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Abstract. Reductions of the self-consistent mean field theory model of amphiphilic
molecules in solvent can lead to a singular family of functionalized Cahn-Hilliard
(FCH) energies. We modify these energies, mollifying the singularities to stabilize the
computation of the gradient flows and develop a series of benchmark problems that
emulate the “morphological complexity” observed in experiments. These benchmarks
investigate the delicate balance between the rate of absorption of amphiphilic material
onto an interface and a least energy mechanism to disperse the arriving mass. The re-
sult is a trichotomy of responses in which two-dimensional interfaces either lengthen
by a regularized motion against curvature, undergo pearling bifurcations, or split di-
rectly into networks of interfaces. We evaluate a number of schemes that use second or-
der backward differentiation formula (BDF2) type time stepping coupled with Fourier
pseudo-spectral spatial discretization. The BDF2-type schemes are either based on a
fully implicit time discretization with a preconditioned steepest descent (PSD) nonlin-
ear solver or upon linearly implicit time discretization based on the standard implicit-
explicit (IMEX) and the scalar auxiliary variable (SAV) approaches. We add an ex-
ponential time differencing (ETD) scheme for comparison purposes. All schemes use
a fixed local truncation error target with adaptive time-stepping to achieve the error
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target. Each scheme requires proper “preconditioning” to achieve robust performance
that can enhance efficiency by several orders of magnitude. The nonlinear PSD scheme
achieves the smallest global discretization error at fixed local truncation error, however
the IMEX and SAV schemes are the most computationally efficient as measured by the
number of Fast Fourier Transform (FFT) calls required to achieve a desired global er-
ror. Indeed the performance of the SAV scheme directly mirrors that of IMEX, modulo
a factor of 1.4 in FFT calls for the auxiliary variable system.

AMS subject classifications: 35K35, 65M06, 65M12, 65M50

Key words: Phase field model, benchmark computations, adaptive time stepping, functionalized
Cahn-Hilliard.

1 Introduction

We present a series of physically motivated computational benchmark problems address-
ing the evolution of the functionalized Cahn-Hilliard (FCH) gradient flow. This system
supports families of equilibria with rich morphological structure separated by slightly
different energies. The faithful resolution of final end states requires significant compu-
tational accuracy. There has been considerable recent attention to the development of en-
ergy stable computational schemes for gradient descent flows [16,18,26,37,38,46,48,49].
Gradient flows are defined by the dissipation of a free energy, and it is essential that
numerical schemes preserve that property. Energy stable schemes have the desirable
property that the energy, or a modified energy, decreases at every time-step irrespective
of time-step size. We argue that where possible energy decay should be a consequence
of accuracy. In some situations energy decay without accuracy can lead to plausible
but incorrect computational outcomes. Conversely accuracy should be balanced against
computational cost. This motivates a comparison of computational efficiency between
schemes as measured by the minimal computational cost required to achieve a desired
global discretization error.

Meaningful assessment of computational efficiency can be achieved from gradient
flows that harbour strong nonlinear interactions that generate selection mechanisms be-
tween distinct outcomes with small energy differences. For motivation, we emulate the
“morphological complexity” experiments presented in [30]. By strongly dispersing (stir-
ring) amphiphilic diblock polymers in solvent, and then allowing the mixture to relax,
the authors of that study observed the formation of a wide variety of structures whose
evolution and end-state depend sensitively upon the polymer chain and mixture prop-
erties, see Fig. 1 and [1, 2]. Reductions of the self-consistent mean field theory models
of amphiphilic molecules in solvent can lead to a singular family of FCH energies, [47].
We modify these energies, mollifying the singularities to produce a family of compu-
tationally tractable, but highly nonlinear, FCH gradient flows similar to those studied
earlier, [14, 15, 21]. We present a series of benchmark problems that recover the onset of
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morphological complexity. These benchmarks are conducted in a regime in which inter-
facial width, controlled by ε, is small. They reveal a delicate balance between the rate
of absorption of amphiphilic material onto an interface and the gradient flow’s selection
of a least energy mechanism to redistribute the amphiphilic mass along the interface af-
ter absorption. This rate-based selection mechanism yields a trichotomy of responses in
which two-dimensional interfaces either grow by a regularized motion against curva-
ture, under-go pearling bifurcations the form structure within the, or directly curve-split
into networks of interfaces. We present four numerical schemes, each combining second-
order temporal discretization and pseudo-spectral spatial discretization. The FCH energy
is computationally stiff due to the strength of its nonlinear terms. Each of the second or-
der methods considered balance implicit and explicit terms. Their efficiency is sensitive
to the choice of the implicit terms, with improvements of several orders of magnitude
possible when the methods are well balanced. These methods include an implicit-explicit
(BDF2-IMEX) method, a second order exponential time differencing Runge-Kutta method
(ETDRK2), and a scalar auxiliary variable approach (BDF2-SAV). The latter scheme fea-
tures provably unconditional modified energy stability properties. All of these schemes
are linear in their implicit stage. We compare these with a fully implicit, second order,
backward differentiation scheme based upon a preconditioned steepest descent with ap-
proximate line search (BDF2-PSD) for the nonlinear solve. For brevity we drop the ‘BDF2’
and ‘RK2’ components of the acronyms in the sequel.

The FCH gradient flows possess distinct, emergent timescales that render fixed time-
stepping approaches inefficient. For each scheme a specified target local truncation error
is used to generate an adaptive time-stepping procedure. The first set of benchmarks,
the sub-critical, critical, and super-critical, use relatively smooth potentials in the FCH
energy, and vary the mass of amphiphilic material distributed within the background of
the initial data. This serves to vary the rate of absorption of mass onto the interface. The
supercritical benchmark has an absorption rate sufficient to trigger the defect-inducing
bifurcations that are the genesis of morphological complexity. A proper resolution of the
time evolution requires considerable accuracy. The second set of benchmarks enhances
the stiffness of the FCH energy by increasing the convexity of the potential well at the
background state, mimicking the singular nature of the FCH energy as reduced from the
self-consistent mean field theory. This adds a small “foot” to the left minima of the well,
see Fig. 2, hence these benchmarks are called Foot 1 and Foot 2. The stiffness increases the
ratio of the absorption rate to the mass redistribution rate affording a second mechanism
to induce morphological complexity.

Each of the second order schemes we consider requires an appropriate choice of im-
plicit terms or preconditioner. This choice is typically based upon the linearization about
a spatially constant equilibrium solution. The linearly implicit IMEX and SAV accommo-
date the increase in stiffness for the Foot 1 and Foot 2 benchmarks without significant
adjustment. The nonlinear solve in the PSD scheme requires optimization of internal
parameters, in particular an error tolerance associated to the iterative nonlinear solver,
to converge. Moreover the efficiency of the PSD scheme decrease in comparison to the
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two linear implicit schemes with increasing numerical stiffness. Other preconditioning
schemes, for example based upon non-constant coefficient linear terms, could improve
the efficiency of the PSD scheme, however this is not considered here. The ETD approach
was relatively insensitive to choice of implicit terms and less efficient at handling the
nonlinear stiffness in the super-critical benchmark. It was not pursued for the Foot 1 and
Foot 2 benchmarks.

