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Abstract. A moving mesh finite element method is studied for the numerical solution
of Bernoulli free boundary problems. The method is based on the pseudo-transient
continuation with which a moving boundary problem is constructed and its steady-
state solution is taken as the solution of the underlying Bernoulli free boundary prob-
lem. The moving boundary problem is solved in a split manner at each time step:
the moving boundary is updated with the Euler scheme, the interior mesh points are
moved using a moving mesh method, and the corresponding initial-boundary value
problem is solved using the linear finite element method. The method can take full
advantages of both the pseudo-transient continuation and the moving mesh method.
Particularly, it is able to move the mesh, free of tangling, to fit the varying domain
for a variety of geometries no matter if they are convex or concave. Moreover, it is
convergent towards steady state for a broad class of free boundary problems and ini-
tial guesses of the free boundary. Numerical examples for Bernoulli free boundary
problems with constant and non-constant Bernoulli conditions and for nonlinear free
boundary problems are presented to demonstrate the accuracy and robustness of the
method and its ability to deal with various geometries and nonlinearities.

AMS subject classifications: 65M60, 65M50, 35R35, 35R37
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1 Introduction

Bernoulli free boundary problems (FBPs) arise in ideal fluid dynamics, optimal insula-
tion, and electro chemistry [17] and serve as a prototype of stationary FBPs. They have
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been extensively studied theoretically and numerically; e.g., see [2,7,9,10,12,15,17,36,42].
To be specific, we consider here a typical Bernoulli FBP

−∆u=0, in Ω,
u=1, on Γ1,
u=0, on Γ2,
− ∂u

∂n =λ, on Γ2,

(1.1)

where Ω is a connected domain in R2 (see Fig. 1), λ is a positive constant, Γ1∪Γ2 = ∂Ω,
Γ1 is given and fixed, and Γ2 is unknown a priori and part of the solution. We emphasize
that the numerical method studied in this work can be applied to more general FBPs
without major modifications, and several such examples are presented in Section 5.

The Neumann boundary condition in (1.1) is called the Bernoulli condition. This con-
dition can be shown to be equivalent to |∇u|=λ (with the help of the Dirichlet boundary
condition on Γ2). Moreover, the problem is called an exterior (or interior) Bernoulli prob-
lem when Γ2 is exterior (or interior) to Γ1 (cf. Fig. 1). It is known [2, 5, 17] that an exterior
Bernoulli problem has a solution for any λ>0 and such a solution is unique and elliptic
when the domain enclosed by Γ1 is convex. Loosely speaking, a solution is said to be
elliptic (or hyperbolic) if Γ2 is getting closer to (or moving away from) Γ1 as λ increases.
On the other hand, an interior Bernoulli problem has a solution only for λ large enough
and such solutions are not unique in general. Both elliptic and hyperbolic solutions can
co-exist for the same value of λ for interior problems.

While the differential equation and boundary conditions are linear, the problem (1.1)
is actually highly nonlinear due to the coupling between u and Ω. A number of numer-
ical methods have been developed for solving Bernoulli FBPs; e.g., see a summary of
early works for general FBPs [12, Chapter 8], the explicit and implicit Neumann meth-
ods [17], a combined level set and boundary element method [31], shape-optimization-
based methods [14, 15, 21, 36], the cut finite element method [9], the quasi-Monte Carlo
method [7], the comoving mesh method [40], and the singular boundary method [11]. A
common theme among those methods is trial free boundary and thus iterating between
the update of the free boundary and the solution of the corresponding boundary value
problem. Challenges for this approach include how to choose the initial guess for Γ2 to
make the iteration convergent and to re-generate or deform the mesh to fit the varying
domain.

In this work we shall present a moving mesh finite element method for the numer-
ical solution of Bernoulli FBPs. The method is based on the pseudo-transient continu-
ation (e.g., see Fletcher [16, Section 6.4]) with which we construct an equivalent time-
dependent problem (a moving boundary problem or an MBP), march it until the steady
state is reached, and take the steady-state solution as the solution of Bernoulli FBP (1.1).
The pseudo-transient continuation is widely used for difficult nonlinear problems in sci-
ence and engineering because it can be made convergent for a large class of initial solu-
tions. Another advantage of using the pseudo-transient continuation is that the corre-
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Γ1ΩΓ2

(a) Exterior problem

Γ2ΩΓ1

(b) Interior problem

Figure 1: Illustration of the domain for exterior and interior Bernoulli FBPs.

sponding MBP can be solved readily with boundary-fitted meshes using the finite ele-
ment method and the Moving Mesh PDE (MMPDE) method. The MMPDE method has
been developed for general mesh adaptation and movement; e.g., see [28, 29]. It moves
the mesh points continuously in time while providing an effective control of mesh qual-
ity and concentration. Most importantly, the method guarantees that the mesh is free of
tangling for any domain (convex or concave) in any spatial dimension [27]. This mesh
nonsingularity is crucial for any mesh-based computation including that for FBPs. On the
other hand, close attention should be paid to the update of the free boundary where both
the gradient of the finite element solution and the normal to the approximate boundary
are needed in the computation of the Bernoulli condition but not defined at boundary
vertices in the standard finite element approximation on a simplicial mesh. Their re-
constructions are required and such re-constructions can affect the spatial accuracy of the
overall computation. Two re-construction approaches, (area-)averaging and quadratic
least squares fitting, will be discussed.

