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Abstract. AFEPack is a general-purpose C++ library for numerical solutions of partial
differential equations. With over two decades development, AFEPack has been suc-
cessfully applied for scientific and engineering computational problems in a variety
of areas such as computational fluid dynamics, electronic structure calculations, com-
putational micromagnetics. In this paper, design philosophy of the library, algorithms
and data structures used in the discretization of governing equations, numerical linear
algebra for the discretized system, as well as the pre-processing and post-processing of
the simulations, will be described systematically for the AFEPack. The realization of
two main features of the library, i.e., adaptive mesh methods and parallel computing,
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will be introduced in detail. The potential of the library for large scale scientific/engi-
neering problems would be demonstrated by several examples. The future works on
developing the library will also be discussed.

AMS subject classifications: 65M08, 65M60, 65N08, 65N30, 65-04
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ing, software.

Program summary

Program title: AFEPack
Software licence: GPL 2.0
CiCP scientific software URL:
Developer’s repository link: http://dsec.pku.edu.cn/~rli/software.php
Programming language(s): C, C++
Nature of problem: Numerical methods for partial differential equations have been play-
ing a more and more important role in both scientific exploration and engineering appli-
cations, and the development of related numerical software is urged to catch up with the
rapid development of hardware, as well as numerical algorithms.
Solution method: A C++ library entitled AFEPack is developed for the purpose. The
package was designed originally based on finite element methods, and has been ex-
tended to finite volume methods, discontinuous Galerkin methods, spectral elements,
etc. Features of the package include adaptive mesh techniques, and parallel computing.
Based on AFEPack, several specific-purpose packages have been developed in computa-
tional fluid dynamics, electronic structure calculations, etc.

1 Introduction

Besides the theory and experiments, computational science has been becoming an indis-
pensable methodology for science exploration. As an essential component of compu-
tational science, numerical solutions of partial differential equations (PDEs) have been
playing an increasingly important role, not only in science exploration, but also in engi-
neering applications, entertainments, etc.

Towards the scientific and engineering numerical simulations, there have been many
mature software, covering a variety of research and application areas. For example, in
computational fluid dynamics, Ansys Fluent [48], COMSOL [50], Autodesk CFD [49],
etc., are popular commercial software, while OpenFOAM [35], SU2 [10], GeoClaw [4],
etc., are popular open-source ones. In electronic structure calculations, there are com-
mercial software such as Gaussian [51], Q-Chem [52], and Jaguar [53], and open-source
software such as VASP [11], Quantum ESPRESSO [8], and ABINIT [1].
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Different from aforementioned “purpose oriented” (specific-purpose) software, there
have been a class of “method oriented” (general-purpose) ones in the market, in which
the software is designed based on a class of specific methods for the education and
academic research. For example, deal.II [3] and PHG [7] for finite element methods,
MOOD [26] for finite volume methods, parDG [33] for discontinuous Galerkin methods,
and DMSUITE [72] in MATLAB for spectral methods. These software bring scientists
quality platforms for systematically studying the numerical methods, and for their re-
search. Beyond that, these general-purpose software potentially serve as a starting point
for the development of specific-purpose software. For example, DFT-FE [28] is a mas-
sively parallel adaptive finite element library in electronic structure calculations, which
is built on top of the general-purpose finite element software deal.II [3]. GeoClaw [4] is
a software for geophysical flow simulations, which is developed based on Clawpack [2]
- a collection of finite volume methods for linear and nonlinear hyperbolic systems of
conservation laws.

In this paper, we will introduce a competitive open-source general-purpose C++ li-
brary AFEPack (Adaptive Finite Element Package). The package was initially developed
by Li and Liu for the study of moving mesh methods in solving PDEs, under finite ele-
ment framework [57, 60, 61]. With the development over two decades, the functionality
of the package has been greatly expanded, e.g., other grid based methods such as fi-
nite volume methods and discontinuous Galerkin methods are realized; solvers for both
two dimensional and three dimensional PDEs can be coded in a unified framework with
the help of templatization feature in C++ programming language; modules for adap-
tive mesh methods, including r-adaptivity and h-adaptivity, are available in the package;
towards large scale simulations, both shared-memory and distributed-memory paral-
lelism are supported; rich support for both the pre-possessing and the post-processing
in solving PDEs is available from plenty of third-party software such as Gmsh [37] and
EasyMesh [68] for mesh generation, and OpenDX [12] and ParaView [6] for the visual-
ization of the numerical results; etc. All above features make AFEPack an ideal platform
for studying numerical methods for PDEs, in which almost all aspects in numerical sim-
ulations, from mesh generation and discretization to solving linear system and results
visualization, can be experienced.

Due to its general-purpose design and availability of the source code, AFEPack has at-
tracted many scientists and engineers for the application of the software in their research
and applications. For instances, in [31], Di et al. extended the moving mesh method to
problems defined on a sphere through a perturbed harmonic mapping technique; in [30],
a general moving mesh framework in 3D was established, and its application in sim-
ulating the mixture of multiphase flows was explored; in [70], the mesh sensitivity for
numerical solutions of phase-field equations using r-adaptive finite element methods
was investigated;in [29, 38, 39, 41, 43, 67], Hu et al. developed a finite volume frame-
work for studying both steady and unsteady solutions of Euler equations; in [13–17],
Bao et al. designed a finite element framework for the density functional theory, based
on which both the ground state and the dynamics of a given electronic structure can be
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numerically investigated; in [20, 46], by using the adaptive mesh module in AFEPack,
Hu et al. numerically studied the porous medium flow problems; in [32, 47, 71], numer-
ical simulations of the dendritic growth were studied based on r- and h-adaptive mesh
methods, more results can be seen in [22] and [24]; in [63], an approximate solver for
the hydro-elastoplastic solid material was proposed, in which a natural transformation
between the fluid and solid for the phase transitions was designed; in [59, 64], a patch
reconstruction technique has been proposed in the framework of discontinuous Galerkin
methods, based on which a least square method was designed for a variety of problems;
in [74,75], a finite element framework for computational micromagnetics was established
and developed; in [19], an adaptive finite element DtN method has been developed for
the three-dimensional acoustic scattering problem; in [22], the numerical methods devel-
oped based on AFEPack was applied in the research of drug delivery problem, etc. Fur-
thermore, based on AFEPack, there have also been many examples towards developing
“purpose oriented” software, such as AFEABIC [14, 16, 36, 76] in the electronic structure
calculations, AFVM4CFD [38, 39, 41] in computational fluid dynamics, AFEMAG [74, 75]
in computational micromagnetics.

In the rest of this paper, the design philosophy, the structure of the code, feature mod-
ules such as mesh adaptivity, as well as the application of AFEPack in a variety of areas,
will be introduced and demonstrated by order.

2 A fundamental introduction to AFEPack based on solving a
Poisson equation

It is well known that, with a given model PDE such as a Poisson equation, a standard
procedure of numerically solving this PDE mainly consists of the generation of finite
dimensional space for the approximate solution, the formation and solving of the system
of linear equations, as well as the post-processing of numerical solutions.

More specifically, suppose that we have the following Poisson equation with a homo-
geneous Dirichlet boundary condition{

−∇2u(x)= f (x), x∈Ω,

u(x)=0, x∈∂Ω,
(2.1)

where Ω⊂Rd (d = 2 or 3), f ∈ L2(Ω), and u(x) is the unknown solution of the equation.
In a finite element framework, the first step is to derive the variational form of the above
equation, which is given by: To find u∈V :=H1

0(Ω), such that

a(u,v) :=
∫

Ω
∇u·∇vdx=

∫
Ω

f vdx=: ( f ,v), ∀v∈V, (2.2)

where H1
0(Ω) :={v∈H1(Ω) : v=0 on ∂Ω} with H1(Ω) a Hilbert space.
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To solve the above equation (2.2), a finite dimensional trial space Vh ⊂V needs to be
built, based on which a discrete variational form can be given by: To find uh ∈Vh, such
that

a(uh,v)=( f ,v), ∀v∈Vh, (2.3)

where the subscript h stands for the characteristic of Vh, and uh is the approximation of
u. It is noted that (2.3) is equivalent to a system of linear equations

Luh = f , (2.4)

from which the approximate solution uh can be obtained for the post-processing. It is
noted that the same notations uh and f are used here for the convenience.

To code the above algorithm, many modules need to be handled well, such as the
generation and management of mesh grids, the design of the template elements for the
trail space, the design of the linear algebra module for efficiently storing and solving
the system of linear equations, etc. A flowchart of the algorithm for solving a partial
differential equation mentioned above is given in Fig. 1.

In following subsections, each module will be introduced in detail.