We conduct grid refinement studies to verify that each benchmark has an adequate
spatial resolution and develop highly accurate solutions for each benchmark by an ex-
tensive computation with a very small local truncation error. Once spatially resolved,
all four schemes yield concordant results for sufficiently small specified local truncation
error. We adjust the local truncation error restriction and use short runs to tune per-
formance parameters in each scheme for each benchmark, and record the accuracy and
cost of each optimized scheme. At given local truncation error we find that the PSD ap-
proach is generically the most accurate with IMEX and SAV generally the least accurate,
as measured by global error at the final time. However, at fixed local truncation error the
IMEX and SAV schemes require less computational effort than the PSD and ETD , with
the IMEX and SAV schemes performing almost identically, modulo a fixed factor in extra
computational effort required by SAV due to the extra system for the auxiliary variable.
For these benchmarks a global L2 relative discretization error of 2.5×10−3 is found to be
a harbinger of global accuracy, and within this constraint we view the local truncation
error as an internal parameter to be adapted for each scheme to optimize global perfor-
mance. For the sub-critical, critical, and super-critical benchmarks, all schemes except
ETD achieved this global accuracy with comparable efficiency although at quite different
values of the local truncation error. While it displays second order accuracy, the ETD
scheme does not seem to be competitive. We present a heuristic argument in Appendix
B that indicates that ETD is more sensitive to the interface width parameter ε in the thin
interface limit ε≪ 1 in which we compute. As presented in Fig. 15, achieving this accu-
racy for the super-critical benchmark requires 1.5×105,2×105, and 2.1×105 FFT calls for
IMEX , PSD and SAV respectively, while ETD requires 2.5×106 FFT calls. As the global
error target is further tightened, the PSD scheme requires increased computational ef-
fort, first increasing rapidly and then saturating. Conversely the computational effort
of the IMEX and SAV schemes increases linearly with global discretization error. For the
more strongly nonlinear Foot 1 and Foot 2 benchmarks the efficiency of the linear-implicit
schemes continues its linear relationship to global discretization error. As depicted in
Fig. 16, for the stronger nonlinearity the efficiency of PSD deteriorated in comparison to
the linear-implicit methods.

The SAV scheme is specifically designed to be energy stable with respect to an associ-
ated modified energy. This property either assumes fixed time-stepping, which is imprac-
tical for the FCH gradient flows in cases for which accuracy is paramount, or an adaptive
time stepping based upon modifications by factors of two and nesting. This latter strat-
egy is implemented for the super-critical benchmark within the BDF2-SAV scheme. This
was found to provide no benefit for accuracy while increasing computational cost by a
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factor of two to three. We also implement the second order Crank-Nicolson approach in
combination with the SAV strategy but find that it is not computationally efficient. In all
cases all convergent schemes preserve the energy decay property of the gradient flow.

Remark 1.1. The work [49] directly compares the PSD and SAV methods described herein,
but in the context of uniform, fixed time step setting. Based upon their experience with
FCH-type simulations, the authors state that “ultimately adaptive time stepping algo-
rithms should be compared.” The present study seeks to fill this gap, using time step
adaptivity to make quantitative comparison of accuracy against efficiency for a variety
of numerical schemes. Moreover, the family of regularized FCH models presented here
allow for interpolation between the smooth versions of the FCH considered in earlier
analytical and numerical studies and the singular versions arising as reductions from
self-consistent mean field analysis whose inherent numerical stiffness makes them more
challenging than the models considered in [49].

This paper is organized as follows. In Section 2, we briefly sketch the derivation of
a singular FCH model from a random phase approximation of self-consistent mean field
theory, outline the regularization of the singular model and its use to calibrate the family
of regularized FCH models studied herein. We also present the initial data and moti-
vate the benchmark problems. This derivation illuminates the incorporation of the well-
stiffness in the Foot 1 and Foot 2 benchmarks that is the initial motivation for this compu-
tational study. In Section 3, we present the second order adaptive numerical schemes that
we use to resolve the benchmark problems and highlight the sensitivity of efficiency to
choice of implicit terms. In Section 4, we present an overview of the simulations of each
of the five benchmark problems for a fixed local truncation error, showing the conditions
under which the schemes agree and disagree. In Section 5, we contrast the performance
of the schemes, particularly with respect to accuracy in the far-field of the domain, en-
ergy decay, evaluation of the precise critical value for onset of defects, and comparison
of time-stepping performance and computational efficiency. We summarize the perfor-
mance in Section 6. The appendixes provide proof of energy stability for the SAV scheme
and a heuristic analysis of time-stepping for ETD and IMEX in the thin interface regime
ε≪1.

2 Mean field approximation of amphiphilic diblock suspensions

The self consistent mean-field (SCMF) approach derives density functional models that
approximate the bulk interactions of collections of polymers represented by molecular
units, [20]. When applied to amphiphilic diblock polymers suspended in a solvent the
reduction yields a free energy for the three density components, ϕi, for i= A,B,S, which
represent the hydrophilic head, A, and the hydrophobic tail, B, of the diblock polymer,
and the solvent, S, respectively. Considering a suspension of ns solvent molecules and
nP polymer diblocks, each comprised of NA and NB monomers of molecule A and B,
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respectively, [10,44] used the self-consistent mean field reduction to derive the free energy
to a continuum phase-field model. More specifically, they introduced the mean densities

ϕA =
nPNA

|Ω| , ϕB =
nPNB

|Ω| , ϕS =
nS

|Ω| , (2.1)

and derived a bilinear approximation to the SCMF free energy expressed in terms of the
variance from the mean ϕi0=ϕi−ϕi,

F (2)
UD(ϕ0)=∑

ij

∫
Ω

aij√
ϕiϕj

(D−1ϕi0)(D−1ϕj0)+
( bij√

ϕiϕj

+χij

)
ϕi0ϕj0+δij

cij

ϕi
|∇ϕi0|2dx. (2.2)

Here a= (aij), b= (bij), c= (cij), with i, j∈ {A,B,S}, denote material parameters and δij
is the usual Kronecker delta function. Their derivation is similar to [11], with both ap-
proaches incorporating long-range interaction terms through the operator D := (−∆)