An outline of this paper is as follows. The pseudo-transient continuation and the
corresponding MBP will be described in Section 2. Section 3 is devoted to the description
of the moving mesh FEM. Numerical examples for Bernoulli FBPs and nonlinear FBPs are
presented in Sections 4 and 5, respectively. Finally, conclusions and further comments are
given in Section 6.

2 The pseudo-transient continuation

For Bernoulli FBP (1.1), we consider the time-dependent problem
∂u
∂t −∆u=0, in Ω, for t>0,
u=1, on Γ1,
u=0, on Γ2,
Γ̇=− ∂u

∂n −λ, on Γ2.

(2.1)



J. Shen, H. Dai and W. Huang / Commun. Comput. Phys., 36 (2024), pp. 248-273 251

u=1Ω u=0

If (− ∂u
∂n −λ)<0,

then − ∂u
∂n increases and Γ̇ goes zero.

If (− ∂u
∂n −λ)>0,

then − ∂u
∂n decreases and Γ̇ goes zero.

Figure 2: Illustration of boundary movement for MBP (2.1).

This system is marched until the steady state is reached and the obtained steady-state
solution is taken as the solution of Bernoulli FBP (1.1).

Immediate questions are if MBP (2.1) has a steady-state solution and whether or not
such a solution is stable. They are related to the asymptotic behavior of solutions of
MBPs and the stability of their steady-state solutions, an area of active research; e.g.,
see [13,18,44,46]. Unfortunately, none of the available theoretical results seems applicable
to (2.1). Nevertheless, we can gain some insight from a formal analysis. We take the
exterior problem as an example (cf. Fig. 2). From the maximum principle, we know that
u ≥ 0 on Ω and ∂u

∂n |Γ2 ≤ 0. Consider a point x on Γ2. If − ∂u
∂n −λ > 0 at this point, then

Γ̇> 0 and x moves outward and farther away from Γ1. Recall that u|Γ1 = 1 and u|Γ2 = 0.
Thus, as the distance between Γ1 and Γ2 increases, − ∂u

∂n (and therefore, Γ̇=− ∂u
∂n −λ) will

decrease, which means that the movement of x will slow down. This continues until
− ∂u

∂n −λ reaches zero. On the other hand, if − ∂u
∂n −λ< 0, x will move inward and closer

to Γ1, which will cause − ∂u
∂n to increase and the movement of the boundary point to slow

down until − ∂u
∂n −λ reaches zero. Thus, for either case Γ2(t) will reach a steady state and

so does the domain Ω. Once Ω gets close to its steady state, (2.1) behaves like a parabolic
problem with a fixed domain and its solution will reach steady state too. Thus, (2.1)
reduces to (1.1).

It is interesting to point out that the use of (2.1) can also be justified by shape optimiza-
tion theory. Indeed, Bernoulli FBPs can be formulated as shape optimization problems;
e.g., see [14, 15, 22]. One of the equivalent shape optimization problems for (1.1) is to
minimize the cost function

J(Ω)=
∫

Ω
(|∇u|2+λ2)dx (2.2)

subject to the PDE constraint 
−∆u=0, in Ω,
u=1, on Γ1,
u=0, on Γ2.

(2.3)

Using shape optimization calculus [22,38], we can find the variation of J(Ω) along a given
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vector field V as

δJ(Ω)[V ]=
∫

Γ2

(
λ2−

(∂u
∂n

)2
)

V ·n ds. (2.4)

Thus, a descent direction for J(Ω) is to update Γ2 along

−
(

λ2−(
∂u
∂n

)2
)

n=−
(

λ+
∂u
∂n

)(
λ− ∂u

∂n

)
n.

The maximum principle implies that the solution to (2.3) is positive in Ω and ∂u
∂n ≤ 0 on

Γ2. Since λ is positive, we have (λ− ∂u
∂n )> 0 and the descent direction is proportional to

−(λ+ ∂u
∂n )n. This suggests that Γ2 can be updated along −(λ+ ∂u

∂n )n, i.e.,

Γ̇=−∂u
∂n

−λ on Γ2. (2.5)

This gives the boundary velocity in (2.1). Interestingly, trial free boundary methods (e.g.,
see [12, Chapter 8]) can be interpreted as a time discretization of the above equation.
Moreover, Sunayama et al. [40] use

−∆u=0, in Ω,
u=1, on Γ1,
u=0, on Γ2,
Γ̇=− ∂u

∂n −λ, on Γ2.

(2.6)

The difference between this system and (2.1) is that the heat equation, instead of the
Laplace equation, is used in (2.1). With (2.1), we can take full advantages of the pseudo-
transient continuation in the numerical solution. Particularly, we can use automatic time
stepsize selection procedures and extend the developed numerical method to more gen-
eral FBPs (including nonlinear FBPs) without major modifications (cf. Section 5).