2.1 The partition of the domain

Basically, two aspects need to be handled well in the mesh module, i.e., how to generate
a quality partition of the domain, and how to manage it efficiently during the simulation.
Mesh generation is a highly nontrivial topic in numerically solving PDEs, and there have
been many well known software available for the purpose, such as Gmsh [37], Netgen [5],
Tetgen [69]. In AFEPack, there is no such a module for the mesh generation currently.
Instead, interface functions are provided in AFEPack for those popular mesh generators,
so that the mesh data generated by other software can be read and transferred into the
internal mesh file natively supported by AFEPack.

Before introducing the format of the data of the internal mesh in AFEPack, let us
review a common format used in the popular mesh generators. For example, in Fig. 2, a
tetrahedral mesh consisting of two tetrahedrons is demonstrated. To uniquely determine
such a mesh, a simple description given in Table 1 works.

It is noted that for a mesh consisting of the simplex geometries, the format used in
Table 1 should be the simplest one, since besides the necessary distribution of the grid
points, the topology of the mesh can be deduced clearly from the description of the given
highest dimensional information. However, from the efficiency point of view, this format
is far from ideal due to the missing of the lower dimensional information, which are
useful in designing numerical algorithms.

A hierarchical approach is adopted in AFEPack to describe a given geometry, dimen-
sion by dimension. The design is based on the following observations from Fig. 3, in
which a decomposition of a tetrahedron from Fig. 2 is demonstrated. It is noted that such
a decomposition is based on a unified criterion, i.e., a geometry (nD, n= 0,1,2,3) can be
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Mesh generation

Template element construction
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Formation of linear system
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Solving the linear system
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Figure 1: A flowchart for solving a partial differential equation.
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Figure 2: A tetrahedral mesh with 2 tetrahedral elements.

described by its vertices (0D geometries) and boundaries ((n−1)D geometries). For in-
stance, in Fig. 3, the 3D tetrahedron ABCD consists of four vertices A, B, C, and D, and
four boundaries (triangles) ∆ABC, ∆ABD, ∆ACD, and ∆BCD. For the 2D triangle ∆ABC,
it consists of three vertices A, B, and C, and three boundaries (line segments) AB, AC,
BC. For the 1D line segment AB, it consists of two vertices A and B, and two boundaries
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Table 1: Format of mesh data.

5 #There are 5 points in the mesh
0: 0 0 0 #The index, and the coordinate of the point A
1: 1 0 0 #The index, and the coordinate of the point B
2: 0 1 0 #The index, and the coordinate of the point C
3: 0 0 1 #The index, and the coordinate of the point D
4: -1 0 0 #The index, and the coordinate of the point E

2 #There are 2 tetrahedrons in the mesh
0: 0 1 2 3 #The index the tetrahedron, and the index of its each vertex.
1: 0 2 3 4

A B

C

D

A B

D

A B A

Figure 3: From left to right: a 3D geometry ABCD, a 2D geometry ABD, a 1D geometry AB, and a 0D
geometry A.

(points) A and B. Finally, the point A consists one vertex A, and one boundary (point) A.
From above descriptions, some redundant information can be seen when we describe 1D
and 0D geometries. However, it should be pointed out that with above descriptions, a
unified data structure can be designed for managing the geometry in the code. It is noted
that, such a design potentially benefits the study of problems in fracture mechanics, in
which the crack can appear causing the topological change of the domain.

In AFEPack, an internal data format for the mesh is designed according to above de-
scriptions, based on which the mesh shown in Fig. 2 is given in Table 2. With such a data
format, the mesh can be decomposed completely by a dimension by dimension approach,
based on which both the flexibility and the efficiency of the algorithm in designing nu-
merical methods for PDEs can be benefited. Although compared with the simple format
shown in Table 1 more information have to be stored in this internal format in AFEPack, it
is noted that in solving PDEs with finite volume methods, discontinuous Galerkin meth-
ods, etc., the information of the mesh in lower dimension is necessary, which means that
such information needs to be calculated anyway if the simple format is employed.

Four main classes in AFEPack in Listing 1 are defined to manage the mesh data. It
is worth mentioning that due to a unified description for geometries in all dimensions,
classes Geometry and GeometryBM needed not to be templatized.
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Table 2: A complete mesh data for the mesh shown in Fig. 2 in AFEPack.

5 ...
0 0 0 6
1 0 0 2 0 4
0 1 0 2 0 4
0 0 1 0
-1 0 0 7

2 2 4
5 2 2 4
0 0
1 0 8
1 0 2 3 4
0 2 3 4
1 0
1 1
1 1 7
0 0
2 3 0 1 2
1 2 3 3 1 0
1 2 0
0 1
3 3 0 1 3
1 3 3 4 2 0
1 3 0
0 2
4 3 1 2 3
1 4 3 5 4 3
1 4 0
0 3

3 0 2 4
9 3 7 6 1
0 0
2 0 1 4
2 0 1 3 0 3 4
0 3 8 6 2
1 0
2 0 2 5
2 0 2 3 2 3 4
0 3 8 7 5
2 0
2 0 3 6
2 0 3 3 0 2 3
0 3 5 2 1
3 0
2 1 2
2 1 2 2
0 0
4 4 0 1 2 3
2 1 3 4 2 6 1 0
2 1 3 0
0 1
5 4 0 2 3 4
2 2 3 4 5 4 3 6
2 2 3 0
0
...
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1 template <int DIM> class Point;

2 class Geometry;

3 class GeometryBM;

4 template <int DIM, int DOW=DIM> class Mesh;

Listing 1: Four main classes in AFEPack for managing mesh data.

Figure 4: Well designed meshes. Left: for ringleb flow simulation; Right: for circular flow simulation.

Although the mesh generation is an essential module in developing a software for
numerically solving PDEs, the task is highly nontrivial. Consequently, except for well
designed mesh for certain case, in AFEPack we mainly resort to the third party soft-
ware for the purpose currently by developing interfaces. For example, DBMesh [34] and
EasyMesh [68] are supported by AFEPack in generating two dimensional triangulation of
the domain, while it is Gmsh [37] for three dimensional cases. For example, in Fig. 4, two
well designed two dimensional meshes are shown for the numerical simulations of Euler
equations, while in Fig. 5, meshes generated by Easymesh (top two) and Gmsh (bottom
two) are demonstrated. It is noted that for the visualization, the open source software
OpenDX [12] is used, which will be introduced later.

Remark 2.1. For the mesh shown in Fig. 2 in 3D, there are 5 modules in the mesh data
shown on the left side. The first module contains the number of grid points as well as
the coordinate for each point. In each one of the rest four modules, a unified format is
adopted for describing geometries in 0D, 1D, 2D, and 3D. More specifically, besides the
number of geometries, the information of each geometry includes the index of the ge-
ometry, the number of vertex/vertices as well as the index of each vertex, the number of
boundary/boundaries as well as the index of each boundary, and the boundary mark of
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Figure 5: Meshes generated from third party software. Top: the meshes generated by EasyMesh for a domain
including three naca0012 airfoils (left: the whole mesh, right: mesh grids around airfoils); Bottom: the meshes
generated by Gmsh for a twist cylinder (left) and a ball(right).

the geometry. It is clear that by building the mesh in a dimension by dimension strategy,
all information of a given mesh can be resolved completely by a recursive approach.

2.2 The generation of the approximate space

A finite dimensional space Vh needs to be built for obtaining an approximation solution
uh through solving (2.3). For the convenience of the following discussion, let us use
T h := {Kh

i }
NT
i=0 to denote the mesh, where Kh

i denotes the i-th geometry element in the
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Figure 6: Shape functions of a linear polynomial space defined on a triangle.

mesh, and NT h denotes the total number of the geometry elements of the mesh.
We restrict ourselves to the finite dimensional space Vh with piece-wise linear approx-

imation, for the introduction of related modules in AFEPack. Following the definition
given by Ciarlet in [25], in each geometrical element Ki, a finite element can be defined
by

Definition 2.1. The 3-tuple (K,P ,N ) is called a finite element, with

• K: a closed and bounded domain with nonempty interior and piece-wise smooth
boundary;

• P : a finite dimensional space of shape functions;

• N ={N1,N2,N3,··· ,Nk}: a basis for the space P .

A simple case for the above definition is the finite element defined on a simplex do-
main (triangle in two dimensional case, or a tetrahedron in three dimensional case), with
linear polynomials as shape functions. In this case, the vertices of the simplex can be
chosen as the nodal variables to build a conforming finite element space. Fig. 6 shows
shape functions defined in a triangle element. For a given mesh T , a finite element space
Vh can be constructed by Vh :={(Kh

i ,P ,N )}NT
i=1.

