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Abstract. Many interesting physical problems described by systems of hyperbolic
conservation laws are stiff, and thus impose a very small time-step because of the
restrictive CFL stability condition. In this case, one can exploit the superior stability
properties of implicit time integration which allows to choose the time-step only from
accuracy requirements, and thus avoid the use of small time-steps. We discuss an ef-
ficient framework to devise high order implicit schemes for stiff hyperbolic systems
without tailoring it to a specific problem. The nonlinearity of high order schemes, due
to space- and time-limiting procedures which control nonphysical oscillations, makes
the implicit time integration difficult, e.g. because the discrete system is nonlinear also
on linear problems. This nonlinearity of the scheme is circumvented as proposed in
(Puppo et al., Comm. Appl. Math. & Comput., 2023) for scalar conservation laws,
where a first order implicit predictor is computed to freeze the nonlinear coefficients of
the essentially non-oscillatory space reconstruction, and also to assist limiting in time.
In addition, we propose a novel conservative flux-centered a-posteriori time-limiting
procedure using numerical entropy indicators to detect troubled cells. The numerical
tests involve classical and artificially devised stiff problems using the Euler’s system
of gas-dynamics.

AMS subject classifications: 65M08, 65M20, 35L65, 65L04
Key words: Implicit methods, essentially non-oscillatory schemes, finite volumes, hyperbolic
systems, entropy indicators.

1 Introduction

Mathematical models for the description of fluids, plasmas, and many other physical
phenomena, are typically given in terms of systems of hyperbolic conservation laws.
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These systems are characterized by a set of multi-dimensional partial differential equa-
tions (PDEs) that express the conservation of various physical quantities in terms of their
respective fluxes. A prototypical example is provided by the Euler’s equations for gas-
dynamics describing the conservation of mass, momentum, and energy of a gas.

In this work we focus on one-dimensional systems of m≥1 hyperbolic conservation
laws:

∂

∂t
u(x,t)+

∂

∂x
f(u(x,t))=0, (1.1)

where, u : R×R+
0 →Rm is the quantity of interest, and f : Rm →Rm is the vector of the

flux functions. System (1.1) is hyperbolic when the eigenvalues {λj(u(x,t))}m
j=1 of the

associated Jacobian matrix are real and determine a complete set of eigenvectors. The
eigenvalues of (1.1) provide the characteristic velocities, which describe the propagation
speed of waves in the system. These waves can be either acoustic waves (shocks and
rarefactions) or material waves (contact discontinuities). Requiring that the eigenvalues
are real implies that the propagation speed of information through the system is finite.

Solving hyperbolic systems of conservation laws is a challenging task, both analyt-
ically and numerically, e.g. due to the occurrence of singularities or the need of devis-
ing high order accurate non-oscillatory methods to avoid low-resolution approximations.
Another source of numerical difficulty is represented by stiff problems that occur when
the system is characterized by speeds spanning different orders of magnitude, namely

when maxj=1,···,m |λj(u)|
minj=1,···,m |λj(u)| ≫ 1. This happens, for instance, in gas-dynamics when the fluid

speed is much less than the speed of the acoustic waves. In many applications the phe-
nomenon of interest travels with a low speed. An example is provided by low-Mach
number problems occurring when the equations governing the flow become stiff due
to the very low fluid velocity compared to the speed of sound in the fluid. In these
situations, the compressibility effects of the fluid can be neglected, and the fluid is al-
most incompressible. Then, if the interest is on the movement of the fluid, accuracy in
the propagation of sound waves becomes irrelevant. For low-Mach problems we refer
to [1, 11, 21–23, 49].

Numerical schemes used to solve hyperbolic problems need to be carefully designed
to handle the stiff regime. In fact, it is well-known that explicit schemes are subject to
the Courant-Friedrichs-Levy (CFL) stability condition that specifies a constraint on the
numerical speed in relation to the maximum speed of information propagating in the
system. More precisely, let ∆t and h be the time-step and the mesh width of a numeri-
cal scheme, respectively. We define the numerical speed as sn = h/∆t which approximates
the speed with which the numerical data propagate in the discretized system. Then, the
CFL condition imposes that sn must be faster than the maximum speed of propagation to
ensure that information does not travel too far between adjacent space cells during one
time-step. For this reason, the stability request on the time-step of explicit schemes be-
comes very restrictive for stiff problems due to the presence of fast waves, thus limiting
the computational efficiency of the scheme. In contrast, implicit schemes can have supe-
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rior stability properties. Therefore, they can be less constrained by the CFL condition and
can be employed with a time-step focusing on the phenomenon of interest, for instance,
on the fluid speed, thus potentially allowing for larger time-step sizes. In addition, since
the accuracy of a scheme depends on the difference between the numerical and the actual
speed, it turns out that implicit schemes reduce accuracy on the (fast) acoustic waves, still
resulting highly accurate on the (slow) material waves. However, implicit methods are
computationally more expensive than explicit ones since they require the solution of a
system of equations, in general nonlinear, at each time-step. Therefore, the choice be-
tween explicit and implicit schemes depends on the specific problem being solved and
the desired trade-off between computational efficiency and accuracy.

Here, we deal with an efficient formulation of implicit high order finite volume
schemes [37]. In first order implicit schemes the only source of nonlinearity is due to the
nonlinear flux function, namely to the physical structure of the model, which is therefore
unavoidable; however they produce large dissipation errors. High order accurate im-
plicit schemes require, as much as their explicit counterparts, nonlinear space-limiting
procedures to prevent spurious oscillations (see e.g. [43] for a discussion of the TVD
property of implicit schemes). Such space-limiting procedures introduce an additional
source of nonlinearity which becomes computationally challenging when using implicit
schemes. The novel idea of [43] was to simplify considerably the implicit high order
scheme by using a first order predictor to freeze the non-linearities of the space-limiting
procedure. The implicit approach proposed in [43], named Quinpi, was tailored to the
third order implicit approximation of scalar conservation laws. More specifically, third
order accuracy was achieved by using a third order Diagonally Implicit Runge-Kutta
(DIRK) for the time integration and a third order Central Weighted Essentially Non-
Oscillatory (CWENO) reconstruction, cf. [19], for the space discretization. The first order
implicit scheme was based on a composite backward Euler, evaluated at the abscissae
of the DIRK, naturally combined with a piecewise constant (i.e. linear in the data) re-
construction in space. This predictor was used to freeze the nonlinear weights of the
CWENO reconstruction making the resulting third order implicit scheme nonlinear just
because of the nonlinearity of the flux function.

As noted in [4, 43], the appearance of spurious oscillations can be observed in im-
plicit integration, especially for large Courant numbers, despite space-limiting being per-
formed. A time-limiting procedure is required in order to control the oscillations arising
in the implicit time integration, i.e. when the large time-step size allows for propagation
of waves crossing several adjacent space cells during a single time-step. In this con-
text, “time-limiting” refers to the practice of downgrading the order of the solution on
irregular cells, thereby mitigating spurious oscillations associated with the use of large
time-steps. The problem of the time-limiting has been discussed in several papers, which
typically deal with limiting in space and time simultaneously. For instance, we men-
tion [24, 25] for second-order schemes and [4] for a fully nonlinear third order implicit
scheme. In [43], instead, the time-limiting was obtained as a cell-centered a-posteriori
nonlinear blending of the first order and third order solutions. Troubled cells were de-
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tected using a combination of space and time regularity indicators, in a WENO-like fash-
ion. However, being cell-centered, the technique in [43] has the drawback of being non-
conservative, and, thus, it requires a conservative correction. Conservative flux-centered
time-limiting procedures, inspired by the Multi-dimensional Optimal Order Detection
(MOOD) method introduced in [13, 14], were proposed in [26, 50] for the control of non-
physical oscillations of high order implicit numerical solutions. MOOD was originally
developed in order to reduce the order of the space reconstruction on problematic cells
with the help of several problem-dependent detectors to check whether extrema of the
numerical solution are smooth, physical or spurious oscillations. MOOD was also ex-
tended to other contexts, as for instance in [39, 45, 51].

The contribution of the present work is twofold:

1. We extend the Quinpi framework proposed in [43] to the case of the numerical ap-
proximation of general stiff hyperbolic systems when the interest is on the move-
ment of the fluid. This implicit approach is not tailored to the solution of a spe-
cific stiff problem, as it usually happens when devising numerical schemes for low-
Mach problems. Moreover, the space-limiting exploits the novel CWENO recon-
struction [46] which does not make use of ghost cells for boundary reconstructions;

2. We introduce a flux-centered conservative time-limiting procedure inspired by the
MOOD technique, namely we replace the high order numerical fluxes at the cell
interfaces of troubled cells with low order numerical fluxes. A crucial point is the
choice of the troubled cells indicator; here we investigate the use of the numeri-
cal entropy production error [40, 41] as indicator that signals non-smooth solutions
instead of the typical MOOD detectors of oscillatory cells.

Finally, we mention the following approaches to the implicit integration of hyperbolic
systems developed in the literature. A fifth order implicit WENO scheme was proposed
in [32], where a predictor-corrector technique was also used. However, the predictor was
based on an explicit first order scheme and therefore it allows to deal with small Courant
numbers only. A fully nonlinear implicit scheme, based on a third order RADAU time
integrator and a third order WENO reconstruction, can be found in [4]. Fully implicit,
semi-implicit, implicit-explicit, local time-stepping and active flux treatments of stiff hy-
perbolic equations were also investigated, e.g., in [5, 7, 10, 15–18, 27, 28].

The paper is organized as follows. In Section 2 we introduce the fully implicit third
order scheme of system (1.1) which uses the CWENO reconstruction of [46] for the space
approximation and a DIRK method for the time integration. Then, in Section 3, we de-
vise the Quinpi framework, which allows to overcome the nonlinearity of CWENO by
freezing the nonlinear weights with a first order composite backward Euler approxima-
tion of the solution. The limiting in time is discussed, which employs a flux-centered
MOOD technique combined with the numerical entropy production error as detector of
troubling cells. Numerical experiments are provided in Section 4. Precisely, Section 4.1
and Section 4.2 are focused on the Euler’s equations for gas-dynamics, where we inves-
tigate the experimental order of convergence of the Quinpi scheme and its performance
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on stiff and low-Mach problems. Section 4.3 is devoted to the comparison of the novel
time-limiting procedure presented in this work, the cell-centered one of [43] and the flux-
centered of [50]. Finally, we discuss results and perspectives in Section 5.