3 A moving mesh finite element solution for MBPs

In this section, we describe a moving mesh finite element method for solving MBP (2.1).
The method solves (2.1) in a splitting manner at each time step: updates the boundary
using the Euler scheme, moves the interior mesh points using the MMPDE moving mesh
method, and integrates the underlying initial-boundary value problem using a Runge-
Kutta scheme and linear finite elements. The method has been used in [33] for solving
the porous medium equation. The method can be used for general MBPs although it is
described here only for (2.1).
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Algorithm 1 Moving mesh FEM for (2.1)

0. Assume that T n
h and un

h at t= tn are known.

1. Boundary update. Update the mesh vertices on Γ2 using the Euler scheme,

xn+1
i = xn

i +∆tn (−∇un
h ·n−λ)n|xn

i
, ∀xn

i ∈Γn
2 . (3.1)

Denote by Γn+1
2 the updated boundary and by T̃ n+1

h the mesh with the updated
boundary. Thus, the vertices of T̃ n+1

h consist of the boundary vertices on Γn+1
2 and

Γ1 and the interior vertices of T n
h . Notice that the Euler update (3.1) generally will

not result in an even distribution of the boundary vertices along the boundary. They
can be made more evenly distributed in the next step (the mesh movement step) by
allowing the boundary vertices to slide along the boundary.

2. Movement of interior mesh vertices. Generate the new mesh T n+1
h for Ωn+1 by

moving the vertices of T̃ n+1
h using the MMPDE moving mesh method. The detail

is given in Subsection 3.3.

3. Solution of the initial-boundary value problem. Solve the IBVP
∂u
∂t −∆u=0, in Ω(t),
u=1, on Γ1,
u=0, on Γ2(t)

(3.2)

on the moving mesh Th(t) defined as the linear interpolation between T n
h and T n+1

h ,
i.e.,

xi(t)=
tn+1−t

∆tn
xn

i +
t−tn

∆tn
xn+1

i , i=1,··· ,Nv, t∈ [tn,tn+1]. (3.3)

In this step, the domain moves from Ωn to Ωn+1 and is considered known (as speci-
fied by the meshes T n

h and T n+1
h ). Piecewise linear finite elements and a fifth-order

implicit Runge-Kutta scheme are employed for the spatial and temporal discretiza-
tion of the IBVP, respectively. The detail is given in Subsection 3.2.

3.1 The overall procedure of the moving mesh FEM

Denote the time instants by tn, n = 0,1,··· and the corresponding time steps by ∆tn =
tn+1−tn. We assume that the moving domain Ω(t) is partitioned into/approximated
by a moving triangular mesh Th(t) that has Nv vertices (denoted by xi(t), i = 1,··· ,Nv),
N elements, and a fixed connectivity. The domain and mesh at tn will be denoted by
Ωn and T n

h , respectively. The goal of the moving mesh FEM is to generate a new mesh
T n+1

h and a new numerical solution un+1
h at any given time t= tn+1. The method contains
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three basic steps and its overall procedure is given in Algorithm 1. Since the boundary
movement and the update of the physical solution are split and performed sequentially,
the method is expected to be first-order in time. Moreover, the physical PDE is discretized
spatially with linear finite elements and we expect the method to be second-order in
space. Notice that the lower-order convergence in time for the moving mesh FEM is
not a concern here since our goal is to obtain a steady-state solution of IBVP (2.1) and
the accuracy of such a steady-state solution is determined only by spatial discretization.
Moreover, the use of a triangular mesh for the moving domain gives a piecewise linear
approximation to the moving boundary, which is sufficiently accurate for a second-order
numerical approximation for the underlying FBP. For higher-order accuracy, however,
a higher-order mesh, such as the one with a piecewise quadratic approximation to the
boundary, has to be used.

Notice that ∇un
h is used in (3.1). Since the FE approximation un

h is only piecewise
linear, its gradient is not defined at vertices (including boundary vertices). It can be
approximated as an area-weighted average of the gradient on the neighboring elements;
e.g. see Murea and Hentschel [32] and Ngo and Huang [33]. Another technique is least
squares fitting. For example, a quadratic polynomial can be formed by fitting the values
of un

h at the neighboring vertices and differentiated to obtain an approximate gradient.
Furthermore, recently Sturm [39] and Sunayama et al. [40] proposed to define a mesh
velocity field on the whole domain by solving a Laplace boundary value problem with
Dirichlet/Robin boundary conditions. In our computation we use the quadratic least
squares fitting and compare it with the area-weighted averaging technique. Numerical
results show that the quadratic least squares fitting can lead to second-order convergence
in space whereas the area-weighted averaging seems to give only first-order convergence.

The unit outward normal n to the boundary in (3.1) is not defined at boundary vertices
either. It can be computed either as the average of the unit outward normals on the edges
connecting xn

i or through the quadratic least squares fitting. Numerical results show that
the averaging approach maintains the second-order spatial convergence of the method
and thus this approach is used in our computation. Generally speaking, we can expect
this to work when the boundary is sufficiently smooth and the mesh is sufficiently fine.

