basis mi, i=1,··· ,nk are defined as si
j, j=1,··· ,Nu,

i.e.,

Π∇
E ψj =

nk

∑
i=1

si
jmi, j=1,··· ,Nu.
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For the operator Π0
E, the linear system arising from its definition (2.5) can be written in

the following matrix form:

H


t1
1 t1

2 ··· t1
Nu

t2
1 t2

2 ··· t2
Nu

...
...

. . .
...

tnk
1 tnk

2 ··· tnk
Nu

=C,

where the elements in the i-th row and j-th column of H are (mj,mi)E,i, j=1,··· ,nk; C is the
nk×Nu matrix with Cij=(ψj,mi)E for 1≤i≤nk−2 and Cij=(Π∇

E ψj,mi)E for nk−2+1≤i≤nk;
the coefficients of Π0

E in the basis mi, i=1,··· ,nk are defined as ti
j, j=1,··· ,Nu, i.e.,

Π0
Eψj =

nk

∑
i=1

ti
jmi, j=1,··· ,Nu.

Also, we can give the matrix G̃ that coincides with G except for the first row which is set
to zero and define the Nu×nk matrix D by

D=


dof1(m1) dof1(m2) ··· dof1(mnk)
dof2(m1) dof2(m2) ··· dof2(mnk)

...
...

. . .
...

dofNu(m1) dofNu(m2) ··· dofNu(mnk)

.

In general, the matrix representations of the operators Π∇
E and Π0

E acting from Xh|E to
P1(E) in the basis {mλ} are given by G−1B and H−1C, respectively; Furthermore, we
have the corresponding matrix representations

G−1B :=
(

G 0
0 G

)−1( B 0
0 B

)
and H−1C :=

(
H 0
0 H

)−1( C 0
0 C

)
acting from Xh|E to [P1(E)]2 in the basis [{mλ}]2. Meanwhile, proceeding as before, we
define the nk−1×nk−1 matrix

(Hk−1)i,j =(mj,mi)E, i, j=1,··· ,nk−1

and the nk−1×2Nu matrix

Qi,j =(divϕj,mi)E, i=1,··· ,nk−1, j=1,··· ,2Nu

=

((
∂ψj

∂x
,mi

)
E

(
∂ψj

∂y
,mi

)
E

)
, j=1,··· ,Nu

for the composition operator Π00
E div, which means that the coefficients of Π00

E divϕj, j=
1,··· ,2Nu in the basis mi, i=1,··· ,nk−1 can be expressed as (Hk−1)

−1Q. Readers can refer
to [19] for more details on matrix implementation of these operators.
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Now, we can show the matrix expression for the VEM local stiffness matrix with the
2Nu×2Nu identity matrix I, the matrix

D=

(
D 0
0 D

)
, G̃=

(
G̃ 0
0 G̃

)
,

and the Np×Np matrix Mi,j=G(φj,φi) corresponding to the local pressure jump/projection
stabilization(

(G−1B)TG̃(G−1B)+(I−DG−1B)T(I−DG−1B) −((Hk−1)
−1Q)T

(Hk−1)
−1Q M

)
. (5.2)

Obviously, the key now becomes how to represent M, that is, the computability of the
local pressure jump/projection stabilization term G(φj,φi):

• For the case G(·,·)=G1(·,·), its computability can be easily obtained from the definition
of the jump operator [[·]] and the fact that φj ∈Zh (be a piecewise constant);

• For the case G(·,·)=G2(·,·), its computability depends on the computability of (Πφj,φi)E

and (Π0
EΠφj,Π0

EΠφi)E+S̃E((I−Π0
E)Πφj,(I−Π0

E)Πφi). In fact, the term (φj,φi)E of G2 is
easy to compute and the term (φj,Πφi)E is a transpose of the term (Πφj,φi)E. If we con-
sider the last identity in (5.1) and assume

Πφj =
Nu

∑
α=1

zα
j ψα, j=1,··· ,Np

with φj be the basis functions of the space Zh, it holds

(Πφj,φi)E
def of Xh======(Π∇

E Πφj,φi)E =
Nu

∑
α=1

zα
j (Π

∇
E ψα,φi)E =

Nu

∑
α=1

nk

∑
β=1

zα
j sβ

α(mβ,φi)E,

whose corresponding matrix expressions should be Hp(G−1B)Π, i.e.,


(m1,φ1)E (m2,φ1)E ··· (mnk ,φ1)E
(m1,φ2)E (m2,φ2)E ··· (mnk ,φ2)E

...
...

. . .
...

(m1,φNp)E (m2,φNp)E ··· (mnk ,φNp)E

(G−1B)


z1

1 z1
2 ··· z1

Np

z2
1 z2

2 ··· z2
Np

...
...

. . .
...

zNu
1 zNu

2 ··· zNu
Np

. (5.3)

Similarly, we have

(Π0
EΠφj,Π0

EΠφi)E+S̃E((I−Π0
E)Πφj,(I−Π0

E)Πφi)

=
Nu

∑
α=1

Nu

∑
β=1

zα
j zβ

i

[
(Π0

Eψα,Π0
Eψβ)E+S̃E((I−Π0

E)ψα,(I−Π0
E)ψβ)

]
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and its corresponding matrix expression

ΠT
[
CT H−1C+|E|(I−DH−1C)T(I−DH−1C)

]
Π.