2 Third order space-time fully implicit discretization

We consider a finite volume approximation of (1.1) through the method of lines (MOL)
on the compact computational domain Ω= [a,b]⊂R. To this end, we discretize Ω with
N uniform cells Ωj =[xj−h/2,xj+h/2] of amplitude h>0, such that ∪N

j=1Ωj =Ω and xj =

a+(j−1/2)h are the cell centers. For the sake of simplicity, we will describe the scheme for
a uniform grid, but it is easy to generalize the scheme to a non uniform mesh. Defining
the cell averages of the exact solution on a given space cell Ωj as

uj(t)=
1
h

∫

Ωj

u(x,t)dx, t≥0

the MOL provides the following semi-discrete form of system (1.1):

duj(t)
dt

=−1
h

[
f
(

uj+ 1
2
(t)
)
−f
(

uj− 1
2
(t)
)]

, j=1,··· ,N, t≥0, (2.1)

where uj±1/2(t) = u
(
xj±h/2,t

)
. System (2.1) describes the conservation of the cell aver-

ages as the difference of the right and left fluxes at the cell boundaries. Up to now, no
numerical approximation of the exact solution has been introduced. In fact, (2.1) is still
exact.

In order to transform the MOL in a numerical scheme, first one has to transform
the exact system (2.1) in a closed system for the cell averages and, afterwards, one can
introduce a time discretization of the resulting coupled ODE system which evolves in
time the cell averages. Consequently, there is the problem of the knowledge of point
values of the solution at the cell interfaces for the evaluation of the flux function. The
extrapolation of these values from the cell averages is the so-called reconstruction problem.
WENO and CWENO schemes, see e.g. [19,33,38,48], and their developments [2,6,12,47],
are examples of numerical procedures computing point values as function of the cell
averages. The advantage of WENO and CWENO schemes is that they achieve high order
approximations of the reconstructions, but they pay the price of enlarging the stencil,
compared to low order schemes, and of being highly nonlinear, which is a computational
bottleneck in implicit time integration.

In the following, before dealing with the time integration of (2.1), we recall the space
reconstruction based on a recently developed CWENO scheme [46].

2.1 Space reconstruction: Third order CWENOZ without ghost cells

In reconstruction procedures, the goal is to provide a space limited approximation of the
exact solution u(·,t), at a given time t≥0, using the knowledge of its cell averages. Since
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the reconstruction is typically applied component-wise, we will describe the procedure
on a component u of the vector solution u in one-dimension.

A CWENO type reconstruction defines an approximation of u(·,t) as

u(x,t)≈
N

∑
j=1

Rj(x;t)χΩj(x), t≥0,

where χΩj is the characteristic function of the cell Ωj, and Rj(x;t) is the space recon-
struction polynomial for x∈Ωj, which depends on time through the time-dependent cell
averages. Indeed, here the time variable t is treated as a parameter meaning that the
space reconstruction polynomial is computed at a fixed time. If the desired reconstruc-
tion point, say x̂, lies within the cell Ωj, then the evaluation of the polynomial Rj(x̂;t)
provides the needed point values of u(x̂,t). The CWENO type procedure differs from the
classical WENO scheme by the fact that each polynomial Rj(x;t) is globally defined in its
reference cell Ωj and, therefore, it can be pre-computed and later evaluated at the needed
locations.

We focus on third order space reconstructions. Then, the CWENO scheme with Z-
type nonlinear weights [12, 20] defines the polynomial Rj(x;t) for x∈Ωj as follows.

Definition 2.1 (Third order CWENOZ reconstruction, see [20]). Let Popt ∈P2 be the op-
timal polynomial of degree 2, which interpolates all the data in the three-cell stencil
Sopt = {Ωj−1,Ωj,Ωj+1}. Further, let PL,PR ∈ P1 be polynomials of degree 1 such that
PL interpolates the cell averages of the left-biased sub-stencil SL = {Ωj−1,Ωj}, and PR
interpolates the cell averages of the right-biased sub-stencil SR = {Ωj,Ωj+1}. Let also
{d0,dL,dR} be a set of strictly positive real coefficients such that ∑k=0,L,R dk =1.

The CWENOZ procedure computes the reconstruction polynomial on Ωj as

RCWZ
j (x;t)=

ω0

d0

(
Popt(x;t)− ∑

k=L,R
dkPk(x;t)

)
+ ∑

k=L,R
ωkPk(x;t)∈P2, (2.2)

where ω0, ωL and ωR are the (nonlinear) coefficients defined as

αk =dk

(
1+
(

τ

Ik+ϵ

)p)
, ωk =

αk

∑i=L,0,R αi
, k=0,L,R. (2.3)

In (2.3), I0, IL and IR are the regularity indicators of the associated polynomials PL, Popt

and PR, respectively, computed as the Jiang-Shu indicators from [33]:

I[Pk] :=
deg(Pk)

∑
i=1

h2i−1
∫

Ωj

(
di

dxi Pk(x;t)
)2

dx, k=0,L,R. (2.4)

Finally, ϵ=hq, q≥1, p≥1 and τ is the following global smoothness indicator

τ := |2I0− IL− IR|. (2.5)
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The CWENOZ reconstruction polynomial switches between the high accurate poly-
nomial Popt, when the cell averages in the stencil Sopt are a sampling of a smooth enough
function, and a nonlinear blending of Popt and of the lower degree polynomials PL,PR
when a discontinuity is present in the stencil Sopt.

The use of the Z-type weights (2.3) allows to have better accuracy on smooth data
compared to classical weights [19, 38, 48], especially on coarse grids, without sacrificing
the non-oscillatory properties. This is obtained by using the optimal choice (2.5) of the
global smoothness indicator that makes τ much smaller than the regularity indicators
when the data in Sopt are smooth enough. In [20], it is proven that the accuracy of the
CWENOZ reconstruction on smooth flows is the optimal one, provided that deg(Popt)≤
2deg(Pk), for k=L,R.

Close to boundaries, the central stencil Sopt may not be defined, because it would
not be fully contained in Ω. In this case, one can consider for Popt a 3-cell stencil en-
tirely biased towards the domain interior, but the need of controlling spurious oscilla-
tions requires the inclusion of a polynomial P̃ ∈P0, defined on the cells which contain
the endpoints of the physical domain. Indeed, assume that the 3-cell stencil is given by
{Ω1,Ω2,Ω3}, then P̃ allows to select the smooth part of the stencil when a discontinuity
is present either in Ω2 or Ω3. Optimal accuracy can still be achieved provided that the
corresponding linear weight is infinitesimal of order O(hr), for some r>0. This approach
was introduced for CWENOZ type reconstructions in [47], where a thorough study of
sufficient conditions on r, and on the other parameters of the scheme, to achieve optimal
accuracy has been performed, and exploited for reconstructions free of ghost cells in [46].
In the following definition, we recall a particular third order CWENOZ Adaptive Or-
der reconstruction which will be used to define the boundary reconstruction. Again, we
consider the one-dimensional case. For two-dimensional reconstructions we refer to [46].

Definition 2.2 (Third order CWENOZ reconstruction without ghost cells, see [46]). Let
Rj(x;t) be the reconstruction polynomial related to the cell Ωj. Then,

Rj(x;t)=





RCWZ
j (x;t), j=2,··· ,N−1,

RAO
j (x;t), j=1 with Sopt={Ω1,Ω2,Ω3},

RAO
j (x;t), j=N with Sopt={ΩN−2,ΩN−1,ΩN},

(2.6)

where τj =τ in (2.5), for j=2,··· ,N−1, and τ1=τ2, τN =τN−1.

The reconstruction in the first and last computational cells appearing in (2.6) are de-
fined exploting the results in [47], which we report here for completeness in the third
order case.

Definition 2.3 (Third order CWENO-AO reconstruction, see [47]). Let Popt∈P2 be the op-
timal polynomial of degree 2 which interpolates all the given data in the three-cell stencil
Sopt such that Ωj∈Sopt. Let P∈P1 be the polynomial of degree 1 such that P interpolates
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the cell averages of a two-cell sub-stencil S such that Ωj ∈S ⊂Sopt. Further, let P̃∈P0

be the constant polynomial associated to the sub-stencil S̃={Ωj}, namely P̃(x;t)= ūj for
x∈Ωj. Let also {d0,d,d̃} be a set of strictly positive real coefficients such that d0+d+d̃=1
and d̃=hr for some r>0.

The CWENOZ-AO reconstruction polynomial on Ωj is

RAO
j (x;t)=

ω0

d0

(
Popt(x;t)−dP(x;t)− d̃P̃(t)

)
+ωP(x;t)+ω̃P̃(t)∈P2, (2.7)

where ω0, ω and ω̃ are the (nonlinear) Z-type coefficients, see (2.3), associated to the
regularity indicators I0, I and Ĩ, respectively for the polynomials Popt, P and P̃, see (2.4).

Since Ĩ=0, the global smoothness indicator τ in this case can be chosen as

τ := |I− I0|, (2.8)

The analysis in [47] shows that the reconstruction of Definition 2.2 achieves third
order of accuracy for r=1,2, provided that the exponent p in (2.3) is p≥1 and that ϵ=hq

for q=1,2,3.
The reconstruction polynomial Rj(x;t) given in (2.6) provides the approximation for

each component uj of uj for x∈Ωj. Thus, one can estimate the values u
(
xj±h/2,t

)
, t≥0,

with

u−
j+ 1

2
(t)=Rj

(
xj+

h
2

;t
)

and u+
j+ 1

2
(t)=Rj+1

(
xj+

h
2

;t
)

, j=1,··· ,N−1, (2.9a)

u−
1
2
(t)=u−

out and u+
1
2
(t)=R1(a;t), (2.9b)

u−
N+ 1

2
(t)=RN (b;t) and u+

N+ 1
2
(t)=u+

out, (2.9c)

which are named boundary extrapolated data (BED). The outer values u∓
out are determined

by the boundary conditions. For instance, for periodic boundary conditions the outer
values u∓

out are set to the inner reconstructions at the last and first interfaces, respectively.
Instead, for free-flow boundary conditions, the outer values u∓

out are set to the inner re-
constructions at the first and last interfaces, respectively, namely imposing zero jumps at
the boundaries of the physical domain.