In coding a finite element method, a classical approach for building a finite element
space is to resort to a template element, for handling the basis functions and the setup
of the numerical integration in each finite element. The idea is that the information in
each finite element is obtained by the information in a template finite element and a Ja-
cobian transformation between two elements. In AFEPack, this strategy is realized in a
well designed manner. More specifically, a folder entitled template is created in AFEPack,
in which several sub-folders entitled, for example triangle and tetrahedron, are included.
In every sub-folder, four kinds of files are provided for the construction of the template
element, i.e., the geometry information, the coordinate transformation, the distribution
of degrees of freedom, and basis functions. For instance, in the folder triangle, the geom-
etry information of a template triangle element is given in a file entitled triangle.tmp geo,
in which the geometry of the template triangle and the Gauss quadrature information are
given. In files triangle.crd trs and triangle.crd trs.c, the affine maps between the template
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element and the finite element are defined. In a sub-folder entitled triangle.1, the lin-
ear polynomial approximation is defined, for which the total number of degrees of free-
dom, as well as the location of each degree of freedom is described in triangle.1.tmp dof,
and the related basis functions are defined and managed in triangle.1.bas fun and trian-
gle.1.bas fun.c. Similarly, the quadratic polynomial approximation is defined in the sub-
folder triangle.2. So far, triangle and quadrilateral templates in two dimension, and tetra-
hedron and hexahedron templates in three dimension are available in AFEPack.

Remark 2.2. In solving stationary nonlinear problems and time-dependent problems, the
system of linear equations needs to be reformed for many times. In AFEPack, two tem-
plate structures shown in Listing 2 are defined to store information of the finite element
for the reuse, as long as the finite element space keeps unchanged. Furthermore, quanti-
ties such as the least square system in reconstructing the variation of the solution locally
can also be stored in a class inherited from the template class ElementAdditionalData.

Remark 2.3. Recently, Zhan and Hu has successfully introduced a novel realization of a
tetrahedral spectral element method based on AFEPack, based on which a solver for the
Kohn-Sham equation was proposed. This tetrahedral spectral element method can serve
as a high order method for general PDEs. Please refer to [77] for the introduction of the
method, and [9] for the source code.

1 template <int DIM>

2 struct GeometryAdditionalData

3 {

4 public:

5 int n_quadrature_point;

6 double volume;

7 Point<DIM> bc;

8 std::vector<double> Jxw;

9 std::vector<Point<DIM> > q_point;

10 };

11

12 template <typename value_type, int DIM>

13 struct ElementAdditionalData : public GeometryAdditionalData<DIM>

14 {

15 public:

16 std::vector<std::vector<value_type> > basis_value;

17 std::vector<std::vector<std::vector<value_type> > > basis_gradient;

18 };

Listing 2: Two template structures for reusing information.
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2.3 The formation of the system of linear equations

To generate the stiff matrix in (2.4), the integral
∫

Ω∇uh ·∇vdx in (2.3) will be calculated
in an element by element strategy, i.e.,∫

Ω
∇uh ·∇vdx= ∑

Kh
k∈T h

∫
Kh

k

∇uh ·∇vdx. (2.5)

Following our above discussion, for an element-wise linear polynomial approximation
in a triangle element, the approximation uh in the k-th element Kh

k can be expressed by

uh|Kh
k
=u(0),l

h ϕ
(0)
k +u(1),m

h ϕ
(1)
k +u(2),n

h ϕ
(2)
k ,

where ϕ
(i)
k , i= 0,1,2 are three basis functions in the element Kh

k , while u(0),l
h denotes the

0-th nodal variable in the element Kh
k . It is noted that the superscript l here denotes the

global index of this nodal variable, which is used to deliver the entry from the element
stiff matrix to the global stiff matrix.

By taking test functions the same to trial functions, in the element Kh
k we finally get

the following element stiff matrix

l m n


∫
Kh

k
∇ϕ

(0)
k ·∇ϕ

(0)
k dx,

∫
Kh

k
∇ϕ

(0)
k ·∇ϕ

(1)
k dx,

∫
Kh

k
∇ϕ

(0)
k ·∇ϕ

(2)
k dx l∫

Kh
k
∇ϕ

(1)
k ·∇ϕ

(0)
k dx,

∫
Kh

k
∇ϕ

(1)
k ·∇ϕ

(1)
k dx,

∫
Kh

k
∇ϕ

(1)
k ·∇ϕ

(2)
k dx m∫

Kh
k
∇ϕ

(2)
k ·∇ϕ

(0)
k dx,

∫
Kh

k
∇ϕ

(2)
k ·∇ϕ

(1)
k dx,

∫
Kh

k
∇ϕ

(2)
k ·∇ϕ

(2)
k dx n

,

then each entry of the above matrix will be added into the entry of the global matrix
according to the indices l,m and n.

In the above element stiff matrix, the numerical integration is needed for the calcula-
tion of each entry, which can be done trivially in AFEPack with the well designed finite
element, and template class ElementAdditionalData shown in Listing 2.

In AFEPack, the above process is realized in a template class BilinearOperator, in which
a member function getElementMatrix is defined for the calculation of the element stiff
matrix. It is noted that such a member function is declared with the keyword virtual,
which allows users to redefine this function to handle their models.

Due to the locality of basis functions defined in each finite element, besides the di-
agonal entry, there would be only several nonzero entries in each row of the global stiff
matrix. A typical distribution of nonzero entries in a stiff matrix is shown in Fig. 7. In
existing software, a popular choice for storing and operating such sparse matrices is the
compressed row storage (CRS) format, in which the total number of nonzeros in each
row, indices of columns of nonzeros in each row, as well as those nonzero entries, are
stored in three vectors, as a simple description of this format, please refer to Fig. 8 for one
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Figure 7: The pattern of nonzero entries in a stiff matrix. Each black square stands for a nonzero entry.


−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2



[0,2,5,8,11,13]

[0,1,0,1,2,1,2,3,2,3,4,3,4]

[−2,1,1,−2,1,1,−2,1,1,−2,1,1,−2]

Figure 8: The format of row compressed storage. Top: a 5×5 matrix; Bottom: three one dimensional vectors
in CRS for the above matrix.

simple example. With CRS format, the matrix vector multiplication can be implemented
trivially, which benefits the development of many classical solvers for the system of lin-
ear equations and eigenvalue problems, such as conjugate gradient methods, multigrid
methods, Krylov subspace methods, Lanczos methods, Arnoldi methods.

Due to its well developed linear algebra module, we developed the linear algebra
module in AFEPack based on the template classes SparseMatrix and Vector from deal.II.
Hence, besides the fundamental operations such as matrix vector multiplication can be
used directly, well-developed solvers from software such as PETSc and Trilinos can also
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be used through API provided in deal.II. In addition, in AFEPack, a module of the linear
algebra is under developed, in which calculations for both dense matrix and sparse ma-
trix are supported. It is noted that the application program interface (API) for the Linear
Algebra PACKage (LAPACK) is provided, so that the functions from LAPACK can be
used to handle the operation for the dense matrix. The operation for the sparse matrix
based on CRS format is also supported internally. Some preliminary results show that
such a module works very well. The module will be available in the forthcoming version
of the library.

2.4 Boundary conditions

Boundary conditions are essential components in a PDE model making the model well-
posed. There are three basic kinds of boundary conditions, i.e., the Dirichlet boundary
condition specifying the value of the unknown variable, the Neumann boundary condi-
tion specifying the derivative of the unknown variable, as well as the Robin boundary
condition which is a combination of previous two. So far, the Dirichlet boundary condi-
tion can be handled automatically in AFEPack, by using the code shown in Listing 3, in
which the instantiation boundary of the template class BoundaryFunction is initialized as
a Dirichlet boundary, with the boundary mark 1 and the evaluation given by the func-
tion u, while the instantiation boundary admin of the template class BoundaryConditionAd-
min is initialized with the finite element space fem space. After the boundary is added in
the boundary admin, the function apply is called to revise the system of linear equations
stiff matrix * solution = right hand side according to the given Dirichlet boundary condi-
tions. Users can change the second and the third parameters in the declaration of the
instantiation boundary to make the code fitting their own models.

1 BoundaryFunction<double,DIM> boundary(BoundaryConditionInfo::DIRICHLET, 1, &u);
2 BoundaryConditionAdmin<double,DIM> boundary admin(fem space);
3 boundary admin.add(boundary);
4 boundary admin.apply(stiff matrix, solution, right hand side);

Listing 3: Code in AFEPack for handling Dirichlet boundary conditions.

The study on boundary conditions is very important in both theoretical and numer-
ical investigation for PDEs. The treatment of boundary conditions could be quite com-
plicated, due to the complex geometry of the domain, physical constraints from prac-
tical problems, etc. Particularly, in FEM discretization, Dirichlet boundary conditions
requires the modification of both matrix and right-hand side after assembling process.
This boundary condition can be imposed following the procedure in Listing 3. In con-
trast, the Neumann and Robin boundary conditions could be integrated into the weak
form and handle in the assembling process, where fruitful functions are provided in the
package to operate matrices and vectors for implementing these boundary conditions.
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2.5 Solving the system

Finally, we arrive at solving the system of linear equations (2.4). For solving the system
derived from the Poisson equation, there is a well developed algebraic multigrid (AMG)
solver in the package. The restriction and prolongation operations in the AMG solver
are designed following [21, 27], while the classical Gauss-Seidel iteration is used as the
smoother.