1
2 ,

the square-root of the negative Laplacian operator, subject to periodic boundary condi-
tions. The long-range terms describe entropic effects of chain folding and volume ex-
clusion derived from the interactions of the polymer chains with effective mean fields.
A similar energy was proposed as a model of a microemulsions of oil, water, and sur-
factant by [42], who argued directly, and somewhat phenomenologically, from a Landau
theory for a scalar density. This bilinear model was extended to a nonlinear one by [23]
and [25], who proposed a density dependence on the coefficients. Uneyama and Doi also
proposed a nonlinear extension, [45], for their vector model in which the average density
ϕk was replaced with the local density ϕk. This extrapolation yields a family of models
that include the Ohta-Kawasaki free energies. A general description of this extrapola-
tion is presented in [43]. In [47] the nonlinear extrapolation approach was modified, first
through a shift in dependent variables to the spatially averaged density ψk :=D−1ϕk0, and
then by an extrapolation step in which the average density ϕk is replaced with the slowly
varying average density,

ϕk→ϕk(1+ψk). (2.3)

The three-component model is then reduced to a scalar field similar to [25] by requiring a
point-wise incompressibility, ψA+ψB+ψS =0, and replacing the global constraint on the
A- and B-polymer fractions with the point-wise constraint, ϕA/NA =ϕB/NB. Choosing
the parameterization

ψA =ψB =
(br−bl)u+(br+bl)

2m f
, ψS =1− (br−bl)u+(br+bl)

2
,

in terms of the free variable u, for choices of br >bl made below that normalize the range
of u. The resulting model depends upon NP := NA+NB, the polymer fractions αA =
NA/NP and αB = 1−αA, the polymer-solvent molecular mole fraction m f := nPNP/nS,
and the dimensionless parameter ε= l

L N1/2
P ≪ 1 which rescales the Kuhn length l of the
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diblock polymer into a mean-square end-to-end length a single ideal diblock polymer
chain expressed as a ratio of the domain length L. The amphiphilicity of the diblock
molecules is expressed in terms of a weighted Flory-Huggins parameter

χw :=αAχAS+αBχBS−αAαBχAB >0, (2.4)

where for k,m ∈ {A,B,S} the Flory-Huggins parameters χkm > 0 record the strength of
the repulsive interaction between a k-monomer and an m-monomer. The value of χw
depends upon the composition of the polymer diblock chain, but not on its length.

With these reductions and notation, the Uneyama-Doi bilinear energy (2.2) reduces to
the singular functionalized Cahn-Hilliard (S-FCH) form

FS−FCH(u)=
1
2

∫
Ω

(
ε2∆u−W ′S(u)

)2
+P(u)dx, (2.5)

where the singular potential WS is defined via its derivative,

W ′S(u)=m f

[
24ln

∣∣(br−bl)u+(br+bl)+2m f
∣∣

−6NP

(
ln
∣∣(br−bl)u+(br+bl)−2

∣∣+χw(br−bl)u
)]

+C0. (2.6)

The condition χw >0 guarantees that W ′S has three zeros on its domain. The parameters
br and bl are chosen to map the left and right zeros to −1 and +1 respectively, and the
potential WS is defined as the primitive of W ′S that has a double zero at u=−1. The first
derivatives of the well WS are singular at the endpoints where the corresponding to pure
solvent and pure polymer phases. The perturbative potential P takes the form

P(u) :=
9(br−bl)

αAαB

u2

u(br−bl)+2m f
−
(
W ′S(u)

)2. (2.7)

The constant C0 does not impact the value of the energy and is chosen to minimize the
perturbative potential P.

2.1 Regularized FCH and experimental motivation for the benchmark
problems

We draw motivation for the benchmark simulations from the complexity observed in the
experiments conducted in [30]. In that study the authors prepared well-stirred disper-
sions of amphiphilic diblock of Polyethylene oxide (PEO) - Polybutadiene (PB) in water,
and allowed the mixture to relax and come to quasi-equilibrium. The weight fraction of
polymer was fixed at 1%, and they considered a long and a short polymer chain, char-
acterized by a fixed molecular length of the hydrophobic PB, with NPB(= NB) taken as
45 and 170. They varied the aspect ratio αA = NA/NB, characterized by the weight frac-
tion, wPEO, of the amphiphilic PEO component. They recovered a bifurcation diagram,
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Figure 1: (Left) Experimentally observed bifurcation diagram for the morphology of blends of Polyethylene
oxide (PEO) - Polybutadiene (PB) amphiphilic diblock in water. The horizontal axis, wPEO, is the weight
fraction of PEO as a percent of the total diblock weight, and the vertical axis denotes the molecular weights of
the PB component of the diblock, fixed at NPB=45 or 170 (vertical axis). Morphological Complexity is observed
for NPB =170 but not for the shorter NPB =45 chains. (Right) Experimental images from the morphological
complexity regime showing (top) network structures and (bottom) a mixture of end caps and Y-junction
morphology corresponding to regions marked N and CY in the bifurcation diagram. From Figures 1 and
2AC of [30], Reprinted with permission from AAAS.

presented in Fig. 1 (left), which shows that for the short chains the well-mixed disper-
sions largely formed codimension one spherical bilayer interfaces, codimension two solid
tubes, or codimension three solid spherical micelles, with some overlap depending upon
the aspect ratio. However for αA ∈ (0.3,0.5) the suspensions of long chains form struc-
tures that are loaded with defects, such as the network structures and endcaps depicted
in Fig. 1 (right - top and bottom).

The self-assembly of spatially extended morphologies from a relatively dilute sus-
pension can be viewed as an absorption and a redistribution process. The dispersed
amphiphilic molecules are generically too dilute to self assemble, but may diffuse until
they arrive at localized structure where they insert themselves to lower their contribution
to the system energy by isolating their hydrophobic tail from contact with the solvent.
Within the FCH model, the rate of absorption of mass onto the interface determines the
final outcome of this growth phase. The selection mechanism for the end state is delicate,
with many possible outcomes separated by slightly different final energies. This land-
scape affords an excellent diagnostic to benchmark the performance of computational
tools.
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To stabilize the benchmark problems we make several changes to the initial configura-
tion and the model. In particular we replace the well-stirred initial dispersion, typically
modeled with random initial data, with a fixed bilayer interface configuration with an
asymmetric shape and a spatially constant background density of amphiphilic diblock
that emulates the reservoir of dispersed molecules. The asymmetry in the shape seeds
the motion against curvature. In a benchmark problem this is best not left to random
fluctuations as would be the case for a perfectly circular initial shape. For computational
reproducibility we smooth the well, replacing the singular well WS with

Wq(u) :=
[
(u−b−)2

2
+qε

(
1−sech

(u−b−
ε

))][
(u−b+)2

2
+

γ

3

(
u− 3b+−b−

2

)]
, (2.8)

where the parameter q regulates the second derivative W ′′q (b−), as depicted in Fig. 2
(right). This allows a range of approximation of the singularity of the left well of WS.
We fix b± =±1 and take the asymmetry parameter γ = 0.3 to match the shape of WS.
The perturbative potential P is also singular, and is regularized via replacement with the
standard FCH functionalization terms to facilitate comparison to prior analytical results.
This yields the non-singular FCH free energy model

EFCH(u) :=
∫

Ω

1
2

(
ε2∆u−W ′q(u)

)2
−
(

ε2

2
η1|∇u|2+η2Wq(u)

)
dx, (2.9)

where the values of the functionalization parameters η1 and η2 are determined from a
least-square fit of P for the long-chain data. This model fits within the general framework
proposed in [24]. All parameter values for each benchmark are recorded in Table 1. For
the critical case, the value of η2 is tuned to enhance the strength of the pearling transient.