The mesh T̃ n+1
h , formed after the update of Γ2, is required to be nonsingular (i.e., free

of tangling). This can be achieved when Γ2 is sufficiently smooth, the mesh is sufficiently
fine, and ∆tn is sufficiently small; e.g., see the analysis of conforming triangulation for
moving domains by Rangarajan and Lew [34, 35]. Generally speaking, this nonsingular-
ity requirement of T̃ n+1

h places a restriction on the maximum time step allowed in the
computation. To see this, it is reasonable to expect that the mesh T̃ n+1

h stays nonsingular
if the boundary vertices move no more than an

h/2 over a step, where an
h is the minimum

element height of T n
h . From (3.1), we have

∆tn ≤
an

h

2
(

λ+ max
xn

i ∈Γn
2

∣∣∣ ∂un
h

∂n (xn
i )
∣∣∣) . (3.4)
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The above inequality implies ∆tn =O(h) if the mesh is close to being uniform and ∂un
h

∂n is
bounded. Generally speaking, this is not a serious restriction on the time step. In practice,
the nonsingularity of T̃ n+1

h is checked at each time step by computing the minimum
height of the mesh elements that should stay away from zero for any nonsingular mesh;
the interested read is referred to the analysis in [27]. When T̃ n+1

h is found to be singular,
∆tn is reduced and the boundary is re-computed. This process is repeated until T̃ n+1

h is
nonsingular.

In Step 2 of Algorithm 1, the new mesh T n+1
h is generated from the initial mesh T̃ n+1

h
using the MMPDE method. It has been proven in [27] that the MMPDE method produces
a nonsingular mesh for any (convex or concave) domain in any spatial dimension if the
initial mesh is nonsingular. Thus, the nonsingularity of T̃ n+1

h implies the nonsingularity
of T n+1

h . More detail of the MMPDE method is given in Subsection 3.3.

3.2 Finite element discretization of PDEs on moving meshes

In this subsection we describe the linear FE solution of the IBVP (3.2) on the moving mesh
Th(t) from tn to tn+1. We use the quasi-Lagrange approach (e.g., see [29]) where the mesh
is considered to move continuously in time (cf. (3.3)). The nodal velocities are given by

ẋi(t)=
xn+1

i −xn
i

tn+1−tn
, i=1,··· ,Nv, t∈ (tn,tn+1). (3.5)

Denote the piecewise linear basis function associated with vertex xi by ϕi(x,t). It depends
on t through the movement of vertices. It is not difficult to show

∂ϕi

∂t
=−∇ϕi ·Ẋ, (3.6)

where Ẋ is the piecewise linear velocity function defined as

Ẋ(x,t)=
Nv

∑
i=1

ẋi(t)ϕi(x,t).

If we arrange the vertices in such a way that the first Nvi vertices are the interior vertices,
we can express the linear finite element spaces as

Vh(t)=span{ϕ1(·,t),··· ,ϕNv(·,t)}∩{vh|Γ1 =1, vh|Γ2 =0},

V0
h (t)=span{ϕ1(·,t),··· ,ϕNvi(·,t)}.

Notice that Vh(t) and V0
h (t) are subspaces of Sobolev spaces H1(Ω) and H1

0(Ω), respec-
tively. Then the linear finite element approximation of (3.2) is to find uh(t)∈Vh(t), t>0,
such that ∫

Ω

∂uh

∂t
ψdx+

∫
Ω
∇ψ·∇uh dx=0, ∀ψ∈V0

h (t). (3.7)
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Expressing uh as

uh(x,t)=
Nv

∑
i=1

ui(t)ϕi(x,t), (3.8)

differentiating it with respect to t, and using (3.6), we obtain

∂uh

∂t
=

Nv

∑
i=1

dui

dt
ϕi(x,t)+

Nv

∑
i=1

ui(t)
∂ϕi

∂t
=

Nv

∑
i=1

dui

dt
ϕi(x,t)−∇uh ·Ẋ.

Substituting the above equation into (3.7) and taking ψ=ϕj, j=1,··· ,Nvi successively, we
get

Nv

∑
i=1

(∫
Ω

ϕiϕj dx
)

dui

dt
−
∫

Ω
∇uh ·Ẋϕj dx+

∫
Ω
∇ϕj ·∇uh dx=0, j=1,··· ,Nvi. (3.9)

This system, together with the boundary conditions, can be cast into a matrix form as

B(X)U̇ =F(U,X,Ẋ), (3.10)

where U =(u1,··· ,uNv)
T and X =(x1,··· ,xNv)

T. In principle, any time marching scheme
can be used to integrate the above system of ordinary differential equations. We use the
fifth-order implicit Radau IIA Runge-Kutta scheme with variable time step. The selection
of time step is based on a two-step error estimator developed by Gonzalez-Pinto et al. [19]
and the relative and absolute tolerances are chosen as 10−6 and 10−8, respectively, in our
computation.