In the package, the code shown in Listing 4 is used for solving the system of linear
equations, in which an instantiation solver of the class AMGSolver is declared, and then
initialized with the matrix stiff matrix. The function lazyReinit is used here to construct
the restriction and prolongation operators, as well as a series of coarsened systems of
linear equations. It is noted that the algorithm in this function is a simple one, which
only depends on the sparsity pattern of the matrix. In the package, there is also a func-
tion called reinit in the class AMGSolver for the same purpose, with more complicated
algorithm following [21,27]. As a comparison, the solver initialized by the function reinit
will cost more time for the initialization, but it will solve the system faster, than the one
initialized by the function lazyReinit. In the last step, the function solve is called to obtain
the solution of the system of linear equations. In this function, the first two parameters
are the solution vector and right hand side vector, respectively. The third one is a user
defined tolerance, so that the implementation of this function will be terminated if the
norm of the residual vector caused by the solution is less than this tolerance. The last
parameter denotes the maximum number of the AMG iteration steps. It is used to ter-
minate the implementation when the norm of the residual vector is still greater than the
given tolerance, but the maximum iteration number is reached.

1 AMGSolver solver;
2 solver.lazyReinit(stiff matrix);
3 solver.solve(solution, right hand side, 1.0e−08, 200);

Listing 4: Code for solving the system of linear equations with an AMG solver.

It is noted that besides being a solver for the system of linear equations, the AMG
method in the package is also designed as a preconditioner for other solvers, such as
preconditioned conjugate gradient method. A class AMGPreconditioner, inherited from
the class AMGSolver, is provided in the package for the purpose.

2.6 The visualization of the numerical result

The visualization of numerical results plays an important role in the scientific comput-
ing, which helps researchers to understand the structure and/or dynamics of the physical
process described by the governing equation. There have been many mature visualiza-
tion tools in the market, for instance, the open source software such as OpenDX [12],
ParaView [6], and the commercial software such as Tecplot [54].

The above mentioned tools are all supported by the package, which can be found in
the template class FEMFunction. One example of outputting numerical results is given in
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Listing 5, in which the function writeOpenDXData is called to output the file supported
by the OpenDX, then the L2 error of the numerical solution is calculated by using the
function L2Error defined in the namespace Functional in the package. It is noted that
the second parameter in the function is the exact solution of the PDE, while the third
parameter is the algebraic accuracy used in the numerical integration.

1 solution.writeOpenDXData(”u.dx”);
2 double error = Functional::L2Error(solution, FunctionFunction<double>(&u), 3);
3 std::cout << ”L2 error = ” << error << std::endl;

Listing 5: Code for outputting numerical results.

To show the effectiveness of the package, we demonstrate the code of solving a Pois-
son equation in Example 2.1.

Example 2.1. A well-posed two dimensional Poisson equation is given by{
−∆u(x)= f (x), in Ω,

u(x)= g(x), on ∂Ω,
(2.6)

where Ω=(0,1)×(0,1). Using the exact solution u(x)= sin(πx)cos(3πy) with x :=[x,y],
two functions f (x) and g(x) would be f (x)=10π2u(x) and g(x)=u(x)|∂Ω, respectively.

A complete code for solving the above equation is given in Appendix B, in which
the code is organized following the flowchart shown in Fig. 1. In Fig. 9, the numerical
solution obtained with 1907201 degrees of freedom is shown by using OpenDX, while
in Table 3 the desired convergence rate of numerical solutions obtained from a series of

Figure 9: The numerical result of the Poisson equation in Example 2.1, shown by OpenDX.
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Table 3: Convergence of numerical solutions on a series of successively refined meshes.

No. of DOFs L2 error Conv. order
506 2.68e-02 -
1941 6.81e-03 1.98
7601 1.71e-03 1.99
30081 4.28e-04 2.00
119681 1.07e-04 2.00
477441 2.68e-05 2.00
1907201 6.70e-06 2.00
7623681 1.67e-06 2.00

successively refined meshes is shown successfully.Moreover, an example code for solv-
ing diffusion equation is provided in Appendix C for further investigation of numerical
simulations via AFEPack.

So far the design of the package has been briefly introduced based on a model PDE.
They are the mesh adaptivity and parallel computing modules in the package which
make the AFEPack attractive in both scientific and engineering computing. In following
two sections, the design and applications of two modules will be introduced in detail,
respectively.

3 The mesh adaptivity

In many cases, it can be observed that the solution becomes highly nontrivial, only lo-
cally somewhere in the domain. Towards an efficient simulation of such problems, a
predesigned nonuniform mesh could partially resolve the issue. However, it generally
can not be used for temporal problems due to unknown dynamics of the solution.

Mesh adaptivity is an effective strategy to handle the above issue, for both station-
ary nonlinear and temporal problems. The idea is to dynamically adjust the mesh grids
(either by the local refinement of mesh grids, or by moving the mesh grids) according to
certain criterion, to guarantee that the solution can always be represented in a quality fi-
nite dimensional space. Based on the adjustment strategies, there have been two classical
approaches for the mesh adaptivity, i.e.,

• The h-refinement: In this approach, geometry elements in a mesh would be locally
refined or coarsened. The feature of this approach is that the position of each ex-
isting grid point would not change during the mesh adaptivity process. However,
the topology of the mesh grids will change with the implementation of the local
refinement.

• The r-refinement (moving mesh): In this approach, grid points in a mesh would be
redistributed based on certain criterion. The feature is that the total number of grid
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points in a mesh, as well as the topology of the mesh would not be changed, during
the movement of grid points.

Three main issues need to be resolved well in designing a quality adaptive mesh
method, i.e., the quality error indication for guiding the remeshing, the efficient imple-
mentation of the remeshing, and the quality representation of the numerical solution on
the new mesh.

In the package, both the h-refinement and the r-refinement approaches are supported.
In following subsections, the design of two approaches will be introduced in detail, re-
spectively.

3.1 On h-adaptive mesh methods

In the package, two concepts, i.e., the hierarchy geometry tree (HGT) and the geometry
forest (GF), are proposed for managing the mesh, based on which the implementation of
the remeshing and the solution representation can be resolved well.

To understand the philosophy behind the HGT and the GF, let us imagine that we are
taking a bird’s eye view of an island, which is completely covered by a number of trees.
With an assumption that each tree exclusively covers a part of this island, we actually
have a coarse partition of the island. Further, with an assumption that the region occu-
pied by a tree is completely filled by its non-overlapping leaves, a fine partition of the
island is available. With above assumptions, the purpose of h-adaptive mesh methods
can be understood as that, to control the growth of those trees so that less leaves (geome-
try elements) can be used for better covering the island, according to its geography (exact
solution).

In the package, tree data structures are employed for the realization of h-adaptive
mesh methods to realize the above idea. In the following, we restrict the discussion into
the category of simplex geometries, i.e., triangle elements in two dimensional cases and
tetrahedral elements in three dimensional cases. Let us take the two dimensional case as
an example to describe the detail.

For two dimensional cases, a quadtree is employed in the package to manage the
mesh refinement. A quadtree is a tree data structure, in which each internal node has
exactly four children. This property perfectly matches the regular refinement of a triangle
that by connecting three middle points of edges of the triangle, four subtriangles are
generated. In Fig. 10, for a square domain ABCD, a process of the mesh refinement as
well as the growth of corresponding quadtrees is demonstrated. Initially, there are two
triangles, i.e., ∆ABC and ∆ACD in the mesh (Fig. 10, top left), which correspond to two
nodes in the top level of two quadtrees. Then, five middle points, i.e., E,F,G,H and I,
are introduced, based on which the mesh is uniformly refined, and there are totally eight
triangles in the refined mesh (Fig. 10, top middle ). These eight triangles correspond to
eight nodes in the second level of two quadtrees. Finally, among these eight triangles, it
is found that triangles ∆AIH and ∆BFE need to be further refined. Hence, the middle
points J,K,L and M,N,O are introduced for the purpose for two triangles, respectively
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Figure 10: The correspondence between the mesh refinement and the growth of the geometry tree. Bottom:
two geometry trees with three levels; Top: the left and the middle meshes consist of nodes (geometries) locating
at the first and the second levels in below geometry trees, respectively, while the right mesh consists of all leaf
nodes of geometry trees.

(Fig. 10, top right). In two quadtrees, four children are generated for each corresponding
node, and the collection of all leaf nodes corresponds to the nonuniform mesh.