The FCH equation is given by the H−1 gradient flow of EFCH

ut =∆
δEFCH

δu
, (2.10)

which takes the explicit form

ut =∆
[(

ε2∆−W ′′q (u)
)
(ε2∆u−W ′q(u))−

(
−ε2η1∆u+η2W ′q(u)

)]
. (2.11)

The regularized form of the FCH possesses several advantages. It encompasses both the
smooth q=0 and the stiff q>0 models, naturally allowing for a quantification of the im-
pact of nonlinear stiffness on the computational schemes. While the stiff version mimics
the SCMF reduction, the smooth FCH model has been much better studied [6, 7, 14, 15]
and has advantages in applications which require a simple model that stabilize higher
codimensional morphologies with a minimum of numerical stiffness. These applications
include the hybrid phase field models for fluid-structure interactions [29].
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Figure 2: (Left) Graph of scaled singular well WS as recovered by reduction of SCMF for NP =45 (red) and
NP =170 (blue-dotted). (Right) Graph of the regularized well, Wq for q=0, 0.2, 0.5.

2.2 FCH model calibration and benchmark motivation

To calibrate the parameters in the regularized well it is convenient to exploit a rescaling
of the FCH-SCMF energy that leaves the associated gradient flow invariant:

ε→ ε√
ν

, WS→
WS

ν
, P→ P

ν2 , t→ν2t.

The rescaling of ε is equivalent to a change in domain size L→
√

νL.
We take each monomer to have equal weight, equal to the molecular weight of the

solvent. Correspondingly the weight fraction of PEO, wPEO, equals the molar fraction,
αA, and the polymer weight fraction within the solvent reduces to the molar fraction of
polymer,

m f =
nPNP

ns
=

1
100

.

For the short-chain polymer benchmark we take NP = 45 and C0 = 0.8 and for the long-
polymer benchmark we take NP=170 and C0=3.0, and rescale the well WS by a factor of
ν=4.4. For the short-chain and long chain polymers the respective choices bl =−0.0097
and bl=−0.01+10−7 sets the left well of WS at u=−1. The scaled WS is presented in Fig. 2
(left) and compared to the regularized well Wq used in the benchmark simulations.

Intuitively, both a high density of dispersed diblock polymers or a high energy as-
sociated to an isolated diblock molecule correspond to a high rate of absorption of the
dispersed polymers onto the bilayer interface. The arrival rate is a key quantity control-
ling defect formation. When the arrival rate is slow, the bilayer interface can grow in size
to accommodate the new mass. The growth process is adiabatic and has been studied
rigorously, [6], deriving a motion against curvature, regularized by a higher order Will-
more term that includes surface diffusion. If the rate of arrival increases beyond a critical
threshold, then defects, such as pearling, endcaps, and loop formation are observed. At
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moderate rates, a pearling bifurcation can be triggered, the onset of which is well under-
stood within the context of the FCH gradient flow, [12]. The pearling can be transient,
subsiding as the dilute suspension of amphiphilic material is consumed. The pearling
can also be lead to the formation of end-cap type defects, essentially micelles that remain
connected to the underlying structure from which they emerged. The endcaps form most
readily at points of high curvature of the bilayer interface. The stem of the endcap can
grow, forming a long trailing bilayer-type stem and may ultimately reconnect with the
initial structure, forming a loop. At yet higher arrival rates the bilayer interface itself may
undergo curve splitting – directly forming closed loops and network structures. The rich
array of possible outcomes, and the wide variety of end-states of the gradient flow, pro-
vide an excellent diagnostic of the accuracy of the proposed schemes.

The benchmark problems introduce two methods to control the rate of arrival of sur-
factant at the interface. The first is through background level of amphiphilic molecules,
controlled by the parameter d in (2.13), increasing d corresponds to adding more am-
phiphilic material to the dispersion. The second is through the convexity of the left well
in Wq, controlled by the parameter q and the value of ε. Increasing the value of q increases
W ′′q (−1), leading to an increase in the energy of dispersed amphiphilic molecules, which
also increases their rate of arrival. The energy of dispersed chains increases with chain
length due to the exposure of a longer hydrophobic tail to solvent, [9]. This is evident
within the singular model through the scaling of WS with NP via m f .

In the first three benchmarks we take q = 0, corresponding to shorter chains, and
induce bifurcation by raising the background density. At the low background level in
the sub-critical benchmark the initial bilayer interface absorbs amphiphilic material and
increases its length, however the rate of absorption is sufficiently slow that there is no
generation of defects. In the super-critical benchmark the background level is raised and
the elevated rate of arrival induces formation of several defects that coalesce and merge
over time. In the critical benchmark the aspect ratio parameter η2 is tuned to extend
the duration of the pearling transient within the bilayer interface. Accurate simulations
of this benchmark approach the formation an endcap defect before relaxing back to a
smooth bilayer profile as the reservoir of dispersed diblock molecules is depleted. In the
Foot 1 and Foot 2 benchmarks, we return to the low dispersion level of initial data and
systems parameters of the sub-critical case, but increase the value of value of q within the
well. This corresponds to lengthening the polymer chains, increasing the rate of absorp-
tion without adjusting the total amount of material absorbed. In both Foot 1 and Foot 2
this induces defect formation.