We recall that the moving mesh FEM described in Algorithm 1 is first-order in time
overall due to its splitting implementation and Euler update of the moving boundary. As
such, it is more consistent to use a first-order scheme for integrating (3.10). The choice
of the fifth-order implicit Radau IIA Runge-Kutta scheme in our computation is mainly
based on the convenience: the scheme and related time step selection have been im-
plemented in MMPDElab [25], a publicly available Matlab package for adaptive mesh
movement and finite element computation in one, two, and three dimensions. MMPDE-
lab was used in our computation for integrating (3.10) and generating moving meshes
(see the next subsection).

3.3 The MMPDE moving mesh method

We use the MMPDE moving mesh method to generate the new mesh T n+1
h for Ωn+1

starting from T̃ n+1
h . The method has been developed (e.g., see [26, 28, 29]) for general

mesh adaptation and movement. It uses the so-called moving mesh PDE (or moving
mesh equations in discrete form) to move vertices continuously in time and in an orderly
manner in space. A key idea of the MMPDE method is viewing any nonuniform mesh
as a uniform one in some Riemannian metric specified by a tensor M = M(x,t). For
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our current situation, the solution of (2.1) is smooth in space and mesh adaptation is not
necessary. Moreover, (3.4) suggests that a uniform mesh may provide an advantage over
nonuniform meshes since it allows a larger time step. For these reasons, we take M= I

(the identity matrix) and try to make the mesh as uniform as possible.
It is known (e.g., see [26,29]) that a uniform mesh satisfies the following equidistribu-

tion and alignment conditions,

|K|= σh

N
, ∀K∈Th, (3.11)

1
2

trace
(
(F′

K)
−1(F′

K)
−T

)
=det

(
(F′

K)
−1(F′

K)
−T

) 1
2
, ∀K∈Th, (3.12)

where |K| is the area of K, F′
K is the Jacobian matrix of the affine mapping FK : K̂→K, K̂ is

the reference element taken as an equilateral triangle with unit area, and σh =∑K∈Th
|K|.

The condition (3.11) requires all elements to have the same size while (3.12) requires every
element K to be similar to K̂. Since K̂ is taken as an equilateral triangle, these conditions
actually tempt to make all elements as uniform and equilateral as possible. An energy
function associated with these conditions is given by

Ih =
1
3 ∑

K∈Th

|K|trace
(
(F′

K)
−1(F′

K)
−T

) 3
2
+

2
3
2

3 ∑
K∈Th

|K|
(
det(F′

K)
)− 3

2 . (3.13)

This function is a Riemann sum of a continuous functional developed based on mesh
equidistribution and alignment (e.g., see [29]).

The energy function Ih is a function of the coordinates of the vertices of Th, i.e.,
Ih = Ih(x1,··· ,xNv). An approach for minimizing this function is to integrate the gradi-
ent system of Ih. Thus, we define the moving mesh equations as

dxi

dt
=− 1

τ

∂Ih

∂xi
, i=1,··· ,Nv, (3.14)

where τ>0 is a parameter used to adjust the time scale of mesh movement. The analytical
expression of the derivative of Ih with respect to xi can be found using scalar-by-matrix
differentiation [26]. Using this expression, we can rewrite (3.14) as

dxi

dt
=

1
τ ∑

K∈ωi

|K|vK
iK

, i=1,··· ,Nv, (3.15)

where ωi is the element patch associated with vertex xi and vK
iK

is the local mesh velocity
contributed by element K to the vertex xi. Define the edge matrices of K and K̂ as EK =
[xK

1 −xK
0 ,xK

2 −xK
0 ] and Ê=[ξ1−ξ0,ξ2−ξ0], respectively, where xK

0 , xK
1 , xK

2 and ξ0, ξ1, ξ2 are
the coordinates of the vertices of K and K̂. Let J= ÊE−1

K . Then, the local mesh velocities
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are given by

[
vK

1 ,vK
2
]T

=−GE−1
K +E−1

K
∂G
∂J

ÊE−1
K +

∂G
∂det(J)

det(Ê)
det(EK)

E−1
K , vK

0 =−
(

vK
1 +vK

2

)
,

G(J,det(J))=
1
3
(trace(JJT))

3
2 +

2
3
2

3
(det(J))

3
2 ,

∂G
∂J

=(trace(JJT))
1
2 JT,

∂G
∂det(J)

=2
1
2 det(J)

1
2 .

The nodal velocity needs to be modified at boundary vertices. For fixed boundary ver-
tices, dxi

dt should be set to be zero. If xi is allowed to slide along the boundary, the com-
ponent of dxi

dt in the normal direction of the boundary should be set to be zero. Allowing
the boundary vertices to slide along the boundary is useful in making them more evenly
distributed. In our computation, the boundary vertices on the fixed boundary Γ1 are
fixed while those on the moving boundary Γ2 are allowed to slide along the boundary.
Moreover, the Matlab ODE solver ode15s (a variable-step, variable-order solver based on
the numerical differentiation formulas of orders 1 to 5) is used for integrating (3.15), with
the Jacobian matrix approximated by finite differences. The MMPDE method has been
implemented in the Matlab package MMPDElab [25].