Notice that at each interface the two BED in (2.9) are different, although computed
at the same interface xj+h/2. Therefore, in order to approximate the flux function at the
interfaces, one introduces a consistent and monotone numerical flux function

(v,w)∈Rm×Rm 7→F (v,w)∈Rm, (2.10a)

such that
f
(

u(xj+ 1
2
,t)
)
≈F

(
u−

j+ 1
2
(t),u+

j+ 1
2
(t)
)
∈Rm. (2.10b)

The function F may be any approximate or exact Riemann solver, which is applied
component-wise on vector-valued inputs. Finally, the exact system of ODEs (2.1) is re-
duced to a finite system of ODEs for the evolution of the cell averages. The right hand
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side is completely defined by the space reconstruction along with the numerical flux, and
one obtains

dUj(t)
dt

=−1
h

[
Fj+ 1

2
(t)−Fj− 1

2
(t)
]

, (2.11)

which provides the approximation Uj(t) of the cell averages uj(t) of the solution u(x,t),
x∈Ωj, and where

Fj+ 1
2
(t)=F

(
U−

j+ 1
2
(t),U+

j+ 1
2
(t)
)
∈Rm, (2.12)

with U∓
j+1/2

(t) BED of the data U(t)=
[
U1(t),··· ,UN(t)

]T according to (2.9).

2.2 Time integration: Third order Diagonally Implicit Runge-Kutta

In order to employ a timestep ∆t which is not constrained by the CFL stability condition,
we solve numerically equation (2.11) with a Diagonally Implicit Runge-Kutta (DIRK)
scheme with s stages and general Butcher tableau

c1 a11 0 ··· 0

c2 a21 a22 ··· 0

...
...

...
. . .

cs as1 as2 ··· ass

b1 b2 ··· bs

(2.13)

A typical assumption is that ck =∑s
i=1 aki, k= 1,··· ,s, and one has ∑s

k=1 bk = 1 for consis-
tency. Further, choosing a scheme in which akk is independent of k, the construction of
the Jacobian in the nonlinear solvers is simplified. Clearly, one uses a Butcher tableau
with order matching the order of the space reconstruction, in this case a third order accu-
rate scheme. Therefore, DIRK schemes with number of stages s≥2 must be considered,
e.g. see [3].

The space-time discretization leads to the fully-discrete scheme

U(k)
j =Un

j −
∆t
h

k

∑
i=1

aki

[
F (i)

j+ 1
2
−F (i)

j− 1
2

]
, k=1,··· ,s, (2.14a)

Un+1
j =Un

j −
∆t
h

s

∑
k=1

bk

[
F (k)

j+ 1
2
−F (k)

j− 1
2

]
, n≥0, (2.14b)

F (k)
j+ 1

2
=F

(
U−,(k)

j+ 1
2

,U+,(k)
j+ 1

2

)
∈Rm (2.14c)

for each j = 1,··· ,N, where ∆t is the time-step, Un
j ≈ uj(n∆t), and U∓,(k)

j+1/2
are the BED

of the stage values U
(k)

=
[
U(k)

1 ,··· ,U(k)
N
]T, approximations of the solution at times t(k)=
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(n+ck)∆t, according to (2.9). Here and in the following, the notation suggests the use of
a uniform time-step ∆t. Nevertheless, the scheme can be formulated for a non-uniform
time-step, but we prefer not to burden the notation.

The advantage of DIRK schemes is that the implicit computation of a given stage
value (2.14a) can be performed sequentially from k= 1 to k= s. Therefore, at each time-
step one has to solve s systems of nonlinear equations of size mN by mN:

G
(
U
(k)
)

:=U
(k)

+
akk∆t

h
∆F(k)−U

n
+

∆t
h

k−1

∑
i=1

aki∆F(i)=0, (2.15)

where ∆F(k)∈RmN whose j-th block is ∆F
(k)
j =

(
F (k)

j+1/2
−F (k)

j−1/2

)
∈Rm, for j=1,··· ,N. Above

we have highlighted the term ∆F(k), which makes the system for the k-th stage value
nonlinear. In fact, the other flux differences ∆F(i), i = 1,··· ,k−1, are already available,
thanks to the structure of DIRK schemes.

As already noticed in [43], G has two sources of nonlinearity. One is unavoidable
because it is due to the physics when the phenomenon under study is described by the
nonlinear flux function f in (1.1). The second, instead, is introduced by the high order
space reconstruction procedure, needed for the computation of the BED, which is highly
nonlinear because of the nonlinear weights (2.3) and of the regularity indicators (2.4).
Therefore, even for linear PDEs, a standard implicit scheme requires a nonlinear solver

to find the solution of G(U
(k)
) = 0, in equation (2.15) for k= 1,··· ,s. Typically, one uses

Newton-Raphson’s method, which requires assembling the Jacobian of the nonlinear sys-
tem G, resulting in a high computational cost. In fact, the Jacobian required for the New-
ton iterations has bandwidth one point larger than the stencil size in each direction, so for
a third order scheme it is a block-pentadiagonal matrix with m×m blocks, with entries
depending on the nonlinear weights and on the regularity indicators, which have very
complicated expressions.

The Quinpi approach, introduced in [43] for scalar conservation laws, provides a way
to circumvent the nonlinearity determined by the high order reconstruction procedure.
In the following section, we extend the Quinpi idea to the hyperbolic system (1.1).

3 Third order Quinpi scheme for one-dimensional hyperbolic
systems

The name Quinpi stands for implicit CWENO and it is based on a predictor-corrector
approach to avoid the nonlinearity of the high order scheme, introduced by the space
reconstruction, and keep the nonlinearity of the flux function f only.

The Quinpi idea relies on the following considerations on the structure of most
essentially-non-oscillatory reconstructions. Since reconstructions are typically applied
component-wise, we use the notation for scalar conservation laws in this section.
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Let Sp={Ωj−p,··· ,Ωj+p} be a stencil of 2p+1 computational cells, and P∈P2p be the
optimal interpolating polynomial of the cell averages in Sp. Then, the dependence of P
on the data is linear, i.e.

P(x;t)=
p

∑
α=−p

µj,α(x)uj+α(t).

Therefore, unrolling the linearity with respect to the data of all the interpolating poly-
nomials involved in the third order reconstruction procedure of Definition 2.2, one can
write the reconstruction polynomial as

Rj(x;t)= ∑
i=0,L,R

ωi
(
{uk(t)}k∈Sopt

)
Pi

j (x)

= ∑
i=0,L,R

ωi
(
{uk(t)}k∈Sopt

) 1

∑
α=−1

µi
j,α(x)uj+α+δj1−δjN (t)

=
1

∑
α=−1

Wj,α
(
x;{uk(t)}k∈Sopt

)
uj+α+δj1−δjN (t),

where we have collected the nonlinear weights in the quantities

Wj,α
(
x;{uk(t)}k∈Sopt

)
= ∑

i=0,L,R
ωi
(
{uk(t)}k∈Sopt

)
µi

j,α(x),

and δij denotes the Kronecker delta. For the first and the last cell, the range of summation
over α is adjusted according to the stencil of the reconstruction. Then, it is possible to
write the inner BED in (2.9) as

u−
j+ 1

2
(t)=Rj

(
xj+ 1

2
;t
)

=
1

∑
α=−1

Wj,α

(
xj+ 1

2
;{uk(t)}k∈Sopt

)
uj+α+δj1−δjN (t),

u+
j+ 1

2
(t)=Rj+1

(
xj+ 1

2
;t
)

=
1

∑
α=−1

Wj+1,α

(
xj+ 1

2
;{uk(t)}k∈Sopt

)
uj+1+α+δj1−δjN (t).

(3.1)

We have highlighted the dependence of Wj,α on the data {uk}k∈Sopt
, since this is highly

nonlinear because it contains the nonlinear weights.

Remark 3.1. For the third order reconstruction considered in this work, the quantities
Wj,α

(
x;{uk(t)}k∈Sopt

)
have the following expressions. For the left BED at x= xj+1/2, with

j=2,··· ,N−1:

Wj,−1=

(−1+3dL

6

)
ω0

d0
− 1

2
ωL, Wj,0=

(
5−9dL−3dR

6

)
ω0

d0
+

3
2

ωL+
1
2

ωR,

Wj,1=

(
2−3dR

6

)
ω0

d0
+

1
2

ωR.
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For the right BED at x= xj+1/2, with j=1,··· ,N−2:

Wj+1,−1=

(
2−3dL

6

)
ω0

d0
+

1
2

ωL, Wj+1,0=

(
5−3dL−9dR

6

)
ω0

d0
+

1
2

ωL+
3
2

ωR,

Wj+1,1=

(−1+3dR

6

)
ω0

d0
− 1

2
ωR.

The main idea of Quinpi is to exploit a predictor {u⋆
j (t)}N

j=1 of the solution {uj(t)}N
j=1

at time t and use it to pre-compute and freeze the nonlinear weights in (3.1), so that the
BED can be approximated as

u−
j+ 1

2
(t)≈ û−

j+ 1
2
(t) :=

1

∑
α=−1

Wj,α

(
xj+ 1

2
;{u⋆

k (t)}k∈Sopt

)
uj+α+δj1−δjN (t),

u+
j+ 1

2
(t)≈ û+

j+ 1
2
(t) :=

1

∑
α=−1

Wj+1,α

(
xj+ 1

2
;{u⋆

k (t)}k∈Sopt

)
uj+1+α+δj1−δjN (t).

(3.2)

In this way, the complete scheme would be linear with respect to the space reconstruction,
and nonlinear only through the flux function.

The proposal of a predictor to linearize an implicit high order scheme was first dis-
cussed in [31] for WENO reconstructions. There, the solution of a first order explicit
scheme is used as predictor in order to compute the nonlinear WENO weights. Instead,
in [4, 43] an implicit first order scheme was chosen as predictor. Although an implicit
predictor is more expensive than the explicit approach proposed in [31], it is stable and
non-oscillatory even for higher Courant numbers, thus allowing for reliable prediction of
the nonlinear weights.

In this work, we follow the approach in [43] and describe it for systems of conserva-
tion laws below. With respect to the above description, in the case of a system of m conser-
vation laws, one has a reconstruction polynomial Rj(x;t)∈(P2p)m computed component-
wise, m-vectors ωωωi of nonlinear coefficients in each cell computed component-wise, while
of course the linear coefficients µi

j,α are independent of the component being recon-
structed.