2.3 The initial data

Space is discretized through the standard Fourier pseudo-spectral method assuming pe-
riodic boundary conditions on square domains. For the benchmark computations it is
useful to have smooth periodic initial conditions on uniform grids. To begin, we fix
Ω=[0,L]2, with L=4π, and set the number of grid points along the x1 and x2 axes to be
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No = 256, corresponding to a mesh spacing ho = L/No. Given a simple non-intersecting
parametric curve Γ =

{(
x1(t),x2(t)

)∣∣ t0≤ t≤ t1
}

, we construct a region ΓR of uniform
width R about Γ, with outer and inner boundaries Γ± defined by

Γ±=
{(

x1(t)±
x′2(t)
s(t)

R, x2(t)∓
x′1(t)
s(t)

R
) ∣∣∣∣ t0≤ t≤ t1

}
, (2.12)

where s= s(t) is the arc-length of Γ. We construct the piece-wise constant function ϕΓ to
be 1 inside ΓR and −1 outside, and smooth it by convolution with the filter F : L2(Ω)→
C∞

per(Ω), defined via

F[ϕΓ](x)= ∑
k1,k2∈IN

ϕ̂o,Γ(k1,k2)exp
(
−λ0(k2

1+k2
2)
)

exp
(

2πi
L

(x1k1+x2k2)

)
,

where ϕ̂o,Γ is the discrete Fourier transform (DFT) of ϕΓ interpolated to the No×No mesh
with spacing ho=L/No and λ0=7.0269×10−3. With the choice R=0.14725 the total mass
of F[ϕΓ] per unit length of Γ approximates the mass of an exact bilayer dressing of Γ. For
a fixed curve Γ we define ϕ256(x) :=F[ϕΓ](x), which is clearly smooth and Ω-periodic.

Now, let N be an arbitrary positive integer (typically a power of 2 in the Fourier
pseudo-spectral setting), with h= L/N. For each of the benchmark cases we define the
initial data to be

u0
N,i,j =ϕ256(ih, jh)+ε

d
α2

m(0)
, 0≤ i, j≤N, (2.13)

where d ∈ R is a parameter that varies in the benchmarks and αm(0) = W ′′q (b−)
∣∣
q=0.

Clearly, u0
N will be a periodic grid function. The curve Γ is defined through polar vari-

ables as Γ=
{(

ρ(θ)cos(θ)+ L
2 , ρ(θ)sin(θ)+ L

2

)∣∣θ∈ [0,2π)
}

, where

ρ(θ)=3− ε

2
cos

(
6
(
θ− π

11
))
−ε2cos

(
θ− 3π

11

)
.

The initial data u0
N corresponding to N=256 with this choice of Γ is shown in Fig. 3 (right)

for d= 0. The curve Γ is chosen to break any symmetry with the periodic domain and
to seed the curvature growth of the bilayer interface. The mass, m0, of the initial data,
defined via the relation

m0 :=
1
2

∫
Ω
(u0

N+1)dx,

is reported in Table 1.

3 The numerical schemes

As we indicated in the previous section, we use the Fourier pseudo-spectral method to
discretize space and simplify the spatial differential operators. The details are standard
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Table 1: Parameters for Benchmark Cases.

Case\Param q η1 η2 d ε γ αm(q) N Mass
Sub-critical 0 1.45ε 3ε 0.2 0.1 0.3 1.7 256 6.11

Critical 0 1.45ε 1.5ε 0.75 0.1 0.3 1.7 256 7.61
Super-critical 0 1.45ε 3ε 0.5 0.1 0.3 1.7 256 6.93

Foot 1 0.2 1.45ε 3ε 0.2 0.1 0.3 5.1 256 6.11
Foot 2 0.5 1.45ε 3ε 0.2 0.1 0.3 10.2 512 6.11

9 9.2 9.4 9.6

-1

-0.5

0

0.5

1 N = 256
N = 512
N = 1024

9.2 9.25 9.3 9.35
0.7

1

Figure 3: (Left) A 1D cross-section of the grid function u0
256, along with finer mesh realizations u0

512 and
u0

1024. (Right) The initial data u0
512 constructed from (2.13) with width R=0.14725 and d=0. The red number

on the colorbar indicates max
i,j
{u0

512,i,j}.

and skipped for the sake of brevity. In what follows, for simplicity we will write the
numerical schemes semi-discretely, using the spatially continuous differential operators,
though in practical computations these are replaced by their standard pseudo-spectral
approximations.

We use the second order backward differentiation formula (BDF2) to produce the
IMEX, PSD, and SAV schemes, and use the solution from the third order Adams-Moulton
(AM3) scheme as a predictor to control the local error to resolve the benchmark problems
described in Section 2.2.

3.1 Variable step size BDF2 and AM3 schemes

Consider the initial value problem, u′(t)= F(u), u(t0)= u0, for t0≤ t≤T. Let us denote
the temporal step size via kn := tn−tn−1.
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Suppose the second order variable step size BDF2 scheme has the form

aun+1+bun+cun−1=F(un+1), (3.1)

where, upon Taylor expanding and comparing the coefficients, we may identify

a=
1

kn+1
+

1
kn+1+kn

,

b=− 1
kn+1

− 1
kn

,

c=
1
kn
− 1

kn+1+kn
.

(3.2)

Introducing the time-step ratio γ := kn+1
kn

, the variable step size BDF2 scheme can be writ-
ten as

1+2γ

1+γ
un+1− (1+γ)2

1+γ
un+

γ2

1+γ
un−1= kn+1F(un+1), (3.3)

which recovers the classical uniform version 3un+1−4un+un−1=2kF(un+1) when γ=1.
Suppose the third order variable step size AM3 scheme has the form

un+1=un+
[
ω1F(un+1)+ω2F(un)+ω3F(un−1)

]
.

To identify the coefficients {ωi}3
i=1, we make the approximation

u(tn+1)−u(tn)=
∫ tn+1

tn
F(u(t))dt≈

∫ tn+1

tn
P(t)dt,

where the quadratic polynomial P(t) is the interpolant of F(u(t)) at tn−1,tn and tn+1.
Therefore the variable step size AM3 is

un+1=un+
kn+1

6

[
3+2γ

1+γ
F(un+1)+(3+γ)F(un)− γ2

1+γ
F(un−1)

]
, (3.4)

which recovers the uniform version un+1=un+k
[

5
12 F(un+1)+ 2

3 F(un)− 1
12 F(un−1)

]
when

γ=1. Further details about these two methods can be found in [27].

3.2 Adaptive schemes

The FCH gradient flow (2.10), which may be written as ut = F(u), where F(u)=∆ δEFCH
δu ,

undergoes bifurcations that trigger hidden timescales. As these events occur at unpre-
dictable times, an adaptive approach to time-stepping is required to balance accuracy
and efficiency. To initialize the algorithm, we set a target local truncation error tolerance,
σtol, and the minimal and maximal time-step values kmin and kmax.
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Given initial data u0, initial time t0, and some final time T, we fix the temporal step
size k1 := kmin and compute the first time-step approximation u1 at time t1 for the FCH
equation (2.10) via an appropriate version of (locally) second order method. The adaptive
algorithm, based upon [39, 41], then proceeds as follows.

Step 0: Given time index n∈N+, and approximations un−1,un at times tn−1 and tn, re-
spectively, with time step sizes kn = tn−tn−1 and initial k̃n+1 := kn.

Step 1: Compute a second order accurate primary approximation ũn+1 using one of the
BDF2 schemes (from the next three sections) using step sizes kn and k̃n+1.