Before the nonuniform mesh shown in Fig. 10 (top right) can be used in building the
finite element space, the issue related to the hanging point needs to be resolved well.
A natural approach is to split the triangle with a hanging point into two triangles. For
example, by connecting the vertex I and the hanging point N in Fig. 10, two new trian-
gles, ∆ENI and ∆FIN, would be generated, and the hanging point issue is well resolved.
However, such a behavior is not consistent with property of a quadtree that every node
would generate four children. In the package, a concept called twin-triangle is introduced
to handle the hanging point. The idea behind is to treat the hanging point as a vertex of
the geometry, by designing a basis function for it. It is done by logically splitting the
triangle, e.g., ∆EFI, into two triangles, e.g., ∆ENI and ∆FIN. Then basis functions are
designed for two triangles, respectively. Finally, basis functions from two triangles are
organized well to express the finite element for the twin-triangle ∆EFI.

To realize the h-adaptive mesh method, in the package two template classes are de-
fined, i.e., HGeometryTree, IrregularMesh. In HGeometryTree, a template class HGeometry is
defined to help to build the hierarchy tree, while in IrregularMesh, a template class HEle-
ment is defined to construct the irregular mesh. It is noted that to facilitate the visiting of
nodes in the hierarchy tree, several iterators are provided in these template classes. For
example, in IrregularMesh, the following two kinds of iterators are provided.
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1 RootIterator beginRootElement(); RootIterator endRootElement()
2 ActiveIterator beginActiveElement(); ActiveIterator endActiveElement();

Listing 6: Iterators provided in IrregularMesh.

A typical code snippet for implementing the h-adaptivity in the package is given in
Listing 7. The process can be briefly described as follows. First of all, a vector called indi-
cator is declared and initialized using current mesh. Such a vector is filled by certain error
estimation. Then an instantiation of the template class MeshAdaptor, e.g., mesh adaptor, is
declared and initialized by the current irregular mesh. The parameter convergenceOrder
indicates the convergence order of the numerical method, the parameter refineStep indi-
cates the times allowed for implementing the local refinement of mesh grids, while the
parameter tolerance indicates the tolerance for implementing the refinement or coarsen-
ing of geometry elements. Please refer to [58] for more details of above parameters. The
member function semiregularize provided in the template class IrregularMesh is designed
to prevent the situation that more than one hanging point appeared on a single edge of
a triangle, and that hanging points appear on more than one edge in a single triangle.
In either case, besides the twin-triangle element, more special triangle elements need to
be designed, which would introduce the accuracy and stability issues due to the possi-
ble small acute angle. In the member function semiregularize, the above issue is resolved
by further regular refinement of the geometry element, i.e., once more than one hanging
point is detected in a single triangle, the triangle will be regularly refined one time. Please
refer to Fig. 11 for above descriptions. Such an operation will be implemented until that
every triangle in the mesh has at most one hanging point. Although more triangle ele-
ments will be generated during the process, the quality of the mesh can be guaranteed,
which benefits the numerical accuracy and stability. Finally, in the member function regu-
larize of the template class IrregularMesh, all leaf nodes in hierarchy trees will be collected
and all vertices, edges, as well as triangles will be indexed, so that a regular mesh can be
obtained through the member function regularMesh of the template class IrregularMesh. It
is noted that a finite element space now can be built based on this regular mesh.

1 Indicator<DIM> indicator(regular mesh);
2 ... /// the generation of indicator
3 MeshAdaptor<DIM> mesh adaptor(irregular mesh);
4 mesh adaptor.convergenceOrder() = 1.;
5 mesh adaptor.refineStep() = 1;
6 mesh adaptor.setIndicator(indicator);
7 mesh adaptor.tolerance() = 5.0e−03;
8 mesh adaptor.adapt();
9 irregular mesh.semiregularize();

10 irregular mesh.regularize(false);
11 RegularMesh<DIM>& regular mesh = irregular mesh.regularMesh();
12 ... /// the build of new finite element space

Listing 7: A code snippet for h-adaptivity.

In the second line of Listing 7, the code for generating the vector indicator is needed, in
which certain error estimation method would play an important role. Two kinds of meth-
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Figure 11: Two typical cases that there are more than one hanging points in a single triangle ∆ABC.

ods are popular in the market. One is the so-called feature based methods, in which the
error indicator is designed from the experience of the user. For example, to capture the
shock structure in a simulation in compressible fluid dynamics, the gradient of the pres-
sure based on numerical solutions would be a good choice for the purpose. The other one
is the so-called a posteriori error estimation, a technique for generating reliable error in-
formation based on numerical solutions. Classical methods include residual-based error
estimation, reconstruction-based error estimation, dual weighted residual method, etc.
In the package, the error estimation module is designed independently, which provides
a convenient platform to researchers for their study in error estimation.

3.2 On r-adaptive mesh methods

Besides h-adaptive mesh methods mentioned in previous subsection, in the package, r-
adaptive mesh methods are also provided. The feature of r-adaptive mesh methods is
that the total amount of the mesh grids as well as the topology of the mesh grids would
not change during the simulation, only the distribution of those grid points will be ad-
justed according to certain criterion.

The realization of r-adaptive mesh methods in the package is based on a class of
harmonic maps [60, 61], which can be briefly summarized as follows.

First of all, for two compact Riemann manifolds Ω and Ωc, with dij and rαβ two metric
tensors in certain local coordinates x and ξ⃗, respectively. With a map ξ⃗ = ξ⃗(x) from Ω to
Ωc, its energy is given by

E(ξ⃗)=
1
2

∫
Ω

√
ddijrαβ

∂ξα

∂xi
∂ξβ

∂xj dx, (3.1)

where d=det(dij) and dij =(dij)
−1, with the standard summation convection. The map ξ⃗

is called a harmonic map if it is an extremum of (3.1), which can be found by solving

1√
d

∂

∂xi

√
ddij ∂ξk

∂xj +dijΓk
βγ

∂ξβ

∂xi
∂ξγ

∂xj =0, (3.2)
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with Γk
βγ the Christoffel symbol of the second kind. Restricting the discussion in the

Euclidean space, we have Γk
βγ =0, and the Euler-Lagrange equation (3.2) becomes

∂

∂xi Gij ∂ξk

∂xj =0, (3.3)

with Gij =
√

ddij.
The r-adaptive mesh method works as follows. With the numerical solution obtained

from current mesh, a monitor function M=(Gij)−1 is designed. Then the Euler-Lagrange
equation (3.3) is solved, whose solution is a new distribution of mesh grids in the domain
Ωc. Subsequently, the displacement of each grid point in Ωc affinely maps back to the do-
main Ω, giving the displacement of the corresponding grid point in Ω. Finally, a solution
update is implemented to represent the solution on the new mesh.

Based on the above algorithm, in the package two classes are provided for the im-
plementation of r-adaptive mesh methods in two and three dimensions, respectively, i.e.,
class MovingMesh2D and class MovingMesh3D. In these two classes, several virtual mem-
ber functions need to be realized by users, see Listing 8 for 3D case.

1 class MovingMesh3D : public Mesh<3,3>
2 { ...
3 std::vector<float> mon;
4 ...
5 virtual void getMonitor();
6 virtual void smoothMonitor(u int step = 1);
7 virtual void updateMesh();
8 virtual void updateSolution() = 0;
9 virtual void outputSolution() = 0;

10 virtual void getMoveStepLength();
11 ...
12 }

Listing 8: The class MovingMesh3D.

Among these virtual functions, three are tightly related to the simulation, i.e., getMon-
itor(), smoothMointor(), and updateSolution(). In getMonitor(), the vector mon is filled by the
quantity depending on numerical solutions, either by a feature-based approach or by an
a posteriori error estimation approach. The smoothing operation for the monitor function
is necessary to guarantee the quality of the simulation. Although approaches such as the
Laplacian smoothing work generally, the special method needs to be designed to handle
the specific problem. For example, in [71], a smoothing strategy based on the diffusive
mechanism was designed, which became a key on applying r-adaptive mesh methods in
simulating dendritic growth of crystals. In updateSolution(), a solution update algorithm
is needed to transfer the numerical solution from the current mesh to the new mesh. Both
the numerical accuracy and the implementation efficiency of such an update algorithm
are crucial, especially for solving time-dependent PDEs. In [60], a solution update strat-
egy was proposed based on an assumption that after updating the numerical solution,
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the profile of the solution should be kept unchanged. In such a strategy, a convection
mechanism is utilized based on an observation that with the movement of grid points in
Ω, the associated solution on each grid point flows to the new position. Hence, the solu-
tion update can be done by solving a convection equation with a well designed velocity.
It is this solution update strategy which makes the proposed r-adaptive mesh method an
independent module in the package, which can be used generally for the given PDEs.
In [31], the harmonic map based r-adaptive mesh method was successfully extended to
solve the problem defined on a sphere.