3.1 The space-time first order implicit prediction

Without loss of generality, assume that the nodes c1,··· ,cs of the DIRK method are or-
dered. Then, we approximate the system of ODEs (2.11) with an implicit first order
scheme at any time t(k) = (n+ck)∆t ∈ [n∆t,(n+1)∆t], where ∆t is the time-step of the
high order scheme (2.14). Specifically, the system is numerically approximated in space
using piecewise constant reconstructions and integrated in time using a composite back-

ward Euler method, providing the s approximations U⋆,(k)
=
[
U⋆,(k)

1 ,··· ,U⋆,(k)
N
]T, k=1,··· ,s.
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Therefore, for each j=1,··· ,N, U⋆,(k)
j ≈uj(t(k)) is given by

U⋆,(k)
j =U⋆,(k−1)

j − θk∆t
h

[
F ⋆,(k)

j+ 1
2
−F ⋆,(k)

j− 1
2

]
, k=1,··· ,s, (3.3a)

U⋆,n+1
j =Un

j −
∆t
h

s

∑
k=1

θk

[
F ⋆,(k)

j+ 1
2
−F ⋆,(k)

j− 1
2

]
, n≥0, (3.3b)

F ⋆,(k)
j+ 1

2
=F

(
U⋆,(k)

j ,U⋆,(k)
j+1

)
∈Rm, (3.3c)

where θk := ck−ck−1, with c0=0 and U⋆,(0)
j :=Un

j , and where the convention

U⋆,(k)
0 =u−

out, U⋆,(k)
N+1=u+

out,

is used. The outer values u∓
out are imposed by the chosen boundary conditions. For

instance, for periodic conditions one has

U⋆,(k)
0 =U⋆,(k)

N , U⋆,(k)
N+1=U⋆,(k)

1 , (3.4)

whereas for free-flow conditions one gets

U⋆,(k)
0 =U⋆,(k)

1 , U⋆,(k)
N+1=U⋆,(k)

N . (3.5)

For more general boundary conditions, one should project on characteristic variables,
providing the prescribed upwind conditions. Summarizing, the first order scheme (3.3)
is equivalent to applying a DIRK scheme with Butcher tableau given by

c1 θ1 0 ··· 0

c2 θ1 θ2 ··· 0

...
...

...
. . .

cs θ1 θ2 ··· θs

θ1 θ2 ··· θs

(3.6)

where the coefficients ci, i=1,··· ,s, are the same as the high order DIRK in (2.13).
Notice that the numerical flux function F in (3.3c) is now computed on piecewise

constant, unlimited, reconstructions from the cell averages. In fact, first order schemes do
not require space-limiting, because they are unconditionally Total Variation Diminishing,
see [43, Section 2]. Therefore, despite of the high order approximation (2.14), the first
order scheme (3.3) is characterized by a single nonlinearity, that is the one induced by
the flux function f. Computing (3.3a) requires the solution of s nonlinear systems of
dimension mN, which are fully linear with respect to the unknown cell averages:

G⋆(U
⋆,(k)

) :=U
⋆,(k)

+
θk∆t

h
∆F⋆,(k)−U

⋆,(k−1)
=0, (3.7)
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where ∆F⋆,(k)∈RmN whose j-th block is ∆F
⋆,(k)
j =

(
F ⋆,(k)

j+1/2
−F ⋆,(k)

j−1/2

)
∈Rm, for j=1,··· ,N.

The solution of (3.7) requires the use of a nonlinear solver s times within a single
time-step. In this work, we rely on Newton’s iterations

U
⋆,(k)
(ℓ+1)=U

⋆,(k)
(ℓ) −

(
I+

θk∆t
h

J⋆
(
U
⋆,(k)
(ℓ)

))−1

G⋆
(
U
⋆,(k)
(ℓ)

)
, ℓ≥0, (3.8)

with given initial guess U⋆,(k)
(0) =U

⋆,(k−1). Here, I∈RmN×mN is the identity matrix, whereas
J⋆ is the Jacobian matrix of the numerical flux difference ∆F⋆ which is organized in N×N
blocks of size m×m. Then, each block of the Jacobian is given by

(J⋆)ji =
∂∆F⋆

j

∂U⋆
i
∈Rm×m, j,i=1,··· ,N.

In particular, for a first order space approximation one has that the Jacobian is a tridiag-
onal block matrix of the form

∂∆F⋆
j

∂U⋆
i
=





−∂F
∂v

(
U⋆

i ,U⋆
i+1

)
, if i= j−1,

∂F
∂v

(
U⋆

i ,U⋆
i+1

)
− ∂F

∂w

(
U⋆

i−1,U⋆
i

)
, if i= j,

∂F
∂w

(
U⋆

i−1,U⋆
i

)
, if i= j+1,

for j=2,··· ,N−1, where ∂vF and ∂wF denote the Jacobian of the vector-valued numerical
flux function (2.10) with respect to its first and second variable, respectively.

3.2 The space-time third order implicit correction

Assume that the first order predictor is available at a time t(k) ∈ [n∆t,(n+1)∆t]. The

obtained approximation U
⋆,(k) is used to evaluate the nonlinear terms of the high order

BED as explained at the beginning of this section, see (3.2). Therefore, the third order
“correction” at time t(k) can be computed as in (2.14a) with

F (k)
j+ 1

2
=F

(
U−,(k)

j+ 1
2

,U+,(k)
j+ 1

2

)
≈F̂ (k)

j+ 1
2
=F

(
Û−,(k)

j+ 1
2

,Û+,(k)
j+ 1

2

)
, (3.9)

where Û∓,(k)
j+ 1

2
are the linearized BED, which are fully linear with respect to the unknown

cell averages at time t(k)= tn+ck∆t. Therefore, the nonlinear system

G
(
U
(k)
)

:=U
(k)

+
akk∆t

h
∆F̂(k)−U

(k−1)
=0, (3.10)
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obtained from (2.14a) and (3.9), can be tackled with Newton’s iterations

U
(k)
(ℓ+1)=U

(k)
(ℓ)−

(
I+

akk∆t
h

J
(
U
(k)
(ℓ)

))−1

G
(
U
(k)
(ℓ)

)
, ℓ≥0, (3.11)

with initial guess U(k)
(0) set to the predictor’s output. The matrix J∈RmN×mN is the Jacobian

of the system (3.10) and one has that each block (J)ji ∈Rm×m, j,i=1,··· ,N, can be written
as

(J)ji =
∂∆F̂j

∂Ui
=

∂F
∂v

(
Û−

j+ 1
2
,Û+

j+ 1
2

) ∂Û−
j+ 1

2

∂Ui
+

∂F
∂w

(
Û−

j+ 1
2
,Û+

j+ 1
2

) ∂Û+
j+ 1

2

∂Ui

− ∂F
∂v

(
Û−

j− 1
2
,Û+

j− 1
2

) ∂Û−
j− 1

2

∂Ui
− ∂F

∂w

(
Û−

j− 1
2
,Û+

j− 1
2

) ∂Û+
j− 1

2

∂Ui
,

where ∂vF and ∂wF contain the Jacobian of the flux function f, whereas ∂Ui
U∓

j±1/2
are

assembled with the frozen nonlinear weights, cf. (3.2). Observe that the width of the
band of the block-banded matrix that defines the Jacobian J is still as in the fully implicit
approach, because of the stencil of the space reconstructions, but the entries can now be
computed explicitly.

For nontrivial boundary conditions, the above expression for the Jacobian blocks has
to be modified according to the dependence of the external BED (U−

1/2 and U+
N+1/2) on the

interior data.
Finally, once all the stage values U(k), k=1,··· ,s, are computed, the third order solution

U
n+1 at time level (n+1)∆t is obtained as in (2.14b).

Remark 3.2 (Implicit reconstruction along characteristic variables.). The Quinpi frame-
work can be used also for reconstruction along characteristic variables. The linearity of
the scheme can be kept provided that the nonlinear transformation matrix from conser-
vative to characteristic variables is computed by the predictor scheme and stored at each
time-step t(k)= tn+ck∆t, k=1,··· ,s.

More precisely, let U denote the vector of conservative variables and let V denote the
vector of characteristic variables which are linked through the nonlinear transformation

V=T(U).

Then, the time advancement U(k−1)
j 7→U(k)

j on the cell Ωj, with reconstruction from cell
averages performed in characteristic variables, is obtained for k=2,··· ,s as follows.

First one can perform the time advancement of the predictor solution U⋆
j and store

the nonlinear transformation matrix:

{U⋆,(k−1)
j } advance7−−−−→{U⋆,(k)

j } store7−−→{T(k)
j },
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where T(k)
j is the map to characteristic variables on the state U⋆,(k)

j , i.e. the map whose

columns are the right eigenvectors of the flux Jacobian at U⋆,(k)
j .

Then, the high-order solution at time t(k) is obtained as

{U(k−1)
ℓ ,U⋆,(k)

ℓ }ℓ∈Sopt

T(k)
j , linear. BED

7−−−−−−−−→{V̂(k)
j± 1

2
}

(T(k)
j )−1

7−−−−→{Û(k)
j± 1

2
} advance7−−−−→{U(k)

j }.

3.2.1 On the accuracy of the reconstruction in the smooth case

In CWENO reconstructions optimal accuracy is obtained provided that the nonlinear
weights ωk are sufficiently close to the linear weights dk. More precisely, for the third
order CWENO scheme a sufficient condition to have optimal accuracy on smooth data is,
cf. [19],

dk−ωk =O(h), k=0,L,R.

Indeed, let RCWZ
j ∈P2 be the reconstruction polynomial, defined in (2.2), of a sufficiently

smooth function u. Then, the reconstruction error is

u(x,·)−RCWZ
j (x;·)=(u(x,·)−Popt(x;·))︸ ︷︷ ︸

O(h3)

+ ∑
k=L,R

(dk−ωk)(Pk(x;·)−u(x,·))︸ ︷︷ ︸
O(h2)

, x∈Ωj, (3.12)

when the polynomials Popt, PL and PR interpolate the exact cell averages of u. Therefore,
the optimal order of accuracy, in this case 3, is obtained on smooth data if

dk−ωk =O(h), k=0,L,R. (3.13)

We investigate numerically the convergence rate dk−ωk when the nonlinear weights are
computed on a low order approximation of the cell-averages of a smooth function u.
Thus, let us consider

u(x)=sin(πx)+sin(15πx)exp(−20x2), x∈ [−1,1].

We discretize the space domain by N cells with periodic boundary conditions. We take
the optimal weights d0 =0.75, dL = dR =0.125. Then, we compute the nonlinear weights
ω̂j,k, k= 0,L,R, based on a first order approximation of the cell averages of u in the j-th
cell, and the nonlinear weights ωj,k, k= 0,1,2, on a third order approximation of the cell
averages of u in the j-th cell. We study the behavior of the errors

êrr(N)=
1
N

N

∑
j=1

max
k=0,L,R

|dk−ω̂j,k|,

err(N)=
1
N

N

∑
j=1

max
k=0,L,R

|dk−ωj,k|,
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Table 1: Experimental convergence of the nonlinear to the linear weights.