Step 2: Compute the time step ratio γ= k̃n+1
kn

and a third order accurate approximation,
up, via the AM3 scheme:

up :=un+
k̃n+1

6

[3+2γ

1+γ
F(ũn+1)+(3+γ)F(un)− γ2

1+γ
F(un−1)

]
. (3.5)

Step 3: Calculate the relative error approximation

en+1 :=
∥ũn+1−up∥L2

∥up∥L2
.

Step 4: If en+1≤σtol or k̃n+1= kmin, then
Accept the primary approximation, un+1= ũn+1.
Recalculate kn+1 = max

{
kmin,min{Adp(en+1, k̃n+1),kmax}

}
, and update the

current time, tn+1= tn+kn+1.
Update the time step index: n←n+1.
Goto Step 0.

Else
Recalculate the time step size k̃n+1=max

{
kmin,min{Adp(en+1, k̃n+1),kmax}

}
.

Goto Step 1.
Endif

Here

Adp(e,k) :=ρs

(σtol

e

)1/3
k,

and we take the safety coefficient ρs = 0.9, and kmin = 10−9 for all simulations. For the
IMEX and SAV schemes kmax is taken to be ∞, while for the PSD scheme, the optimal
value of kmax depends upon q, as shown in the Table 3. As discussed in [27], to ensure
zero-stability for the variable step size BDF2 in (3.3), Adp(e,k) needs to be bounded from
above by

(
1+
√

2
)
k. Numerical exploration with this bound on Adp showed it afforded

no significant impact on the benchmark problems.
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Remark 3.1. We have chosen the time step adaptivity to directly enforce that the ap-
proximate solutions are accurate to a desired local error tolerance, σtol. We employ an
algorithm similar to that in [39], though there are several others that have a similar de-
sign and purpose, including for example, [22,27,28,40]. The method of [36] is different in
that the energy is monitored in time as a surrogate error indicator. When the preliminary
steps indicate a rapid change in energy, the algorithm reduces the time step size with
the goal of capturing the corresponding dynamics of the density field, the motivation is
that abrupt changes in the energy correspond to topological changes in the density field.
A preliminary comparison of the two disparate approaches gives us reason to favor the
direct method. First, our objective is accurate density field calculations, and the direct
method controls the density field explicitly, rather than implicitly through the energy.
The energy functional is scalar valued, and many classes of deformation do not locally
change the value of the energy. This makes the performance of the energy monitoring
time-stepping method very sensitive to choices in the time stepping control parameters.
Second, the computation of the energy is an added expense that makes the use of an
energy-based error indicator less attractive.

3.3 The BDF2-PSD scheme

The BDF2-PSD scheme uses a fully implicit variable time-step BDF2 for the numerical
approximation of the system (2.11) which takes the form

aun+1+bun+cun−1=∆
δEFCH

δu

∣∣∣n+1
, (3.6)

where the coefficients a,b,c are given in (3.2). The solution un+1 in (3.6) can be solved in
terms of a zero residual,

R(un+1;un,un−1) :=Π0
δEFCH

δu

∣∣∣n+1
−∆−1(aun+1)−∆−1(bun+cun−1)=0, (3.7)

where Π0 denotes the linear zero-mass orthogonal projection operator. Given un−1 and
un, to solve un+1 from (3.7), this method is accompanied by a preconditioned steepest
descent (BDF2-PSD) solver, with an approximate line search (ALS) to invert the highly
nonlinear system of equations. This solver is referred to the PSD with ALS, see [3,19]. We
refer to this method as PSD for brevity.

The preconditioned steepest descent method solves nonlinear system (3.7) iteratively
through a series of linear systems. The strictly positive, self-adjoint operator LPSD is the
linearization of (3.7) about the spatially constant state u≡ b− after dropping the small η1
and η2 terms,

LPSD := ε4∆2−2αmε2∆+α2
m−a∆−1,

which is well-defined on mass-less functions, and preconditions the iterative scheme.
Here αm =W ′′q (b−) depends strongly on q. The solution un+1 is thus defined as the limit



A. Christlieb et al. / Commun. Comput. Phys., 37 (2025), pp. 877-920 893

Table 2: Dependence of optimal value of search-step-size λ on temporal step size k.

q
λ k ≤10−6 10−5 5·10−5 10−4 5·10−4 10−3 0.005 0.01 0.02 0.03

0 1 1.07 1.11 1.14 1.24 1.34 1.60 1.738 1.804 1.855
0.2 1 1.04 1.15 1.28 1.50 1.70 1.87 1.92 1.95 1.97
0.5 1 1.20 1.32 1.45 1.72 1.83 1.965 1.97 1.985 1.99

of the sequence {un+1
s }∞

s=0, constructed through the ALS recurrence relation

un+1
0 :=un+ kn+1

kn
(un−un−1), (3.8)

un+1
s+1 =un+1

s +λdn+1
s , s=0,1,2,··· , (3.9)

where the search direction dn+1
s at un+1

s is defined as

dn+1
s :=−L−1

PSDR(u
n+1
s ,un,un−1).

For a prescribed iterative stopping tolerance itol, the ALS procedure is terminated once
∥dn+1

s ∥L2

∥un+1
s+1 ∥L2

< itol. The parameter λ in (3.9) is the search-step-size. Numerical investigations

show that the optimal value of λ is somewhat sensitive to the value of αm = αm(q) and
temporal step size k. This dependence is determined by minimizing the average number
of PSD iterations for a fixed k over the first 50 temporal steps of the simulation. Optimal
values of λ for different values of q and k are reported in Table 2. The values used in the
simulations are determined by linear interpolation.

The iterative stopping tolerance, itol, impacts the accuracy and computational cost of
the PSD scheme. Numerical optimization finds that an optimal choice of itol is sensitive
to both the well stiffness, q, and the local truncation error, σtol. We determine this relation
through the ratio

itol=ν(q)σtol,

and determine an optimal value of ν(q). This requires balance, as overly small values of
itol lead to excessive iterations that do not improve the scheme’s accuracy. On the other
hand itol must be small enough to ensure that numerical error from the iterative solver
does not pollute the adaptive time-stepping and does not impede the convergence of
the iterative solver at subsequent time-steps. Instructively, the iterative convergence rate
is found to depend upon the upper limit, kmax, imposed on the adaptive time-stepping
algorithm. This leads to a coupled numerical optimization study, presented in Table 3
which shows the sensitively of iterations numbers upon kmax for the three values of q,
and the optimal value of ν. The iteration counts increase considerably with q, while ν
decreases exponentially with q. If the upper bound kmax is removed then the iteration
count may increase considerably, with associated increase in computational effort. The
tuning of kmax and ν with q is the most unpredictable element of the optimization process
for any of the schemes.
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Table 3: Dependence of PSD iteration count on q, ν and kmax.