It is worth pointing out that there exist other adaptive moving mesh methods; e.g.,
see textbooks/reviews [3, 4, 8, 29, 41] and references therein. The interested reader is also
referred to some recent works on moving mesh methods [6, 20, 43, 45].

4 Numerical examples of Bernoulli FBPs

We now present numerical results obtained for four examples of Bernoulli FBPs with
the moving mesh FEM described in the previous section. Unless stated otherwise, we
use τ = 10−5, ∆tmax = 0.001, the zero initial condition u(x,0)= 0, and the quadratic least
squares fitting approach for computing ∇uh needed in boundary update. The computa-
tion is stopped when the ratio of the current maximum boundary velocity with the initial
maximum boundary velocity is below 10−4.

Example 4.1 (Exterior Bernoulli FBP – Accuracy test). This example is selected from
Rabago [36], where Γ1 and the initial position of Γ2 are taken as the circles centered at
the origin with radii 0.3 and 0.6, respectively, and λ=−2/ln(0.6). FBP (1.1) has the exact
solution u= ln(2r)/ln(0.6) and Γ2 being the circle with radius 0.5. We compute the error
as the average of the difference between the radii of the boundary vertices on Γ2 and the
exact radius 0.5 when the stopping criterion (toward steady state) is met.

A mesh at various time instants is plotted in Fig. 3 and the corresponding maximum
boundary velocity is plotted as a function of time in Fig. 4. Notice that the maximum
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Figure 3: Example 4.1. The mesh of N=1998 is plotted at t=0, 0.15, 0.3, and 0.456 for λ=−2/ln(0.6).
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Figure 4: Example 4.1. The maximum boundary velocity is plotted as a function of time for λ=−2/ln(0.6)
and N=1998.

boundary velocity as a function of time can be regarded as the convergence history to-
wards the steady-state solution. From the figures we can see that the maximum boundary
velocity decreases gradually and the domain is converging towards steady state. Fig. 5
shows the convergence histories as the mesh is refined for the error in the boundary lo-
cation for two strategies of computing solution gradient used in boundary update. The
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Figure 5: Example 4.1. The error in the boundary location is plotted as a function of N (the number of elements
in the mesh) for two strategies (the quadratic least squares fitting and area-weighted averaging) for computing
solution gradient used in boundary update.
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Figure 6: Example 4.1. The mesh of N=1567 is plotted at t=0, 0.01, 0.02, 0.05, 0.1, and 0.3 for λ=−2/ln(0.6).

results show that the quadratic least squares fitting leads to second-order convergence
whereas the area-weighted averaging gives only first-order convergence.

We also consider a different initial position for Γ2: x2+y2=(0.5+0.1sin(5arctan(y/x)),
to see how robust the moving mesh FEM is. The mesh and maximum boundary velocity
are shown in Figs. 6 and 7, respectively. Once again, the results demonstrate the conver-
gence towards steady state. Interestingly, part of the initial position of Γ2 is inside while
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Figure 7: Example 4.1. The maximum boundary velocity is plotted as a function of time for λ=−2/ln(0.6)
and N=1567.

the rest is outside the exact solution circle (the circle with radius 0.5). From Fig. 6 we
can see that the boundary vertices initially inside the circle with radius 0.5 are moving
outward and those outside the circle are moving inward, all towards the exact solution
circle. This is consistent with the formal analysis in Section 2 (also cf. Fig. 2).

Example 4.2 (Exterior Bernoulli FBP with T-shape). For this example, Γ1 is taken as the
boundary of the T-shape

(−3/8,3/8)×(−1/4,0)∪(−1/8,1/8)×[0,1/4)
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Figure 8: Example 4.2. The mesh of N=1259 is plotted at t=0, 0.05, 0.1, 0.15, 0.3, and 0.446 for λ=5.
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Figure 9: Example 4.2. The maximum boundary velocity is plotted as a function of time for λ=5 and N=1259.

Figure 10: Example 4.2. Γ2 obtained for λ=1, 3, 5, 7, and 9 with a mesh of N=1259.

and the initial position of Γ2 is a circle of radius 0.75. This problem was used by several
researchers (e.g., see Eppler and Harbrecht [15]).

Fig. 8 shows the mesh at various time instants for λ= 5. Fig. 9 shows that the maxi-
mum boundary velocity decreases as the time increases, implying that (2.1) has a steady-
state solution for this example. Fig. 10 shows Γ2 obtained for λ= 1, 3, 5, 7 and 9. As λ
increases, Γ2 is getting closer to Γ1. The results obtained here are comparable with those
in literature and particularly those obtained in [15] using a shape optimization method.