4 Towards large scale problems

The overall parallel scheme in AFEPack is finished on the architectures with a distributed
memory and in a message passing interface (MPI) manner. The key techniques include
mesh data preparation, data synchronizing and dynamic load balancing, which will be
introduced in detail below, respectively.

Mesh data preparation: During the mesh data preparation region, AFEPack first
needs a triangular or a tetrahedron background mesh in two dimensional and three
dimensional case, respectively. Then a few rounds of uniform refinement on the back-
ground mesh can be applied to obtain a refined mesh according to the number of pro-
cesses in later simulations. At last, a domain decomposition algorithm based on Hilbert
space filling curve (HSFC) to sort the cells in the refined mesh. This decomposition di-
vides the mesh into a group of sub-meshes, as illustrated in Fig. 12 for reference.

Data synchronizing: When the mesh preparation of a simulation is finished, AFEPack
assigns each sub-mesh to the corresponding process and numerically solve PDEs in a
parallel manner. AFEPack encapsulates MPI by a “shared object” driven data to syn-
chronize mechanism. The data to be transferred are attached on these shared objects and

Figure 12: Examples of HSFC (left) and the domain decomposition via HSFC (right).
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Figure 13: An example of dynamic load balancing for different simulation time.

the shared objects transfer the data to their mirror copies on other processes. The tiny
data fragments attached on the shared objects are collected together into stream buffers
and then send to destinations based on the data transferring plan. AFEPack defines a
transmit map and interface for end-users to synchronize data based on the shared ob-
jects, which assumes that the data transferring are bilateral.

Dynamic load balancing: During the parallel simulation, the load imbalance is usu-
ally caused due to the h-mesh adaption, which makes the number of mesh cells different
from process to process and leads serious computational resource waste. The dynamic
load balancing during the simulation can be applied to improve the efficiency. It is al-
ready supported by AFEPack to balance the load on the background element level.

When applying the dynamic load balancing, AFEPack first calculates the computa-
tional loads of mesh cells in each process, and lumps the loads to the parent geometry
recursively. For a given partition, it can quantify the load imbalance by the l1-load imbal-
ance and l∞-load imbalance, which is the sum of the idle CPU time and the maximal idle
CPU time. When the load imbalance reaches a limit value, a re-partition implementa-
tion is accomplished. Since the background cells are sorted based on HSFC, the obtained
re-partition is expected to have satisfactory quality.

After the re-partition procedure, every background mesh cell is assigned to a new
process. The next step is to move the data from the old process to the new process. In
AFEPack, a serialization procedure is adopted to copy the pointer of the hierarchy ge-
ometry tree from one process to another process. Then a data migration implementation
is followed to migrate the data structures based on the hierarchy geometry tree, such as
mesh, finite element space, finite element functions and algebraic system solver.

The above three procedures are the main steps in the parallel scheme of AFEPack,
which can maintain the efficiency of parallel computing in a satisfactory level. An illus-
tration of dynamic load balancing is provided in Fig. 13.
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5 Applications of AFEPack

So far, the AFEPack has been successfully applied in a variety of scientific and engineer-
ing problems, such as computational fluid dynamics, electronic structure calculations,
computational micromagnetics. In following subsections, several applications will be
introduced briefly to demonstrate the effectiveness of the package.

5.1 Computational fluid dynamics

Computational fluid dynamics has always been an active research area in computational
sciences, due to its exuberant vitality in practical applications such as optimal design of
the vehicle shape, new energy development, the prevention and prediction of natural dis-
aster. In the following, three examples are described towards applications of the package
in computational fluid dynamics.

The steady state solution of Euler equations

As a simplified model of Navier-Stokes equations, Euler equations have been playing an
important role in applications in compressible fluid dynamics.

To obtain a steady state solution of the Euler equations, a Newton-GMG solver has
been proposed in [62], and developed in [40–43, 45, 65–67], in which the Newton method
is used for the linearization of the governing equations, and a geometric multi-grid solver
is designed for the solution of the system of linear equations. It is noted that due to the
conservation property of solutions, the finite volume method is employed for the spatial
discretization, which can be conveniently realized in AFEPack, though the package is
originally designed for finite element methods.

In Fig. 14, steady state solutions of Euler equations from an h-adaptive finite volume
method are demonstrated. Results are obtained from [43], in which a goal oriented a
posteriori error estimation is designed for the h-adaptivity.

The solution of reactive Euler equations

Reactive Euler equations play an important role in the study of detonation phenomenon.In
[29], an h-adaptive finite volume method was designed for above equations, in which the
Strang splitting technique was employed to handle the challenge from the reactive term.
In Fig. 15, numerical results from [29] are demonstrated.

Combustion with a multi-component gas model

In the field of combustion research, comprehending the intricate dynamics of combus-
tion processes holds paramount importance for a number of perspectives, encompassing
optimizing energy efficiency, mitigating emissions, etc. In this subsection, we simulate
a nuclear air blast wave from one kiloton nuclear charge. The computational domain
is [0,400]×[0,1500] in meters, and the burst point is at (0,50)m with an initial radius of
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Figure 14: Steady state solutions of Euler equations obtained with an h-adaptive mesh method for the transonic
flows around a NACA0012 airfoil, with mach number 0.8 and attack angle 1.25◦. Top left: mach isolines around
the airfoil; Top right: isolines of x-momentum from the adjoint problem; Bottom: mesh profiles, zoomed in
from left to right. Results are from [43].

Figure 15: Numerical results when t≈200 of reactive Euler equations with the configuration given in Example
4.3 in [29]. Top: mesh profile of the results with h-adaptivity; Bottom: the distribution of the pressure.

0.3m. The governing equation of state of this problem is expressed in a cylindrical form,
and the initial conditions are

[ρ,u,v,p]T =


[
618.935,0,0,6.314×1012]T ,

√
x2+(y−50)2≤0.3,[

1.29,0,0,1.013×105]T ,
√

x2+(y−50)2≥0.3.

The explosion products and air are modeled by the ideal gas equation of states with
adiabatic exponents γ = 1.2 and 1.4 respectively. All boundaries are set up by outflow



Z. Cai et al. / Commun. Comput. Phys., 36 (2024), pp. 274-318 301

Figure 16: Pressure contours of air blast problem at typical time instants
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Figure 17: Blast wave parameters of typical radii on the ground.

conditions except for the bottom edge y= 0 which is a rigid ground. Fig. 16 shows the
pressure contours at typical time. When the blast wave produced by the nuclear explo-
sion arrives at the rigid ground, it will be reflected firstly and propagate along the rigid
ground simultaneously. When the incident angle exceeds the limit, the reflective wave
switches from regular to irregular, and a Mach blast wave occurs. The peak over-pressure
and impulse at different radii are shown in Fig. 17, and agree well with the reference data
interpolated from the experimental data.
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Figure 18: Speedup results in simulations using AFEPack.

Figure 19: Schematic model of the scaled city buildings.

We also test the parallel behavior of the numerical code in different cores (from 40 to
1280 cores), and the speedup results are given in Fig. 18.

Furthermore, an intense blast wave propagation in a scaled city buildings is simu-
lated. Seven buildings imitated a cityscape, shown in Fig. 19, xf were placed on the plate
surface. The heights of the buildings were as follows: HA=HG=0.45 m, HD=HF=0.3 m,
HB =HC =HE =0.4 m. A TNT charge of 16.0 g capacity is detonated at the point located
by 0.04 m above the ground between buildings C and F. The distance between adjacent
objects is less than or comparable to a linear scale of the buildings.

A full three dimensional numerical simulation is accomplished to simulate the blast
wave propagation in the scaled city buildings. The mesh size is about 0.5 cm, and the
total number of the mesh is about 80 millions. We use the domain decomposition scheme
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Figure 20: Comparison of pressure history curve between numerical results and experimental data.

Figure 21: Pressure contours of the computational domain at typical time.

to prepare the parallel mesh data, and 1200 cores is adopted to perform the parallel com-
putation. The comparison between the numerical results and experimental data at the
given gauge points, T1 and T21, is shown in Fig. 20, which shows a good agreement be-
tween each other. Fig. 21 shows the pressure contours at typical time and reveals that the
blast wave will reflect and diffract around the buildings, and finally present a complex
wave structures.

5.2 Electronic structure calculations

The Kohn-Sham density functional theory has been one of the most successful approx-
imation models for quantum many-body problems, whose numerical solution has been
playing an important role in a variety of application areas such as quantum computa-
tional chemistry, nano materials.

In [14], an h-adaptive finite element method was developed for solving the Kohn-
Sham equation for the ground state of a given electronic structure. In [16], such an
h-adaptive finite element framework was successfully extended for solving the time-
dependent Kohn-Sham equation, whose solution can serve the research in photonab-
sorption spectra of given electronic structures. It is worth mentioning that in [16], the
high harmonic generation phenomenon, which is a classical nonlinear phenomenon in
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Figure 22: The ground state of an azobenzene molecule C12H10N2. Top: mesh profiles, zoomed in from left to
right; Bottom: corresponding isosurfaces of the electron density. Results are reproduced from [56].