Iteration
count/1000 ν(q)

Value of kmax optimal
kmax0.009 0.01 0.02 0.03 0.04 0.05 0.06

q = 0 1.E-03 36.3 34.8 36.5 36.7 38.2 41.4 0.05

q = 0.2 2.E-05 43.3 42.8 43.7 0.02

q = 0.5 1.E-06 162.0 161.7 162.0 0.01

3.4 The BDF2-IMEX scheme

The FCH equation (2.11) can be rewritten as

ut =∆
[
LIMEXu+NIMEX(u)

]
, (3.10)

where we introduce the linear positive operator

LIMEX := ε4∆2−2αmε2∆+α2
m, (3.11)

obtained by linearizing δEFCH
δu in (2.11) about u= b− and dropping the small, negative η1

and η2 terms. The termNIMEX is genuinely nonlinear with zero linearization about u=b−,
including the η1 and η2 terms

NIMEX(u) := ε2(αm−W ′′q (u)
)
∆u+ε2∆

(
αmu−W ′q(u)

)
+W ′′q (u)W

′
q(u)

−α2
mu+ε2η1∆u−η2W ′q(u).

The resulting second order semi-implicit IMEX scheme is chosen to stabilize the spatially
constant background state u≡b−. To this end we take the dominant linear terms implicit
and the remainder explicit,

aun+1+bun+cun−1=∆
[
LIMEXun+1+NIMEX(u∗,n+1)

]
, (3.12)

where u∗,n+1 can be chosen as any explicit (locally) second order approximation of u(tn+1)
to make the scheme consistent, for instance,

u∗,n+1=un+ kn+1
kn

(un−un−1). (3.13)

Now we can isolate and solve un+1 in (3.12) from(
a−∆LIMEX

)
un+1=−bun−cun−1+∆NIMEX(u∗,n+1). (3.14)
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3.5 The BDF2-SAV scheme

Computational schemes based upon the SAV formulation have been applied to the FCH
gradient flow, see [49]. The version presented here is a slight variation. We rewrite the
FCH energy functional EFCH(u) in (2.9) in the form:

EFCH(u)=
∫

Ω

[
ε4

2
(∆u)2−

(η1

2
+ζ

)
ε2|∇u|2+G(u)

]
dx, (3.15)

where ζ>0 is a parameter and

G(u) :=−ε2∆u
(

W ′q(u)+ζu
)
+

1
2
(W ′q(u))

2−η2Wq(u). (3.16)

The choice of principle linear operator for the SAV scheme is a bit less intuitive than for
the IMEX or PSD schemes. We introduce

LSAV = ε4∆2+ε2(η1+2ζ)∆=L0+L1, (3.17)

where the sub-operators are parameter dependent

L0(β1,β2)= ε4∆2−β1αmε2∆+β2α2
m, (3.18)

L1(β1,β2)= ε2(η1+2ζ)∆+β1αmε2∆−β2α2
m, (3.19)

where αm =αm(q) and the constants β1,β2≥0 are the stabilization parameters. The oper-
ator L0 defines the principle linear implicit terms in the SAV scheme. The default choice
for these parameters is β1=2 and β2=1.

Introducing the auxiliary energy

E1(u)=
∫

Ω
G(u)dx,

the FCH energy (3.15) takes the form

EFCH(u)=
1
2
(u,LSAV u)L2(Ω)+E1(u). (3.20)

For fixed time-steps the SAV scheme is known to be energy stable for a modified energy,
if the functional E1(u) can be shown to be uniformly bounded from below over H2

per(Ω),
[37]. This is achieved by choice of ζ= ζ(q). Specifically

E1(u)≥
∫

Ω

(
W ′′q (u)+ζ

)
|∇u|2dx+

∫
Ω

[1
2
(W ′q(u))

2−η2Wq(u)
]
dx,

and choosing ζ larger than the negative of the minimum value of the W ′′q , we estimate

E1(u)≥|Ω|min
u

(1
2
(W ′q(u))

2−η2Wq(u)
)
>−D0,
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where D0>0 only depends upon the domain Ω, the value of η2 and Wq.
For the energy splitting approach, we introduce the scalar auxiliary variable

r= r(t) :=
√
E1(u)+D0,

then the FCH equation can be rewritten as

∂u
∂t

=∆µ, µ :=LSAV u+
r V[u]√
E1(u)+D0

, (3.21)

dr
dt

=
1

2
√
E1(u)+D0

∫
Ω

V[u]
∂u
∂t

dx, (3.22)

where V[u]= δE1/δu=G′(u). For choosing u∗,n+1 as in (3.13), the SAV scheme takes the
form

aun+1+bun+cun−1=∆µn+1, µn+1=L0un+1+L1u∗,n+1+
rn+1 V[u∗,n+1]√
E1(u∗,n+1)+D0

, (3.23)

arn+1+brn+crn−1=
∫

Ω

V[u∗,n+1]

2
√
E1(u∗,n+1)+D0

(
aun+1+bun+cun−1)dx. (3.24)

We remark that the rn+1 variable in (3.24) also contributes to the implicit equation for
un+1. The full resolution of un+1 from (3.23)-(3.24) is presented in [39, 49], but is driven
by the inversion of the operator L0−a∆−1. With a fixed time-step k, the SAV scheme is
unconditionally energy stable for the auxiliary energy

Eaux
(
un,un−1,rn,rn−1) :=

1
2
(un,LSAVun)L2(Ω)−

(
un−un−1,L1(un−un−1)

)
L2(Ω)

+
1
2

(
2un−un−1,LSAV(2un−un−1)

)
L2(Ω)

+
∣∣rn∣∣2+∣∣2rn−rn−1∣∣2.

Theorem 3.1. When implemented with a fixed time step size k>0, the SAV scheme (3.23)-(3.24)
is unconditionally modified-energy stable in the sense that the discrete modified-energy law holds,

Eaux
(
un+1,un,rn+1,rn)≤Eaux

(
un,un−1,rn,rn−1), n≥1. (3.25)

The proof of Theorem 3.1 is given in Appendix A. Details on energy stability proper-
ties of SAV schemes can be found in [39, 49].