Example 4.3 (Exterior Bernoulli FBP with two disjoint shapes). This example is selected
from Rabago [36]. The interior boundary, Γ1, consists of the boundary of two disjoint
shapes

(1+0.7cos(θ)−0.4cos(2θ), sin(θ)), 0≤ θ≤2π,
(−2+cos(θ)+0.4cos(2θ), 0.5+0.7sin(θ)), 0≤ θ≤2π.
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Figure 11: Example 4.3. The mesh of N=10630 is plotted at t=0, 1, 2, 3, 6, and 9.941 for λ=1.5.
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Figure 12: Example 4.3. The maximum boundary velocity is plotted as a function of time for λ = 1.5 and
N=10630.

The initial position of Γ2 is taken as a circle of radius 5 with center (0,0).
Figs. 11 and 12 show a mesh at various time instants and the maximum boundary

velocity as a function of time, respectively. The location of Γ2 obtained for several values
of λ is plotted in Fig. 13. The results show that the moving mesh FEM with the pseudo-
transient continuation works well for this example with more complex Γ1. Particularly,
the mesh stays free of tangling for all computations.
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Figure 13: Example 4.4. The boundary Γ2 is obtained with λ = 1.1, 1.3, 1.5, 1.7 and 1.9 and a mesh of
N=10630.

Example 4.4 (Interior Bernoulli FBP with L-shape). Finally, we consider an interior
Bernoulli FBP. In this example, Γ1 is taken as the boundary of the L-shape

(1,5.8)×(1,9)∪[5.8,9)×(4.2,9)

and the initial position of Γ2 is the circle of radius 1.5 with center (4.2,6). A similar
example was considered by Flucher and Rumpf [17] and several other researchers.

Fig. 14 shows the mesh at various time instants and Fig. 15 shows the maximum
boundary velocity as a function of time. For this example, the solution converges more
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Figure 14: Example 4.4. The mesh of N=11334 is plotted at t=0, 4, 8, 10, 16, and 20 for λ=0.9.



J. Shen, H. Dai and W. Huang / Commun. Comput. Phys., 36 (2024), pp. 248-273 265

0 5 10 15 20

t

10-1

100

m
ax

im
um

 b
ou

nd
ar

y 
sp

ee
d

Figure 15: Example 4.4. The maximum boundary velocity is plotted as a function of time for λ=0.9.

Figure 16: Example 4.4. The boundary Γ2 is obtained with λ=0.75, 0.8, 0.85, 0.9 and 0.95.

slowly to steady state than previous examples. The computation is stopped at t = 20
when the maximum boundary velocity is about 2×10−2 and the boundary displacement
is about 2×10−5. Nevertheless, the figures show that the maximum boundary velocity
decreases steadily and Γ2 is converging towards steady state. Fig. 16 shows Γ2 for several
values of λ. As λ increases, Γ2 is getting closer to Γ1. The results are comparable with
those in [17] where the explicit and implicit Neumann methods are used.

5 Numerical examples for FBPs with non-constant Bernoulli
condition and nonlinear FBPs

The moving mesh method described in Section 3 can be used for more general FBPs
without major modifications. To demonstrate this, we present in this section numeri-
cal results for three examples, one with non-constant Bernoulli boundary condition, one
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with the p-Laplacian (nonlinear), and one being a nonlinear obstacle problem. FBPs with
non-constant Bernoulli conditions and/or p-Laplacian have been studied by a number
of researchers, e.g., see Acker and Meyer [1] and Henrot and Shahgholian [24]. Obsta-
cle problems are a classical and important types of FBPs (e.g., see Ros-Oton [37]). The
settings and values of the parameters used in the computation are the same as in the
previous section.

Example 5.1 (Exterior Bernoulli FBP with non-constant Bernoulli condition). This ex-
ample is the same as Example 4.1 except that a non-constant Bernoulli boundary condi-
tion is used,

λ=− 2
ln(0.6)

(
1−0.5sin

(
10arctan(

y
x
)
))

. (5.1)

The initial position of Γ2 is taken as the circle with radius 0.6. A mesh and the correspond-
ing maximum boundary velocity are plotted in Figs. 17 and 18, respectively. One can see
that the steady-state Γ2 for this example is a wavy circle, which is different from a circle in
Example 4.1. The results also show that the moving mesh FEM with the pseudo-transient
continuation works well for this example.
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Figure 17: Example 5.1. The mesh of N=4618 is plotted at t=0, 0.15, 0.3, and 0.468 for variable λ (5.1).

Example 5.2 (Exterior Bernoulli FBP with p-Laplacian). This example is the same as
Example 4.2 except that the Laplace equation is replaced by the p-Laplace equation,

∇·
(
|∇u|p−2∇u

)
=0, in Ω, (5.2)
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Figure 18: Example 5.1. The maximum boundary velocity is plotted as a function of time for variable λ (5.1)
and N=4618.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) t=0

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) t=0.01

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c) t=0.05

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(d) t=0.15

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(e) t=0.3

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(f) t=0.677

Figure 19: Example 5.2 with p=1.5. The mesh of N=1259 is plotted at t=0, 0.05, 0.1, 0.15, 0.3, and 0.677
for λ=5.

where p∈(1,∞) is a parameter. The p-Laplacian is a power-law generalization of various
linear flow laws and is more realistic than the Laplacian (e.g., see Acker and Meyer [1]).
We take two values of p, 1.5 and 5, in our computation. The meshes obtained with p=1.5
and p = 5 are shown in Figs. 19 and 20, respectively, and the corresponding maximum
boundary velocities are plotted in Fig. 21. They confirm that the moving mesh FEM
together with the pseudo-transient continuation works well for this nonlinear example.
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Figure 20: Example 5.2 with p=5.0. The mesh of N=1259 is plotted at t=0, 0.05, 0.1, 0.15, 0.3, and 0.708
for λ=5.
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Figure 21: Example 5.2. The maximum boundary velocity is plotted as a function of time for λ=5, N=1259,
and two values of p.