Now, we can achieve the assembly of the local stiffness matrix (5.2) as soon as the matrix
Π in (5.3) which is the coefficients of Πφi, i=1,··· ,Np in the basis ψα, α=1,··· ,Nu can be
calculated. Actually, the choice of the operator Π : L2(Ω)→Xh has great flexibility (which
is also an attractive feature of our stabilization method), that is to say, some operators sat-
isfying two assumptions (2.11) and (2.12) can be used, such as virtual element projection
or interpolation operators. From a practical point of view, the main factors in choosing
Π are computational simplicity and locality (i.e., its computability can be achieved at the
element level using only standard nodal data structures). With this in mind, there are
two suitable choices of Π that can stabilize the lowest-order conforming virtual element
pair:

(1) Virtual element solution: in this case, Πφi :=vh can be defined as a virtual element dis-
crete solution of the equation v=φi, where φi is the piecewise constant on mesh partition
Th. The action of the operator defined above can be computed and satisfies the properties
(2.11) (c.f. [50]) and (2.12) (c.f. [18]).

Following the standard virtual element solving process, we know the local discrete
bilinear and right-hand schemes of the equation v= φi is

(Π0
Ev,Π0

Ew)E+S̃E((I−Π0
E)v,(I−Π0

E)w) and (φi,Π0
Ew)E,

whose matrix form is

CT H−1C+|E|(I−DH−1C)T(I−DH−1C) and (H−1C)T


(φi,m1)E
(φi,m2)E

...
(φi,mnk)E

.

By assembling the global stiffness matrix and the discrete right-hand term, it is easy to
obtain the i-th column of Π. It is worth mentioning that we only need to assemble the
global Stiffness matrix once and choose the matrix form of the global discrete right-hand
term as 

(φ1,m1)E1 (φ2,m1)E2 ··· (φNp ,m1)ENp

(φ1,m2)E1 (φ2,m2)E2 ··· (φNp ,m2)ENp
...

(φ1,mnk)E1 (φ2,mnk)E2 ··· (φNp ,mnk)ENp


to get all the columns of Π, where Ei, i=1,··· ,Np represents the element of Th on which
the piecewise constant function φi is not zero.



X. Liu et al. / Commun. Comput. Phys., 36 (2024), pp. 221-247 239

 N
1

 N
2

 N
3

 N
4

 N
5

 N
6

 N
7

 N
8

 N
9

 N
1

 N
2

 N
3

 N
4

 N
5

 N
6

 N
7

 N
8

 N
9

Figure 1: A patch of elements (left) and a dual volume (right) associated with the node Ni.

(2) Clément-like interpolant: in this case, we set Π as Clément-like interpolant by using
a projection onto the dual volume (instead of onto a patch of elements) associated with
each node, see Fig. 1. In fact, this choice leads to a particularly simple formula (for the
piecewise constant function φi) that does not require explicit construction of a dual cell,
and satisfies the properties (2.11) and (2.12) (c.f. [44–46]).

More specifically, given a node Nα in Th and its dual volume Ω̂α, the coefficients zα
i of

Πφi =
Nu

∑
α=1

zα
i ψα, i=1,··· ,Np

are the constant function on Ω̂α that minimizes the functional

Jα(φi)=
1
2

∫
Ω̂α

(zα
i −φi)

2dx.

For a piecewise constant function φi ∈L2(Ω), the functional Jα(φi) further simplifies to

Jα(φi)=∑
m

1
2
(zα

i −φi|Em)
2|Em|,

where |Em| represents the area of Em; φi|Em represents the restriction of φi to Em; and Em
represents the subcell of the dual volume (associated with the node Nα) that is formed by
intersecting with the (original) mesh partition Th and satisfies Ω̂α =

⋃
m

Em. Furthermore,

minimization of Jα(φi) yields the formula

zα
i =

∑
m

φi|Em |Em|

|Ω̂α|
=∑

m
φi|Em

|Em|
|Ω̂α|

.

In fact, we can choose the dual volumes such that all Em associated with the node Nα are
equal, which leads to the very simple case

zα
i =∑

m

φi|Em

nα
,
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Figure 2: An example of Em, m=1,··· ,6 associated with the node N5.

where nα is the number of all subcell of the dual volume (associated with the node Nα).
Taking the case in Fig. 1 as an example, for the node N5 in Th and its dual volume Ω̂5, we
know that Em, m=1,··· ,6 is shown in Fig. 2 and the coefficients are

z5
i =

|E1|
|Ω̂5|

φi|E1+
|E2|
|Ω̂5|

φi|E2+···+ |E6|
|Ω̂5|

φi|E6 .

That is to say, for the piecewise constant φ1, it holds z5
1 =0 due to the fact that φ1|Em =0,

m=1,··· ,6; for the piecewise constant φ2, it holds z5
2=

|E1|
|Ω̂5|

due to the fact that φ2|E1=1 and

φ2|Em =0, m=2,··· ,6; for the piecewise constant φ3, it holds z5
3 =

|E6|
|Ω̂5|

due to the fact that

φ3|E6 =1 and φ3|Em =0, m=1,··· ,5; the remaining coefficients can be similarly obtained.