N êrr rate err rate
20 3.58e−1 - 3.83e−1 -
40 2.56e−1 0.48 2.92e−1 0.39
80 2.43e−1 0.08 2.46e−1 0.25

160 1.57e−1 0.63 1.56e−1 0.65
320 7.23e−2 1.12 7.23e−2 1.11
640 3.96e−2 0.87 3.96e−2 0.87

1,280 1.76e−2 1.17 1.76e−2 1.17
2,560 5.59e−3 1.65 5.59e−3 1.65
5,120 1.37e−3 2.03 1.37e−3 2.03

under grid refinement. The results are given in Table 1 which shows that the suffi-
cient condition on the convergence rate of the nonlinear weights to the linear weights
to guarantee optimal accuracy is fulfilled in both cases. In Quinpi the accuracy condi-
tions in (3.12) are guaranteed since the Popt and Pk polynomials are computed on the
high order cell averages in the nonlinear solver, while the first order predictor is accurate
enough to guarantee condition (3.13) on the nonlinear weights.

3.3 Conservative a-posteriori time-limiting based on numerical entropy

The solution obtained with the predictor-corrector approach is third order accurate, and
has some control over spurious oscillations thanks to the limited CWENO space recon-
struction. However, when using a large ∆t, space limiting is not enough, and the high
order solution may still exhibit oscillations as already noticed in [4, 24, 43]. In such sit-
uations, limiting in time is also required. For this reason, the Quinpi scheme that we
propose in this paper employs a time-limiting procedure of the third order solution.

In [43] the time-limiting is performed in a WENO-like framework. In fact, nonlinear
weights are suitably defined in order to blend cell averages between the computed high
order solution and the low order predictor, which is reliable, stable and non-oscillatory.
However, the procedure in [43] does not preserve mass conservation property and must
be followed by a suitable conservative correction, analogously to [8] in adaptive mesh
refinement.

Extending the conservative correction of [43] to a generic system (1.1) is nontriv-
ial. Instead, conservation can be ensured avoiding a cell-centered blending by means
of flux-based Runge-Kutta, as, e.g., in [4, 35]. Similarly, a flux-centered conservative a-
posteriori time-limiting inspired by the MOOD technique [13,14] was investigated in [50].
MOOD was originally designed as an a-posteriori space-limiting technique for multi-
dimensional finite volume schemes. Instead, in [50], the typical MOOD detectors were
used to limit the high order solution at time level (n+1)∆t. However, contrary to the
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classical MOOD approach, in [50] the method uses a convex combination of the high or-
der and the low-order numerical fluxes at the interfaces of oscillatory cells. A similar idea
was also employed in [26] for a-posteriori limiting of fully implicit finite volume schemes
on transport networks.

In this paper we still rely on the MOOD technique, and the high order numerical
fluxes of oscillatory cells are dropped to the low-order numerical fluxes of the predictor.
The novelty here is that the detection of troubled cells is performed with the numerical
entropy production introduced in [40, 41], extended to balance laws in [42], and already
exploited in [44, 45] as a-posteriori error of adaptive schemes and indicator of the quali-
tative structure of the flow.

3.3.1 Indicators based on numerical entropy production

Assume that system (1.1) is endowed with an entropy-entropy flux pair, namely that
there exists a convex function u∈Rm 7→ η(u)∈R and a corresponding entropy flux u∈
Rm 7→ ψ(u) ∈ R such that ∇Tη(u)f′(u) =∇Tψ(u). Then, all entropy solutions of (1.1)
satisfy the entropy inequality

∂

∂t
η(u(x,t))+

∂

∂x
ψ(u(x,t))≤0, (3.14)

in the weak sense. It is well known that (3.14) is an equality on smooth flows. Instead, if
the solution has a singularity, the sign of (3.14) selects the unique physically admissible
weak solution of (1.1). For this reason, the novel idea of [40] was to consider the numeri-
cal residual of the entropy inequality as an a-posteriori error indicator for the numerical
solution of (1.1), since it is a scalar value (even in the case of systems of conservation laws)
which provides information on the size of the local truncation error and on the presence
of singularities. Recently, the numerical entropy residual has been employed also in the
context of stochastic Galerkin formulations of hyperbolic systems, see [29].

Following [41] we give the subsequent definition.

Definition 3.1. Let Un be the solution of (2.11) obtained using a s-stage Runge-Kutta
scheme of order p with weights {bi}s

i=1 and time-step ∆t. Then, the numerical entropy
production (Sp)n

j of the scheme in the control volume Vn
j =Ωj×[n∆t,(n+1)∆t] is given

by

(Sp)n
j =

1
∆t

[
Q
(

η
(

Un+1
))

j
−Q

(
η
(

Un
))

j
+

∆t
h

s

∑
i=1

bi

(
Ψ(i)

j+ 1
2
−Ψ(i)

j− 1
2

)]
, (3.15)

where
Ψ(i)

j+ 1
2
=Ψ

(
U−,(i)

j+ 1
2

,U+,(i)
j+ 1

2

)
,

is a numerical entropy flux function consistent with the exact entropy flux ψ of (3.14),

with (v,w) ∈ Rm×Rm → Ψ(v,w) ∈ R, and where U∓,(i)
j±1/2 are the BED of the numerical

solution. In (3.15), Q(·)j denotes a quadrature rule of order p to compute the cell average
on the cell Ωj.
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The rate of convergence of (3.15) is shown in [41]. In particular, for a general numeri-
cal scheme of order p one has

(Sp)n
j =





O(hp), if the solution is regular on Ωj,
O(h−1), if the solution has a shock on Ωj,
O(h), if Ωj exhibits a rarefaction corner,
O(1), if Ωj exhibits a contact wave.

In other words, (Sp)n
j → 0, as h → 0, with the same rate of the local truncation error of

the scheme on smooth flows. Whereas, the numerical entropy production increases in
magnitude on shocks.

For the first order predictor solution U
⋆, defined in Section 3.1, we can consider the

midpoint quadrature rule and observe that the cell average and the pointwise value at
the cell center are O(h2) apart, and thus set Q

(
η(Un

)
)

j =η
(
Un

j
)
, in (3.15). The numerical

entropy production becomes

(
S1
)n

j
=

1
∆t

[
η
(

U⋆,n+1
j

)
−η
(

U⋆,n
j

)
+

∆t
h

s

∑
i=1

θi

(
Ψ⋆,(i)

j+ 1
2
−Ψ⋆,(i)

j− 1
2

)]
, (3.16)

where
Ψ⋆,(i)

j+ 1
2
=Ψ

(
U⋆,(i)

j ,U⋆,(i)
j+1

)
.

Instead, for the third order solution U defined in Section 3.2, in this work we consider the
two-point Gauss-Legendre quadrature rule:

Q
(

η
(

Un
))

j
=

1
2

(
η

(
Un

j−
√

3
6

)
+η

(
Un

j+
√

3
6

))
,

where Un
j±

√
3/6

denote the reconstructions of the solution in xj±
√

3h/6. Observe that the
computation of the quadrature rule does not require significant additional computational
cost since the computation of Un

j±
√

3/6
involves just the evaluation of a CWENO recon-

struction polynomial, which is already available, because it is computed in order to ad-
vance the solution from n∆t to (n+1)∆t. Thus, for the third order solution, the numerical
entropy production becomes

(
S3)n

j =
1

∆t

[
1
2

(
η

(
Un+1

j−
√

3
6

)
+η

(
Un+1

j+
√

3
6

))
− 1

2

(
η

(
Un

j−
√

3
6

)
+η

(
Un

j+
√

3
6

))

+
∆t
h

s

∑
i=1

bi

(
Ψ(i)

j+ 1
2
−Ψ(i)

j− 1
2

)]
. (3.17)

At the discrete level,
(
S1)n

j and
(
S3)n

j provide a regularity indicator of the predictor and of
the corrector solution, respectively. Therefore, in order to determine where time-limiting
has to occur, we detect spurious oscillations using

(
S1)n

j and
(
S3)n

j in the following ways.
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I1: The indicator (3.17) of the third order scheme is used to detect troubled cells. We
expect that on smooth cells Ωj one has

(
S3)n

j =O(h3), whereas
(
S3)n

j =O(h−1) in
presence of shocks. In particular, a cell Ωj is marked for time-limiting if

(
S3)n

j >γ1, (3.18)

where γ1 is a given threshold.

I2: The ratio of the indicators (3.16) and (3.17) is used to detect problematic cell Ωj when-
ever (

S3)n
j

(S1)
n
j +σ

>γ2, (3.19)

where γ2 is a given threshold and σ is a small quantity which prevents (S3)
n

j/(S1)
n

j
∼

O(1) on constant regions of the solution. In fact, we expect that on a smooth cell Ωj

one has (S3)
n

j/(S1)
n

j
=O(h2), whereas (S3)

n

j/(S1)
n

j
=O(1) if the solution is not regular

on Ωj.

I3: Both the detecting techniques I1 and I2 are used, so that a cell Ωj is marked for
time-limiting if

(
S3)n

j >γ1 and

(
S3)n

j

(S1)
n
j +σ

>γ2. (3.20)

We will compare these strategies in the numerical section. For now let us remark
that I2 should be more robust than I1 since it involves ratios, but that it may fail
on flat regions where both S3 and S1 can be floating point zeros. Thus in I3 we
propose to combine the I1 and the I2 strategies. In fact, the I2 strategy may mark
flat regions as irregular cells, i.e. where a shock appears, if

(
S3)n

j =O(
(
S1)n

j ). Then,
the I1 strategy allows to detect the regularity of the solution.

The thresholds γ1 and γ2 are very important for the performance of the regularity
detection. We will come back to this point in Section 4 when we discuss the values we
choose for the two thresholds.