Moreover, Fig. 22 shows that the steady-state position of Γ2 is more uniformly close to Γ1
for larger p.

Example 5.3 (A nonlinear obstacle problem). Obstacle problems are a classical and im-
portant type of free boundary problem where the solution can be thought as the equi-
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Figure 22: Example 5.2 with N=1259 and λ=5. The mesh at t=0.3 is compared for p=1.5, 2.0, and 5.0.

librium position of an elastic membrane that is constrained to lie above a given obstacle
ψ=ψ(x) while its boundary is held fixed (e.g., see Ros-Oton [37]). We consider here a
nonlinear obstacle problem

min
u

∫
D

√
1+|∇u|2dx, subject to u≥ψ in D, u=ψ on ∂D, (5.3)

where D is the disk with radius 2 and

ψ=

{√
1−x2−y2, x2+y2≤1,

0, otherwise.

This problem can be reformulated into a free boundary problem as
−∇·

(
1√

1+|∇u|2
∇u

)
=0, in Ω,

u=ψ, on Γ1=∂D,
u=ψ, on Γ2,
∂u
∂n =

∂ψ
∂n , on Γ2,

(5.4)

where Γ2 is a closed curve inside D, Ω=D\E, and E is the domain enclosed by Γ2. The
Neumann boundary condition on Γ2 is mathematically equivalent to a Bernoulli condi-
tion |∇(u−ψ)|=0. Moreover, the corresponding MBP in the pseudo-transient continua-
tion is given by 

∂u
∂t =∇·

(
1√

1+|∇u|2
∇u

)
, in Ω,

u=ψ, on Γ1=∂D,
u=ψ, on Γ2,
Γ̇=− ∂u

∂n +
∂ψ
∂n , on Γ2.

(5.5)

The initial condition for u is taken as u(x,0)=0 and the initial position of Γ2 is chosen as
the circle with radius 0.8. The mesh, solution, and maximum boundary velocity obtained
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Figure 23: Example 5.3. The results are obtained with a mesh of N=2264.

with a mesh of N=2264 are plotted in Fig. 23. The results demonstrate that the moving
mesh FEM and the pseudo-transient continuation can be used to obtain the solution of
the nonlinear obstacle problem (5.3) as the steady-state solution of (5.5).

6 Conclusions and comments

We have studied a moving mesh finite element method for the numerical solution of
Bernoulli FBPs. The method is based on the pseudo-transient continuation with which
an MBP is constructed and its steady-state solution is taken as the solution of the under-
lying Bernoulli FBP. The MBP is solved in a split manner at each time step: the moving
boundary is updated with the Euler scheme, the interior mesh points are moved using
the MMPDE moving mesh method, and the corresponding initial-boundary value prob-
lem is solved using the linear FEM. The overall procedure is listed in Algorithm 1. The
method can take full advantages of both the pseudo-transient continuation and the MM-
PDE method. Particularly, it is able to move the mesh, free of tangling, to fit the varying
domain for a variety of geometries, no matter if they are convex or concave. Moreover,
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it is convergent towards steady state for a broad class of FBPs and initial guesses of the
free boundary.

Numerical examples for Bernoulli FBPs with constant and non-constant Bernoulli
conditions and nonlinear FBPs have been presented. Numerical results have shown that
the method is second-order in space when the gradient of the solution at boundary ver-
tices that is needed in free boundary update is recovered with quadratic least squares
fitting. Moreover, they have also shown that the method works well for both exterior
and interior Bernoulli FBPs with complex geometries and nonlinear FBPs.

Finally, we comment that while it is generally more robust than Newton’s method, the
pseudo-transient continuation is typically slower than the latter (in terms of convergence
towards steady state). Unfortunately, the moving mesh method studied in this work
also inherits this drawback from the pseudo-transient continuation. It is interesting to
see how the method can be sped up. One idea is to use a Davidenko-like equation or a
preconditioner (e.g. see Kramer [30]) when constructing the moving boundary problem
in the pseudo-transient continuation. A main challenge on this is how to speed up the
movement of the free boundary while avoiding mesh tangling. Another issue is how to
compute hyperbolic solutions [23]. As suggested by the formal analysis in Section 2 or
Fig. 2, it seems that the pseudo-transient continuation and thus the moving mesh FEM
studied in this work can be used only for elliptic solutions. It is interesting to see if
a method based on the pseudo-transient continuation can be designed for computing
hyperbolic solutions.
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