6 Numerical examples

In this section, in order to verify the H1- and L2-convergence rates for the lowest-order
pairs in two and three space dimensions, we report some numerical results obtained by
using the stabilized method based on the local pressure jumps or projection stabilization
term. The following error norms are used for the investigation of convergence rates:

∥eu,h∥0=
√

∑
E∈Th

∥u−ΠE
0 uh∥2

0,E =

√√√√ ∑
E∈Th

d

∑
i=1

∫
E
(ui−ΠE

0 uhi)2dx,

∥eu,h∥1=
√

∑
E∈Th

|u−ΠE
0 uh|21,E =

√√√√ ∑
E∈Th

d

∑
i=1

∫
E
∇(ui−ΠE

0 uhi)·∇(ui−ΠE
0 uhi)dx,

∥ep,h∥0=
√

∑
E∈Th

∥p−ph∥2
0,E =

√
∑

E∈Th

∫
E
(p−ph)2dx,

where d denotes the spatial dimension and vi, i= 1,··· ,d, denote the components of the
vector v (v=u or uh).
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6.1 2D test problem

In this example, we select ν=1, the unit square domain Ω and a pair of smooth functions

u=

(
πsin(πx)sin(πx)sin(2πy)
−πsin(πy)sin(πy)sin(2πx)

)
, p=cos(πx)cos(πy),

with p having zero mean (that is, the constraint
∫

Ω ph dx=0 should be imposed), which
help to decide the source term f and the boundary data. Also, four different types of
meshes are employed in Fig. 3: triangular mesh T 1

h , randomly distorted quadrilateral
mesh T 2

h , non-structured hexagonal mesh T 3
h , non-convex mesh T 4

h .
The error results and convergence orders of two stabilized lowest-order virtual ele-

ments for both velocity and pressure are shown in Figs. 4-6, respectively. We observe that
the H1-convergence order of the velocity and the L2-convergence order of the pressure
are O(h) and the L2-convergence order of the velocity is O(h2), which is consistent with
the theoretical analysis in all cases.

Furthermore, to test the impact of stabilization parameter δ from G1 on error results,
we also illustrate the convergence of the method on the triangular mesh T 1

h with stabiliza-
tion parameters δ=0.001,0.01,0.1,1,10,100,1000 in Fig. 7. Obviously, from the error results
of velocity and pressure, it can be seen that when the value of δ is too large (10,100,1000)
or too small (0.001), it will lead to inaccurate convergence results (this is an interesting
phenomenon, but it is beyond the scope of our manuscript). For this two-dimensional
example, a more reasonable choice may be δ=1.

Figure 3: Four mesh families for the 2D convergence test.
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Figure 4: Convergence results for the two-dimensional example based on the local pressure jump stabilization
with δ=1.
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Figure 5: Convergence results for the two-dimensional example based on the local pressure projection stabiliza-
tion where Π is a Clément-like interpolant.
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Figure 6: Convergence results for the two-dimensional example based on the local pressure projection stabiliza-
tion where Π is a virtual element solution.
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Figure 7: Convergence results on triangular mesh T 1
h with different local pressure jump stabilization parameters

δ=0.001,0.01,0.1,1,10,100,1000.

6.2 3D test problem

Extending the test problem in Example 6.1 to the unit cube, we set

u=

 x2(x−1)2(2y(y−1)(2y−1)z2(z−1)2−2y2(y−1)2z(z−1)(2z−1)
)

y2(y−1)2(2z(z−1)(2z−1)x2(x−1)2−2z2(z−1)2x(x−1)(2x−1)
)

z2(z−1)2(2x(x−1)(2x−1)y2(y−1)2−2x2(x−1)2y(y−1)(2y−1)
)
,

p=cos(πx)cos(πy)sin(πz).
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Figure 8: Tetrahedral, hexahedral and polyhedral mesh families for the 3D convergence test.
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Figure 9: Convergence results for the three-dimensional example based on the local pressure jump stabilization
with δ=0.1.
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Figure 10: Convergence results for the three-dimensional example based on the local pressure projection stabi-
lization where Π is a Clément-like interpolant.

The values of f and u on the boundary of the cube are constrained to those given by
the above solution. And the tetrahedral, hexahedral and polyhedral meshes used in this
numerical test are shown in Fig. 8.

The rates of convergence for the velocity and pressure in the appropriate norm are
illustrated in Figs. 9-11. As was the case for the two-dimensional example, the theoretical
convergence rates are confirmed, and the H1-convergence results of the velocity on hexa-
hedral meshes are higher than O(h), which may be caused by the specificity of the mesh
partition. Moreover, for this three-dimensional example, it is better to choose a (com-
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Figure 11: Convergence results for the three-dimensional example based on the local pressure projection stabi-
lization where Π is a virtual element solution.

pared to the two-dimensional case) smaller δ=0.1 (instead of δ=1) for the stabilization
parameter of the local pressure jump stabilization.
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