3.3.2 Time limited solution and the final Quinpi algorithm

Once the detector has been chosen, the flux-centered time-limiting is performed by com-
puting the limited numerical flux FTL,(k)

j+1/2
for the face between Ωj and Ωj+1, for all stages

k=1,··· ,s, as

FTL,(k)
j+ 1

2
=





θkF ⋆,(k)
j+ 1

2
, if either Ωj or Ωj+1 is marked,

bkF (k)
j+1/2

, if both Ωj and Ωj+1 are not marked,
(3.21)
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Solve (3.7) with (3.8) and

initial guess U
⋆,(1)

(0) = U
n

⇒
(
U
⋆,(1)

,∆F⋆,(1)
)

P
R
E
D

IC
T
O

R

Solve (3.10) with (3.11) and

initial guess U
(1)

(0) = U
⋆,(1)

⇒
(
U
(1)

,∆F(1)
)

C
O

R
R
E
C
T
O

R

...

Solve (3.7) with (3.8) and

initial guess U
⋆,(s)

(0) = U
⋆,(s−1)

⇒
(
U
⋆,(s)

,∆F⋆,(s)
)

P
R
E
D

IC
T
O

R

Solve (3.10) with (3.11) and

initial guess U
(s)

(0) = U
⋆,(s)

⇒
(
U
(s)

,∆F(s)
)

C
O

R
R
E
C
T
O

R

compute
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ited DIRK
update

U
n+1

with
(2.14b)–(3.9)

compute en-
tropy indica-
tors, replace
flux at nons-
mooth cell in-
terfaces with
low order ones,
update solution
with (3.22)

accept

U
n+1

as
solution
at time
tn+1

any
changed
flux?

yes no

U
n

DIRK scheme
time limiter

Figure 1: The algorithm of the Quinpi scheme for the computation of the solution in a single time-step. The
DIRK routine, which provides the high order solution with the space limiters computed by the predictor, is
followed by the time limiter which downgrades the numerical fluxes at the interface of an irregular cell.

where the acronym TL stands for Time-Limited. Notice that, since the predictor scheme is
based on a composite backward Euler, the low order numerical fluxes F ⋆,(k)

j±1/2
are available

at each stage k=1,··· ,s, for j=1,··· ,N.
Thus, the high order numerical fluxes at the interfaces of a problematic cell Ωj are

replaced with the low order numerical fluxes reducing locally the order of the solution,
which is then computed as

Un+1
j =Un

j −
∆t
h

s

∑
k=1

[
FTL,(k)

j+ 1
2

−FTL,(k)

j− 1
2

]
, j=1,··· ,N. (3.22)

The time-limiting procedure is repeated until the solution U
n+1 is detected as smooth on

each cell.
Overall, the update of the solution from time n∆t to time (n+1)∆t computed with the

Quinpi scheme is summarized in Fig. 1.
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4 Numerical simulations

All the schemes we consider in this section use the third order CWENOZ reconstruction
without ghost cells, see [46], described in Definition 2.2 and 2.3 with parameters q= p=2
in (2.3) and

{
dL =

1
8 , dR =

1
8 , for the inner computational cells,

d̃=max{h,0.01}, d= 1
4 , for the first/last computational cell.

For the purposes of this work, it is sufficient to consider the very simple Rusanov (local
Lax-Friedrichs) numerical flux

F (v,w)=
1
2
(f(v)+f(w)−α(w−v)). (4.1)

Here, α is the parameter of numerical viscosity. In explicit schemes one has to choose
α=max{∥f′(v)∥,∥f′(w)∥}, where ∥f′(·)∥ denotes the spectral radius of the Jacobian of the
flux function f. In implicit schemes this choice would deserve more attention, especially
if the fluid speed is much lower than the sound speed and if one is not interested in
the acoustic waves. In this case one can use more appropriate speed estimates in the
approximate Riemann solver as explained, e.g., in [21]. We will present our choice for
each test problem. In any case, when assembling the Jacobian of G of (3.7) for the Newton
step (3.8), we neglect the terms ∂vα and ∂wα in the derivative of F and approximate it as

∂vF (v,w)≈ 1
2 Jf(v)+ 1

2 αIm and ∂wF (v,w)≈ 1
2 Jf(w)− 1

2 αIm,

where Jf denotes the Jacobian of the exact flux function and Im is the m×m identity ma-
trix. For simplicity and not to distract from the main focus of the paper, which is on the
implicit time integration of high order schemes, we have used the simple Rusanov flux.

For the time integration, we employ the three stage third order DIRK scheme of [3]
with Butcher tableau

λ λ 0 0

(1+λ)
2

(1−λ)
2 λ 0

1 − 3
2 λ2+4λ− 1

4
3
2 λ2−5λ+ 5

4 λ

− 3
2 λ2+4λ− 1

4
3
2 λ2−5λ+ 5

4 λ

where λ= 0.4358665215. This method is A-stable and stiffly accurate, and therefore it is
L-stable. As a consequence, the Butcher tableau (3.6) of the composite backward Euler
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Table 2: List of the schemes tested, labels and line type (for those that appear in the plots).

Label Scheme description Line type

Q3 Quinpi solution without time-limiting

Q3I1 Quinpi solution with I1 time-limiting strategy (3.18)

Q3I2 Quinpi solution with I2 time-limiting strategy (3.19)

Q3I3 Quinpi solution with I3 time-limiting strategy (3.20)

CWZb3 Explicit CWENOZ scheme of [46]

Q3P1 Implicit scheme of [43] with cell-centered time-limiter

Q3P1MOOD Implicit scheme of [50] which uses MOOD as time-limiter

becomes

λ λ 0 0

(1+λ)
2 λ 1−λ

2 0

1 λ 1−λ
2

1−λ
2

λ 1−λ
2

1−λ
2

Although this is not necessary for our construction, note that the sequence of the abscis-
sae of this Runge-Kutta schemes is strictly increasing. Other choices of DIRK schemes
are possible, e.g. see [34].

All numerical simulations are performed with the schemes described in Table 2. For
the time-limited schemes, we choose the threshold parameters in (3.18) and (3.20) as γ1=h
and σ = 10−10, respectively. Instead, γ2, cf. (3.19), will be presented for each numerical
test and we will investigate the performance of the scheme based on its value. In general,
the choices of the thresholds γ1 and γ2 are dictated by the decay of the numerical entropy
indicators, cf. Section 3.3.1, and by the regions of the solution one aims to mark as irregu-
lar. Indeed, γ1=h allows us to mark as irregular all regions of the solution where S3>h,
i.e. those regions characterized by shocks, contact waves, and rarefaction corners. Simi-
larly, a constant value of γ2 allows us to distinguish smooth regions, where the indicator
S3/S1 ∼O(h2), from irregular regions where S3/S1 ∼O(1).

For the solution of the nonlinear systems in the predictor and in the corrector, we used
the Newton-Raphson schemes (3.8) and (3.11), and a simple GMRES linear solver with
a ILU0 preconditioner. For a detailed discussion on properties of iterative solvers in the
context of implicit discretizations of hyperbolic equations we refer to [9].
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4.1 Gas-dynamics problems

In this section, we test the third order Quinpi scheme on several problems based on the
one-dimensional nonlinear Euler system for gas-dynamics

∂t




ρ
ρv
E


+∂x




ρv
ρv2+p

v(E+p)


=0, (4.2)

where ρ, v, p and E are the density, velocity, pressure and energy per unit volume of an
ideal gas, whose equation of state is E= p

γ−1+
1
2 ρv2, where γ=1.4. The eigenvalues of the

Jacobian of the flux are λ1=v−c, λ2=v and λ3=v+c, where c=
√

γp/ρ is the sound speed.
For this system, we consider the entropy pair defined by the entropy function η(u) =
−ρlog

(
p

(γ−1)ργ

)
and the entropy flux ψ(u)=−vη(u), see [30]. Since we aim to investigate

the accuracy of Quinpi schemes on material waves, the parameter of numerical viscosity
in (4.1) is chosen as α=max{|v−|,|v+|}, where v− and v+ denote the BED of the velocity
of the gas.

4.1.1 Convergence test

We check the order of accuracy on the nonlinear system (4.2) by simulating the advection
of a density perturbation. The initial condition is

(ρ,v,p)=(1+0.5sin(2πx),1,10κ), (4.3)

so that the exact solution at a given time t is a traveling wave

(ρ,v,p)=(1+0.5sin(2π(x−t)),1,10κ), (4.4)

with κ ∈N0. We run the problem up to the final time t= 1. We use periodic boundary
conditions on the domain [0,1] and, thus, we test not only the scheme accuracy, but also
the proposed treatment of reconstructions for cells at the boundary.

For this problem, the spectral radius is λmax :=maxi=1,2,3 |λi|=1+10κ/2
√

2γ, where λi
denotes the i-th eigenvalue of the system, which is preserved during the time evolution.
For an explicit scheme the CFL stability condition would require to choose a grid ratio

∆
h
≤ 1

λmax
∼10−κ/2.

In order to test the accuracy of the implicit scheme, we run the simulation with the fol-
lowing grid ratio

∆t
h
=4,

and consider κ = 0 and κ = 4, corresponding to the Courant numbers C= λmax
∆t
h ≈ 10.7

and C≈673.3, respectively.
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Table 3: Comparisons of the orders of convergence of Quinpi schemes on the initial condition (4.3) with κ=0.
The grid ratio is ∆t/h=4 which corresponds to a Courant number C=10.7.

Q3I1 Q3I2 Q3I3

N L1 error rate L1 error rate L1 error rate
40 1.28e−2 – 0.26 – 1.28e−2 –
80 1.74e−3 2.88 0.19 0.48 1.74e−3 2.88

160 2.21e−4 2.97 0.12 0.69 2.21e−4 2.97
320 2.78e−5 2.99 6.44e−2 0.84 2.78e−5 2.99
640 3.48e−6 3.00 3.40e−2 0.92 3.48e−6 3.00

1,280 4.35e−7 3.00 1.73e−2 0.97 4.35e−7 3.00
2,560 5.44e−8 3.00 8.77e−3 0.98 5.44e−8 3.00

Q3I1 Q3I2 Q3I3

N L∞ error rate L∞ error rate L∞ error rate

40 2.02e−2 – 0.42 – 2.02e−2 –
80 2.78e−3 2.86 0.29 0.49 2.78e−3 2.86

160 3.55e−4 2.97 0.18 0.68 3.55e−4 2.97
320 4.46e−5 2.99 0.11 0.80 4.46e−5 2.99
640 5.59e−6 3.00 5.71e−2 0.89 5.59e−6 3.00

1,280 6.99e−7 3.00 2.99e−2 0.93 6.99e−7 3.00
2,560 8.73e−8 3.00 1.53e−2 0.96 8.73e−8 3.00

The L1- and L∞-norm errors computed on the density component and the correspond-
ing experimental orders of convergence are listed in Table 3 and Table 4 for the two dif-
ferent Courant numbers. The results are obtained with γ2=0.1.