Figure 23: Two slices on the x-y plane of a tetrahedral mesh at t=400 (left) and t=594 (middle), respectively,
as well as the dipole power spectrum of a lithium atom (right). Results are obtained from [16].

quantum optics, was successfully simulated using the h-adaptive mesh method for the
first time. The other related works can be found in [13, 15, 17, 18, 55, 76].

In Fig. 22, numerical solutions of the ground state of an azobenzene molecule
C12H10N2 are demonstrated, from which the benefit from the h-adaptive mesh method
can be observed obviously. Results are reproduced from [56]. In Fig. 23, numerical solu-
tions of the time-dependent Kohn-Sham equation for a lithium atom are demonstrated,
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including two mesh slices at t= 400 (left) and t= 594 (middle), respectively. Moreover,
the dynamic change of the mesh grids can be seen clearly, as well as the dipole power
spectrum of the lithium atom (right), from which the theoretical odd harmonics can be
observed successfully.

5.3 Computational micromagnetics

The Landau-Lifshitz-Gilbert equation is a fundamental governing equation in computa-
tional micromagnetics, which has been playing an important role in developing the next
generation storage device. In [74,75], a finite element method has been developed for the
numerical solution of the governing equation.

In Fig. 24, results from [74] on calculating the ground state of the magnetization field
in a square thin film with a semi-circle defect are demonstrated, including a tetrahedral
mesh with 6778 grid points (left), the magnetization field of the obtained ground state
(middle), as well as the convergence of the total energy with the time evolution (right). It
is noted that in [74], a prediction for the solution of µMag standard problem #3 is given,
which confirms the updated reference value given in the official webpage very well.
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Figure 24: Left: a tetrahedral mesh in a square thin film with a semi-circle defect, totally 6778 grid points;
Middle: the magnetization field in the domain when t=400; Right: the convergence of the total energy with
time evolution. Results are obtained from [74].

5.4 Numerical simulations of reaction-diffusion systems

In [44], numerical simulations for two reaction-diffusion systems, i.e., the Brusselator
model and the Gray-Scott model, were studied. The numerical algorithm is based upon
a moving finite element method which helps to resolve large solution gradients. High
quality meshes are obtained for both the spot replication and the moving wave along
boundaries by using proper monitor functions. Several ways for verifying the quality of
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Figure 25: Solutions and corresponding mesh grids of Brusselator model at t=1 (left two), and 15 (right two).
Please refer to [44] for more details.

Figure 26: Solutions and corresponding mesh grids of GrayScott model at t=200 (left two), and 1500 (right
two). Please refer to [44] for more details.

the numerical solutions are also proposed, which may be of important use for compar-
isons.

In Figs. 25 and 26, numerical solutions and corresponding mesh grids of Brusselator
and Gray-Scoot models are demonstrated, respectively. More details can be found in [44]
and [73].

5.5 Dendritic growth computations

Dendritic growth stands as a pivotal concern in the realms of pattern formation and met-
allurgy. In [71], an r-adaptive method has been devised to facilitate efficient simulations
of dendritic growth.

Employing meticulously crafted monitor function, the resulting meshes under
steady-state simulation conditions are depicted in Fig. 27 and Fig. 28 for 2D and 3D
cases, respectively. In Fig. 28, both meshes are sliced at z = 0, encompassing a total of
6545 degrees of freedom. Evidently, these generated meshes well capture the phase-space
variable and dimensionless thermal field.
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Figure 27: The generated mesh when the simulation is steady in 2D simulation. The solid lines are the contours
of phase-space variable (left) and dimensionless thermal field (right). Please refer to [71] for more details.

Figure 28: The generated meshes in 3D simulation. The left one is the mesh for the initial value and the right
one is the mesh when the simulation is steady. Please refer to [71] for more details.

5.6 Singular problems on a sphere

PDEs defined on a sphere are encountered in numerous practical scenarios, such as poly-
mer rheological analysis, ocean modeling, and global climate simulation. When address-
ing problems with localized moving singularities, the moving mesh technique becomes
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Figure 29: The adaptive meshes on a sphere (column 1,3) and on planisphere (column 2,4) with 800 nodes
from t=0 to t=1.5. Please refer to [31] for more details.

a natural and effective approach. A moving mesh method for singular problems on a
sphere was introduced in [31], building upon the perturbed harmonic mapping.

The computational results involving a moving steep front along a specified direction,
as detailed in [31], are presented in Fig. 29. In particular, the first and third columns
of Fig. 29 depict the moving meshes comprising 800 nodes (about 1600 triangular ele-
ments). Meanwhile, the second and fourth columns showcase the corresponding mesh
distributions projected onto a planisphere. Notably, the mesh demonstrates commend-
able adaption within regions characterized by large gradients.

6 Conclusion

In this paper, a systematic introduction of a general-purpose C++ library AFEPack for
numerical solutions of partial differential equations was delivered, including the design
philosophy of the library, algorithms and data structures used in the discretization of
governing equations, numerical linear algebra for the discretized system, as well as the
pre-processing and post-processing of the simulations. Two features in the library, i.e.,
adaptive mesh module and parallel computing module, were also described in detail.
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Finally, applications of the library in a variety of research areas, such as computational
fluid dynamics, electronic structure calculations, computational micromagnetics, were
demonstrated, which showed the potential of the library towards both scientific explo-
ration and engineering projects.

It is worth mentioning that, with the emergence of new hardware and numerical
methods for scientific computing, the development of the AFEPack is kept active. For
instance, the GPU computing module in the library is under development. Furthermore,
several specific-purpose libraries have also been inspired by AFEPack, whose introduc-
tion can be found in the forthcoming papers.
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Appendices

A Installation of AFEPack

First of all, the source code can be downloaded from http://dsec.pku.edu.cn/~rli/

software.php#AFEPack. A typical process for the installation of AFEPack is shown in
Listing 9 below.

1 # ./configure
2 # make
3 # make install

Listing 9: Installation process of AFEPack.

It is noted that AFEPack is packed under GNU Build System using Autotools. Using
the command ./configure -h in the terminal will get more information for the installation.
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B Sample code for solving the Poisson equation

1 #include <iostream>
2 #include <fstream>
3 #include <AFEPack/AMGSolver.h>
4 #include <AFEPack/Geometry.h>
5 #include <AFEPack/TemplateElement.h>
6 #include <AFEPack/FEMSpace.h>
7 #include <AFEPack/Operator.h>
8 #include <AFEPack/Functional.h>
9 #include <AFEPack/EasyMesh.h>

10

11 #define PI M PI
12 #define DIM 2
13

14 double u(const double * p)
15 {
16 return sin(PI*p[0]) * sin(2*PI*p[1]);
17 };
18 double f(const double * p)
19 {
20 return 5*PI*PI*u(p);
21 };
22

23 int main(int argc, char * argv[])
24 {
25 EasyMesh mesh;
26 mesh.readData(argv[1]);
27

28 TemplateGeometry<DIM> triangle template geometry;
29 triangle template geometry.readData(”triangle.tmp geo”);
30 CoordTransform<DIM,DIM> triangle coord transform;
31 triangle coord transform.readData(”triangle.crd trs”);
32 TemplateDOF<DIM> triangle template dof(triangle template geometry);
33 triangle template dof.readData(”triangle.1.tmp dof”);
34 BasisFunctionAdmin<double,DIM,DIM> triangle basis function(triangle template dof);
35 triangle basis function.readData(”triangle.1.bas fun”);
36

37 std::vector<TemplateElement<double,DIM,DIM> > template element(1);
38 template element[0].reinit(triangle template geometry,
39 triangle template dof,
40 triangle coord transform,
41 triangle basis function);
42

43 FEMSpace<double,DIM> fem space(mesh, template element);
44 int n element = mesh.n geometry(DIM);
45 fem space.element().resize(n element);
46 for (int i = 0;i < n element;i ++)
47 fem space.element(i).reinit(fem space,i,0);
48

49 fem space.buildElement();
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50 fem space.buildDof();
51 fem space.buildDofBoundaryMark();
52

53 StiffMatrix<DIM,double> stiff matrix(fem space);
54 stiff matrix.algebricAccuracy() = 4;
55 stiff matrix.build();
56

57 FEMFunction<double,DIM> solution(fem space);
58 Vector<double> right hand side;
59 Operator::L2Discretize(&f, fem space, right hand side, 4);
60

61 BoundaryFunction<double,DIM>
62 boundary1(BoundaryConditionInfo::DIRICHLET, 1, &u);
63 BoundaryConditionAdmin<double,DIM> boundary admin(fem space);
64 boundary admin.add(boundary1);
65 boundary admin.apply(stiff matrix, solution, right hand side);
66

67 AMGSolver solver(stiff matrix);
68 solver.solve(solution, right hand side, 1.0e−08, 20);
69

70 solution.writeOpenDXData(”u.dx”);
71 double error = Functional::L2Error(solution, FunctionFunction<double>(&u), 3);
72 std::cerr << ”\n L2 error = ” << error << std::endl;
73

74 return 0;
75 };

Listing 10: A sample code for solving the Poisson equation by AFEPack.