While the schemes Q3I1 and Q3I3 achieve the theoretical order of convergence, the
scheme Q3I2 exhibits, instead, first order accuracy. This behavior is explained by inves-
tigating the time-limiting procedure for Q3I2. In fact, the marking strategy I2 fails on
flat regions where both S3 and S1 are floating point zeros. This causes the unnecessary
limiting of all numerical fluxes, and thus the computed solution ends up coinciding with
the first order predictor. Instead, the other detectors for time-limiting are able to signal
the regularity of the solution, avoiding the unnecessary activation of the time-limiting.
For these reasons, in the following we will not consider the scheme Q3I2 anymore.

Furthermore, we observe that Table 3 and Table 4 present identical errors and rates
of convergence for the methods Q3I1 and Q3I3. This happens because the time-limiting is
indeed off on the smooth profile: the two strategies detect no irregular cells and coincide
with the unlimited scheme Q3. Note that the magnitude of the errors is the same for κ=0
and κ = 4, even though the latter uses a time-step which violets the explicit CFL by a
factor of 60 with respect to the first one.
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Table 4: Comparisons of the orders of convergence of Quinpi schemes on the initial condition (4.3) with κ=4.
The grid ratio is ∆t/h=4 which corresponds to a Courant number C=673.3.

Q3I1 Q3I2 Q3I3

N L1 error rate L1 error rate L1 error rate
40 1.21e−2 – 0.22 – 1.21e−2 –
80 1.64e−3 2.88 0.14 0.61 1.64e−3 2.88

160 2.09e−4 2.97 8.27e−2 0.80 2.09e−4 2.97
320 2.63e−5 2.99 4.43e−2 0.90 2.63e−5 2.99
640 3.29e−6 3.00 2.28e−2 0.96 3.29e−6 3.00

1,280 4.12e−7 3.00 1.16e−2 0.98 4.12e−7 3.00
2,560 5.15e−8 3.00 5.83e−3 0.99 5.15e−8 3.00

Q3I1 Q3I2 Q3I3

N L∞ error rate L∞ error rate L∞ error rate
40 1.89e−2 – 0.35 – 1.89e−2 –
80 2.58e−3 2.87 0.23 0.61 2.58e−3 2.87
160 3.29e−4 2.97 0.13 0.81 3.29e−4 2.97
320 4.13e−5 2.99 6.91e−2 0.90 4.13e−5 2.99
640 5.17e−6 3.00 3.58e−2 0.95 5.17e−6 3.00

1,280 6.47e−7 3.00 1.82e−2 0.98 6.47e−7 3.00
2,560 8.09e−8 3.00 9.17e−3 0.99 8.09e−8 3.00

4.1.2 Stiff Riemann problems

In the following, we test Quinpi schemes on stiff Riemann problems for the Euler sys-
tem (4.2), namely for those problems characterized by |v|

|v|+c ≪1, ∀(x,t). In this case, we
expect a strong separation between acoustic and material waves, because they travel with
speeds having different magnitudes. In particular, the acoustic speeds would impose a
strict constraint on the time-step

∆tstab

h
≤ 1

maxx |v|+c
.

With implicit schemes, instead, the time-step is not dictated by stability and therefore we
will choose it in order to reproduce accurately the slow material wave:

∆tacc

h
=

1
|vcw|

,

where vcw denotes an estimate of the velocity of material waves. The ratio between the
time-step ∆tstab required for stability and the time-step ∆tacc required for accuracy on
the material wave, is a measure of the stiffness of the problem. We define the Courant
number as

C=
∆tacc

∆tstab
.

We consider the following Riemann problems.
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Figure 2: Exact density solution (thin gray solid line) and wave speeds (thick lines) of the Riemann problems
at final time.

Test (a): Non-symmetric expansion problem.

(ρ,u,p)=

{
(1,−0.15,1), x<0,
(0.5,0.15,1), x≥0.

(4.5)

The exact density at time t = 1 is depicted in the left panel of Fig. 2 and is char-
acterized by a 1-rarefaction moving with negative velocity, a 3-rarefaction moving
with positive velocity, and a 2-contact wave with velocity vcw =−2.57×10−2. For
this problem, one has max(x,t) |v|+c= 1.82, thus an explicit scheme would require
to choose a time-step ∆tstab such that

∆tstab

h
≤0.549.

With an implicit scheme, it is possible to overcome this stability restriction. In par-
ticular, choosing a time-step ∆tacc to meet the accuracy on the contact wave, one
has

∆tacc

h
=6.66,

which implies a Courant number C≈12.1.

Test (b): colliding flow problem.

(ρ,v,p)=

{
(1.5,0.5,10), x<0,
(0.5,−0.5,10), x≥0.

(4.6)

The exact density at time t=1 is depicted in the center panel of Fig. 2 and is charac-
terized by a 1-shock wave moving with negative velocity, a 3-shock wave moving
with positive velocity, and a 2-contact wave with velocity vcw=0.13. For this prob-
lem, one has max(x,t) |v|+c=5.79, thus an explicit scheme would require to choose
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a time-step ∆tstab such that
∆tstab

h
≤0.17.

With an implicit scheme, instead, one can choose

∆tacc

h
=2,

which implies a Courant number C≈11.6.

Test (c): modified Lax shock tube problem.

(ρ,v,p)=

{
(0.445,0,3.528), x<0,
(0.5,0,2.528), x≥0.

(4.7)

Compared to the classical Lax shock tube problem, the initial condition is char-
acterized by a zero left velocity and a higher right pressure. This allows a faster
separation of the waves. The exact density at time t= 0.15 is depicted in the right
panel of Fig. 2 and is characterized by a 1-rarefaction moving with negative ve-
locity, a 3-shock moving with positive velocity, and a 2-contact wave with velocity
vcw =0.35. For this problem, one has max(x,t) |v|+c=3.61, thus an explicit scheme
would require to choose a time-step ∆tstab such that

∆tstab

h
≤0.28.

With an implicit scheme, instead, one can choose

∆tacc

h
=2.83,

which implies a Courant number C≈10.2.

Here below we comment the results of all three tests. First, we investigate the role
of the parameter threshold γ2, see (3.20), which defines the time-limiting strategy I3. In
particular, we study the accuracy of the resulting Q3I3 scheme on the contact wave for
several values of γ2. In Fig. 3, we show the L1-errors as function of the number of cells.
We observe that in all the proposed Riemann problems the choice γ2=1 provides smaller
errors. Therefore, all the numerical solutions computed with Q3I3 are considered with
γ2=1.

Next, we show the need for time-limiting. In Fig. 4 we compare the solutions com-
puted without time-limiting (Q3) and with the two limiting strategies I1 and I3. The
figures clearly show that

• time-limiting is needed to avoid spurious oscillations. In particular, the numerical
solution of the colliding flows problem obtained with the Q3 scheme is not showed
because it blows up at time t=0.93;
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Figure 3: L1-errors on the contact wave computed with the Q3I3 schemes on several grids and different values
of the threshold parameter γ2.
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Figure 4: Comparison between third order implicit schemes, without time-limiting and with different time-
limiting strategies. The left-most panel shows the density solution. The other panels show zooms on the three
waves. The Q3 solution of the colliding flows problem is not showed because it blows up before reaching the
final time.
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Figure 5: Structure of the solutions in the x-t diagram. Limited cell interfaces are marked at the time levels
and locations where time-limiting is applied. The colors denote the loop number at which a cell interface is
marked: interfaces limited at initial loops are marked in blue, while those limited at final loops are marked in
red. These results can be compared with the data provided in Table 5.

Table 5: Statistics on the time-limiting procedure I3 of Quinpi schemes. These data are graphically depicted
in Fig. 5.

(a) Non-symmetric expansion.

Q3I3

N
max. number of
limited fluxes

% limited
time-steps

400 41 12.5
800 52 6.45

1,600 60 8.2

(b) Colliding flows.

Q3I3

N
max. number of
limited fluxes

% limited
time-steps

1,000 27 4
2,000 43 15
4,000 68 64.5

(c) Stiff Lax.

Q3I3

N
max. number of
limited fluxes

% limited
time-steps

200 38 83.33
400 67 45.46
800 77 22.73

• strategy I1, see (3.18), is more diffusive. Therefore, in the following we will consider
the third strategy I3 only, see (3.20). Moreover, observe that the Q3I3 solution is
accurate as the Q3 solution on the contact waves of the non-symmetric expansion
and of the stiff Lax problems, while reducing the oscillations on the acoustic waves;

• the time-limiting is active on all the waves at initial times, i.e. when they separate
themselves, cf. Fig. 5. At larger times, instead, limiting acts in particular on shock
waves but stops when the waves are sufficiently separated. In Table 5 we observe
that the percentage of limited steps is larger in problems where shock waves de-
velop. Moreover, the number of limited fluxes is large because during the large
time-step a wave propagates across more cells in a single time-step.

Finally, we compare the explicit scheme CWZb3 of [46], which has to be run with
∆tstab, and the implicit scheme Q3I3 run at ∆tacc, i.e. centered on the material wave. Fig. 6
shows that
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(a) Non-symmetric expansion at t = 1 with N = 800 cells. The explicit solution is obtained with time-step 2.7×10−3,
whereas the implicit solution is computed with time-step 3.3×10−2.
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(b) Colliding flows at t=1 with N=2000 cells. The explicit solution is obtained with time-step 8.5×10−4, whereas the
implicit solution is computed with time-step 1.0×10−2.
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(c) Stiff Lax at t=0.15 with N=800 cells. The explicit solution is obtained with time-step 7.0×10−4, whereas the implicit
solution is computed with time-step 7.1×10−3.

Figure 6: Comparison between third order implicit and explicit schemes. The left-most panel shows the density
solution. The other panels show zooms on the three waves.

• as expected, the explicit scheme is more accurate than the implicit one on the acous-
tic waves;

• on the contact wave, which is the one we are focusing on, the implicit scheme is
more accurate than the explicit one and runs with a time-step that is about 10 times
larger.
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4.2 Low-Mach problems

In this section, we test the performance of Quinpi schemes on low-Mach problems,
namely such that

Ma:=
|v|
c
≪1, ∀(x,t).

Here, the aim is to show that the implicit framework we propose has the ability to guar-
antee stability and accuracy on such problems. We do not claim that the Quinpi approach
is asymptotic preserving, e.g. see [23].

In order to describe the low-Mach number limit, we consider the rescaled compress-
ible Euler system

∂t




ρ
ρv
E


+∂x




ρv
ρv2+ 1

ε2 p
v(E+p)


=0, (4.8)

with the equation of state E= p
γ−1 +

ε2

2 ρv2, γ= 1.4. The parameter ε describes the Mach
number within the non-dimensionalized system, and one has Ma= ε/√

γ. System (4.8) is
hyperbolic with eigenvalues λ1=v−c/ε, λ2=v, λ3=v+c/ε. For a more detailed discussion
on the low-Mach number scaling we refer, e.g., to [11, 36]. Although in the following we
consider only smooth problems, we still choose the parameter of numerical viscosity
in (4.1) according to the material speed, namely α =max{|v−|,|v+|}, where v− and v+

denote the BED of the velocity of the gas.

4.2.1 Convergence test

We compute the experimental order of convergence of the Quinpi scheme on the compu-
tational domain [-2.5,2.5] using the smooth initial condition [11]

ρ(x,0)=
(

1+ε
(γ−1)u(x,0)

2
√

γ

) 2
γ−1

, u(x,0)=sin
(

2πx
5

)
, p(x,0)=ρ(x,0)γ.

The order of accuracy of the scheme is investigated at final time t=0.3 for ε1=0.8, ε2=0.3,
and at final time t= 0.01 for ε3 = 10−4. For this problem, |v| ≤ 1, ∀(x,t), and λmax(ε) :=
max(x,t) |v|+c/ε is

λmax(0.8)=2.6786, λmax(0.3)=5.1439, λmax(10−4)=1.1833×104.

For an explicit scheme the CFL stability condition would require to choose a grid ratio

∆tε1

h
≤ 1

λmax(0.8)
≈0.3733,

∆tε2

h
≤ 1

λmax(0.3)
≈0.1944,

∆tε3

h
≤ 1

λmax(10−4)
≈8.45×10−5.
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Table 6: Experimental order of convergence of Quinpi scheme on the low-Mach problem with Courant number
C=20.

ε=0.8 ε=0.3 ε=10−4

N L1 error rate L1 error rate L1 error rate

160 5.58e−2 0.98 2.40e−2 1.75 2.24e−4 0.26
320 1.23e−2 2.18 5.61e−3 2.10 5.41e−5 2.05
640 2.26e−3 2.45 8.45e−4 2.73 7.64e−6 2.82

1,280 2.95e−4 2.94 1.11e−4 2.93 9.61e−7 2.99

ε=0.8 ε=0.3 ε=10−4

N L∞ error rate L∞ error rate L∞ error rate

160 6.34e−2 0.77 1.85e−2 1.45 7.05e−5 0.26
320 1.59e−2 1.99 5.80e−3 1.67 1.72e−5 2.04
640 3.08e−3 2.37 1.01e−3 2.52 2.42e−6 2.83

1,280 4.04e−4 2.93 1.39e−4 2.87 3.04e−7 2.99

We overcome the CFL condition running the simulation using the following grid ratios:

∆tεi

h
=

C
λmax(ε i)

, i=1,2,3,

with Courant number C=20.
Density errors for the different values of the Mach number are listed in Table 6 and

computed with the Quinpi scheme Q3. The theoretical third order of convergence is
observed.

4.2.2 Two colliding acoustic pulses

We consider the two colliding acoustic pulses taken from [36]. The initial condition is
given by

ρ(x,0)=ρ0+
ερ1

2

(
1−cos

(
2πx

L

))
, ρ0=0.955, ρ1=2,

u(x,0)=−u0

2
sign(x)

(
1−cos

(
2πx

L

))
, u0=2

√
γ,

p(x,0)= p0+
εp1

2

(
1−cos

(
2πx

L

))
, p0=1, p1=2γ,

on the computational domain [−L,L], L= 2/ε. We use periodic boundary conditions and,
thus, we also test the proposed treatment of [46] which does not require ghost cells.

We choose ε1 = 1/11 and ε2 = 10−4. In both cases, max(x,t) |v| = 2.3656, whereas
λmax(ε1) = 16.038 and λmax(ε2) = 1.21×104. Therefore, using an explicit scheme would
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require to choose a time-step

∆tε1

h
≤6.24×10−2,

∆tε2

h
≤8.26×10−5.

With an implicit scheme, instead, we can choose

∆tε1

h
=

1
max(x,t) |v|

=4.23×10−1,

which corresponds to a Courant number C=6.78. We employ the same Courant number
for ε2 which determines

∆tε2

h
=5.59×10−4.

In Fig. 7 we show the pressure profile obtained using the third order Quinpi scheme Q3
without time-limiting at final times t=0.815 and t=1.63, with N=440 cells. The solution
is compared with the third order explicit scheme CWZb3.

4.3 Scalar problems

Finally, we provide some numerical simulations on scalar conservation laws. In fact,
although this work is mostly focused on hyperbolic systems, the Quinpi framework in-
troduced in [43], and further extended in [50], was based on very different time-limiting
procedures. Therefore, this section aims to investigate the performance of the proposed
MOOD limiter combined with the numerical entropy production indicator on standard
scalar problems. In all the scalar problems, the numerical viscosity in (4.1) is chosen as
α=max{| f ′(v)|,| f ′(w)|} where f is the flux function. All simulations are performed with
γ2=0.1.

4.3.1 Linear transport

We consider the linear scalar conservation law

∂tu(x,t)+∂xu(x,t)=0, (4.9)

for (x,t)∈ [−1,1]×(0,2], with periodic boundary conditions in space and discontinuous
initial conditions:

u0(x)=sin(πx)+

{
3, −0.4≤ x≤0.4,
0, otherwise,

(4.10a)

u0(x)=

{
1, −0.25≤ x≤0.25,
0, otherwise.

(4.10b)

Here, we consider the entropy function η(u)= u2

2 and the entropy flux ψ(u)= u2

2 .
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solution is computed with time-step 4.23.
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(b) ε=10−4, t=0.815 (left) and t=1.63 (right). The explicit solution is obtained with time-step 7.5×10−4, whereas the
implicit solution is computed with time-step 5.1×10−3.

Figure 7: Two colliding pulses problem with n=440 cells. The solutions show the initial pressure and the final
pressure profiles obtained with the explicit CWZb3 and the implicit Q3 third order schemes.

The results are reported in Fig. 8, computed with two different Courant numbers,
i.e. ∆t/h = 5 and ∆t/h = 10 on 400 space cells. As introduced in Table 2, the solution la-
beled by Q3P1 refers to the scheme of [43], whereas the solution labeled by Q3P1MOOD

refers to the one of [50]. We note that the scheme Q3I3 performs better than the other two
implicit schemes on the discontinuous sinusoidal profile since it produces lower dissi-
pation around the jump discontinuities. However, the low-dissipation properties leads
to lightly larger oscillations around the discontinuities of the double-step profile. In par-
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Figure 8: Linear transport equation (4.9) with initial condition (4.10a) (left panels) and initial condition (4.10b)
(right panels). All the solution are obtained on a grid of 400 cells with two Courant numbers. The label Q3P1
refers to the scheme of [43] with mass redistribution.

ticular, with ∆t/h = 10, the upper flat part of the solution is not reproduced by all the
schemes.

4.3.2 Burgers’ equation

Next, we compare the schemes on the nonlinear Burgers’ equation

∂tu(x,t)+∂x

(
u2(x,t)

2

)
=0, (4.11)

for x∈[−1,1], with periodic boundary conditions in space. Here, we consider the entropy
function η(u)= u2

2 and the entropy flux ψ(u)= u3

3 .
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Figure 9: Burgers’ equation (4.11) with initial condition (4.12) on 400 cells with ∆t/h = 3 (top panels) and
∆t/h=10 (bottom panels), at three different times.

We test (4.11) on the smooth initial condition

u0(x)=0.2−sin(πx)+sin(2πx), (4.12)

computing the solution at three different times, namely t= 1/2π,0.6,1, and Courant num-
bers ∆t/h = 3,10, on a space grid of 400 cells. The exact solution is characterized by the
formation of two shocks which collide developing a single discontinuity.

The numerical results are depicted in Fig. 9. We observe that all schemes do not
produce spurious oscillations at time t= 1/(2π), just before the two shocks appear, but
the scheme Q3P1 is more diffusive. At t = 0.6, Q3P1MOOD exhibits a small undershoot
on the left shock, clearly visible in the zoom box, which is not present in the solution
computed by Q3I3. Increasing the Courant number produces more dissipation within the
numerical schemes Q3P1 and Q3P1MOOD, whereas Q3I3 is more accurate and does not
exhibit spurious oscillations.

5 Conclusions and future research

In this work, we have proposed a framework for the high order implicit integration of
hyperbolic systems of conservation laws. The approach is based on the recent work [43],
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which was focused on scalar conservation laws. The crucial idea of Quinpi is to use a
first order implicit predictor to freeze the nonlinear space limiters in the CWENO third
order reconstruction, because such a predictor gives a pre-estimate of the WENO weights,
which will be used by the higher order method. Space limiting however is not enough,
and it is necessary to perform limiting in time, based on mixing the computed high order
solution and the low order predictor. As a consequence, the nonlinearity of the scheme is
linked only to the nonlinearity of the flux, while space and time-limiting need not enter
into the nonlinear iterations needed to update the solution.

At variance with [43], we have designed a flux-centered conservative time-limiting
procedure inspired by the MOOD technique [13, 14], where the numerical entropy resid-
ual [40,41] has been used as indicator of non-smooth solutions and troubled cells. This is
more robust than the previous cell-centered limiter that required a conservative correc-
tion after the time-limiting.

We mention that this implicit approach has not been tailored to the solution of a spe-
cific problem. We expect the new scheme to have impact in many applications described
by stiff problems, in particular in those cases in which the phenomena of interest travel
much slower than the fastest wave speeds. Our tests show that implicit schemes can pro-
vide a better accuracy compared to explicit ones on material waves, even running with a
time-step about 10 times larger.

Future work will involve the study of the Quinpi approach combined with different
time integration methods, for instance using hybrid BDF schemes, extensions to higher
order, and possibly investigation of analytical properties of the scheme. Further attention
will also be paid to improving the efficiency of the scheme. To this end, we will investi-
gate ad-hoc linear solvers and preconditioners, especially in view of higher dimensional
applications, and we plan to improve the time-limiting procedure. We expect to make
the computational cost scale more favorably for the implicit approach.
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