C Sample code for solving the Diffusion equation

1 #include <stdio.h>
2 #include <dlfcn.h>
3

4 #include <iostream>
5 #include <fstream>
6

7 #include <base/exceptions.h>
8 #include <lac/vector.h>
9 #include <lac/sparsity pattern.h>

10 #include <lac/sparse matrix.h>
11

12 #include <AFEPack/AMGSolver.h>
13 #include <AFEPack/Geometry.h>
14 #include <AFEPack/TemplateElement.h>
15 #include <AFEPack/FEMSpace.h>
16 #include <AFEPack/Operator.h>
17 #include <AFEPack/EasyMesh.h>
18 #include <AFEPack/Functional.h>
19
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20 #define PI M PI
21 #define DIM 2
22 const int N Ite = 32;
23 const double T = 1;
24 const double C = 1;
25

26 double u0(const double *p){ return sin(PI*p[0])*sin(PI*p[1]); }
27 double u0 px(const double *p){ return PI*cos(PI*p[0])*sin(PI*p[1]); }
28 double u0 py(const double *p){ return PI*sin(PI*p[0])*cos(PI*p[1]); }
29 double u0 px2(const double *p){ return −PI*PI*u0(p); }
30 double u0 pxpy(const double *p){ return PI*PI*cos(PI*p[0])*cos(PI*p[1]); }
31 double u0 py2(const double *p){ return −PI*PI*u0(p); }
32 double uT(const double *p){ return exp(−C*T)*u0(p); }
33

34 double a11 (const double *p){ return p[0]*p[0]; }
35 double a12 (const double *p){ return p[0]*p[1]; }
36 double a21 (const double *p){ return p[0]*p[1]; }
37 double a22 (const double *p){ return p[1]*p[1]; }
38 double a11 px(const double *p){ return 2*p[0]; }
39 double a12 px(const double *p){ return p[1]; }
40 double a21 py(const double *p){ return p[0]; }
41 double a22 py(const double *p){ return 2*p[1]; }
42

43 double f0(const double *p){ // consider exact solution u(x,y,t)=u0(x,y)exp(−Ct)
44 return −C*u0(p) − (a11 (p)*u0 px2(p)+(a12 (p)+a21 (p))*u0 pxpy(p)+a22 (p)*u0 py2(p)
45 + (a11 px(p)+a21 py(p))*u0 px(p) + (a12 px(p)+a22 py(p))*u0 py(p));
46 }
47

48 class Matrix : public StiffMatrix<DIM, double>
49 {
50 public:
51 Matrix(FEMSpace<double,DIM>& sp) :
52 StiffMatrix<DIM,double>(sp) {};
53 virtual ˜Matrix() {};
54 private:
55 double ts;
56 public:
57 virtual void getElementMatrix(const Element<double,DIM>& element0,
58 const Element<double,DIM>& element1,
59 const ActiveElementPairIterator<DIM>::State state);
60 void setTimeStep(double timeStep){ ts = timeStep; }
61 };
62

63 void Matrix::getElementMatrix(const Element<double,DIM>& element0,
64 const Element<double,DIM>& element1,
65 const ActiveElementPairIterator<DIM>::State state)
66 {
67 int n element dof0 = elementDof0().size();
68 int n element dof1 = elementDof1().size();
69 double volume = element0.templateElement().volume();
70 const QuadratureInfo<DIM>& quad info = element0.findQuadratureInfo(algebricAccuracy());
71 std::vector<double> jacobian = element0.local to global jacobian(quad info.quadraturePoint());
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72 int n quadrature point = quad info.n quadraturePoint();
73 std::vector<AFEPack::Point<DIM> > q point = element0.local to global(quad info.quadraturePoint());
74 std::vector<std::vector<double> > basis value = element0.basis function value(q point);
75 std::vector<std::vector<std::vector<double> > > basis gradient = element0.basis function gradient(

q point);
76 for (int l = 0;l < n quadrature point;l ++) {
77 double Jxw = quad info.weight(l)*jacobian[l]*volume;
78 AFEPack::Point<DIM> q point = element0.local to global(quad info.quadraturePoint(l));
79 double a11 = a11 (q point), a12 = a12 (q point), a21 = a21 (q point), a22 = a22 (q point);
80 for (int j = 0;j < n element dof0;j ++){
81 for (int k = 0;k < n element dof1;k ++){
82 elementMatrix(j,k) += Jxw*((a11 * basis gradient[j][l][0] * basis gradient[k][l][0]
83 + a12 * basis gradient[j][l][0] * basis gradient[k][l][1]
84 + a21 * basis gradient[j][l][1] * basis gradient[k][l][0]
85 + a22 * basis gradient[j][l][1] * basis gradient[k][l][1]) * ts
86 // the above corresponds to term \nabla(A \nabla u)
87 + basis value[j][l] * basis value[k][l]); // corresponds to term from time

discretization
88 }
89 }
90 }
91 };
92

93 int main(int argc, char * argv[])
94 {
95 // read mesh info
96 EasyMesh mesh;
97 mesh.readData(”D”);
98

99 // construct template element
100 TemplateGeometry<DIM> triangle template geometry;
101 triangle template geometry.readData(”triangle.tmp geo”);
102 CoordTransform<DIM,DIM> triangle coord transform;
103 triangle coord transform.readData(”triangle.crd trs”);
104 TemplateDOF<DIM> triangle template dof(triangle template geometry);
105 triangle template dof.readData(”triangle.1.tmp dof”);
106 BasisFunctionAdmin<double,DIM,DIM> triangle basis function(triangle template dof);
107 triangle basis function.readData(”triangle.1.bas fun”);
108 std::vector<TemplateElement<double,DIM,DIM> > template element(1);
109 template element[0].reinit(triangle template geometry,
110 triangle template dof,
111 triangle coord transform,
112 triangle basis function);
113

114 // build FEM space
115 FEMSpace<double,DIM> fem space(mesh, template element);
116 int n element = mesh.n geometry(DIM);
117 fem space.element().resize(n element);
118 for (int i = 0;i < n element;i ++) fem space.element(i).reinit(fem space,i,0);
119 fem space.buildElement();
120 fem space.buildDof();
121 fem space.buildDofBoundaryMark();
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122

123 // assign matrix for linear system
124 MassMatrix<DIM,double> mass matrix(fem space);
125 mass matrix.algebricAccuracy() = 6;
126 mass matrix.build();
127 Matrix sp matrix(fem space);
128 double dt = T / N Ite;
129 sp matrix.setTimeStep(dt);
130 sp matrix.algebricAccuracy() = 6;
131 sp matrix.build();
132

133 // prepare boundary info
134 BoundaryFunction<double,DIM> boundary(BoundaryConditionInfo::DIRICHLET, 1, &u0);
135 BoundaryConditionAdmin<double,DIM> boundary admin(fem space);
136 boundary admin.add(boundary);
137

138 // attain initial value by interpolation
139 FEMFunction<double,DIM> solution(fem space);
140 Operator::L2Interpolate(&u0, solution);
141 double error0 = Functional::L2Error(solution, FunctionFunction<double>(&u0),6);
142 std::cout << ”L2 error of uh when t = 0: ” << error0 << std::endl;
143

144 // time evolution
145 Vector<double> rhs0(fem space.n dof());
146 AMGSolver solver;
147 Operator::L2Discretize(&f0, fem space, rhs0, 6);
148 for (int i = 1;i <= N Ite;i ++){
149 Vector<double> right hand side(rhs0), tmp(fem space.n dof());
150 // contribution from right hand side of equation
151 double t = (i) * dt;
152 right hand side *= exp(−C*t) * dt;
153 // contribution from last step
154 mass matrix.vmult(tmp, (dealii::Vector<double>) solution);
155 right hand side.add(1.0, tmp);
156 // solve linear system
157 boundary admin.apply(sp matrix, solution, right hand side);
158 if (i == 1) solver.reinit(sp matrix);
159 solver.solve(solution, right hand side);
160 }
161

162 // output visualization result and error
163 solution.writeOpenDXData(”u.dx”);
164 double error = Functional::L2Error(solution, FunctionFunction<double>(&uT), 6);
165 std::cout << ”L2 error of uh when t = T: ” << error << std::endl;
166

167 return 0;
168 };

Listing 11: A sample code for solving the Diffusion equation by AFEPack.
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