The stabilization parameters make L0 a strictly positive operator and play an essen-
tial role in the convergence, accuracy, and efficiency of the SAV scheme. The operator
L0 agrees with LIMEX for the choice β1 = 2 and β2 = 1 that we take here. Fig. 4 shows
FFT counts for simulations of IMEX and SAV using the dominant implicit term based
on L0. Overall the schemes preform well if β1+β2 = 3, with performance deteriorating
dramatically for smaller values and slowly for larger values of this sum. Indeed values
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Figure 4: (Left/center) Total FFT calls on log scale at time T = 10 verses stabilization parameters β1 with
β2=3−β1 for IMEX and SAV for each of the 5 benchmark simulations. (Right) Total FFT calls on linear scale
at time T=50 verses stabilization parameter κ2 for ETD for supercritical benchmark and three choices of κ0.
The peaks in FFT calls correspond to onset of a shape bifurcation that generates an extra endcap in the ETD
simulation. The black arrow indicates choice of parameters in simulations of Section 4.

of β1+β2 < 3 can lead to FFT counts that are several orders of magnitude higher per
time-unit at a fixed local truncation error. The left panel provides total FFT counts for the
IMEX scheme with β2=3−β1, showing that the performance is optimal so long as neither
β1 nor β2 are too small. The right panel shows performance of the SAV scheme for each
of the five benchmark problems. The choice β1 =2 is taken as the default for both IMEX
and SAV.

3.6 The ETDRK2 scheme

For the temporal discretization, the FCH equation (2.11) can be viewed as an infinite
dimensional ODE written in the following operator splitting form

du
dt

=Lu+N (u), (3.26)

where L is a negative-definite linear differential operator and N (u) is remaining nonlin-
earity. We may multiply both sides of (3.26) by the linear semigroup e−Lt, to obtain the
“exponentiated” form of (3.26) (

e−Ltu
)

t =e−LtN (u). (3.27)

For time-step k = tn+1−tn, integrating (3.27) over [tn,tn+1] yields the time-differenced
system,

u(tn+1)=eL(t
n+1−tn)u(tn)+

∫ tn+1

tn
eL(t

n+1−s)N (u(s))ds

=eLku(tn)+
∫ k

0
eL(k−s)N (u(tn+s))ds. (3.28)
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The exponential time differencing (ETD) approach uses this formulation, arriving at an
iterative scheme by approximating the integrals with finite differences, more details can
be found in [13, 16, 17, 32]. Precisely, the explicit first order ETD Runge-Kutta (ETDRK1)
scheme uses the approximation N

(
u(tn+s)

)
≈N (un) for s∈ [0,k]. This yields

un+1=eLkun+
∫ k

0
eL(k−s)ds N (un)=eLkun+L−1(eLk− I

)
N (un). (3.29)

The explicit second order ETD Runge-Kutta (ETDRK2) scheme uses a linear approxima-
tion for N

(
u(tn+s)

)
≈ (1− s

k )N (un)+ s
kN (un+1) for s∈ [0,k]. This yields the scheme


ũn+1=eLkun+

∫ k

0
eL(k−s)N (un)ds,

un+1=eLkun+
∫ k

0
eL(k−s)

[
(1− s

k
)N (un)+

s
k
N (ũn+1)

]
ds.

(3.30)

Evaluating the integrals exactly, we find


ũn+1=eLkun+L−1(eLk− I

)
N (un),

un+1= ũn+1+L−1
[
L−1(eLk− I)−kI

]N (ũn+1)−N (un)

k
.

(3.31)

For the FCH equations (2.11) and (3.26), we mirror the IMEX and SAV approach, choosingL=∆
(

ε4∆2−2αmε2∆+α2
m

)
−κ0I+κ2ε2∆,

N (u)=∆NIMEX(u)+κ0u−κ2ε2∆u,
(3.32)

where κ0,κ2 are some positive constants and I is the identity operator. Numerical tests
show that FFT calls of ETDRK2 are not sensitive to the choice of κ0 and κ2. We take
κ0 = 10−2, κ2 = 15 in all simulations because of slightly improvement for FFT calls and
accuracy. We refer to ETDRK2 as ETD for brevity.

4 Benchmark simulations

We present an overview of the Benchmark simulations for local truncation error σtol =
10−5, for which the PSD scheme is accurate while the IMEX, SAV, and ETD schemes are
borderline accurate. Generically we find that a global L2(Ω) relative discretization error
of 2.5×10−3 is sufficient to ensure that each scheme is quantitatively accurate, with the
correct numbers, types, and placements of defects.
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4.1 Sub-critical benchmark

The sub-critical benchmark has a low level of dispersed diblock polymer material, con-
trolled by the parameter d in (2.13), while the relatively mild concavity of Wq at u= b−,
controlled by αm(0) =W ′′q (b−)

∣∣
q=0, leads to a gentle absorption rate. The bilayer inter-

face profile does not pearl and remains a simple closed curve from initial data to its final
equilibrium shape, as shown in Fig. 5 at times T=10 and T=250. As shown in [6], gen-
tle absorption drives motion against curvature, regularized by surface diffusion, which
relaxes to a curvature driven flow as the background material is depleted. All schemes
are in quantitative agreement, as can be verified by the contour plot comparison in Fig. 8
(left) and the data of Table 4.

Table 4: L2 relative error between (PSD, IMEX, SAV, ETD) for each benchmark simulations at final time.

Benchmark IMEX /PSD SAV /PSD SAV /IMEX ETD/PSD T
Sub-Critical 7.276E-03 7.315E-03 4.103E-05 250

Critical 2.204E-03 2.212E-03 1.796E-05 250
Super-Critical 8.817E-02 8.819E-02 4.156E-05 1.568E-02 250

Foot 1 2.358E-03 2.359E-03 1.702E-06 50
Foot 2 3.318E-04 3.322E-04 6.195E-07 50

Figure 5: Simulation of the sub-critical benchmark with q=0, σtol =10−5 and N=256 at times T=10 (left)
and T = 250 (right). All schemes agree to within L2 relative error 7×10−3 as reported in Table 4. The red
number on colorbar indicates max{u}.

4.2 Critical benchmark

For the critical case the value of η2 and d are tuned to create a strongly pearled interface
and a long pearled transient, lasting roughly from T= 4 to T= 21. The bilayer interface
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Figure 6: Simulation of the critical benchmark with q= 0, σtol = 10−5 and N = 256 at times T= 15(left) and
T=21(right). All schemes agree to within L2 relative error 2×10−3 as reported in Table 4. The red number
on colorbar indicates max{u}.

pearls transiently, forming 21 pearls, whose discrete count generates a thresholding effect
that slows the absorption of the dispersed amphiphilic polymer as the interface must
generate new pearls to lengthen. During the 21-pearl transient period the pearled bilayer
interface undergoes a “bicycle chain” meander in which adjacent pearls move in opposite
directions, either in towards the center or out towards the boundary of the domain, as can
be seen in Fig. 6 (left). At time T=21 the pearls have reduced in size, and two extra pearls
form at the points of highest curvature. The formation of the additional pearls facilitates
an absorption of mass. As the background level of amphiphilic material is depleted the
rate of absorption slows and the interface returns to an unpearled state, similar to that
depicted in Fig. 5 (right) that is able to move freely under a curvature driven motion.
No endcap defects are formed in the critical benchmark, and each of the computational
schemes are in quantitative agreement.

4.3 Super-critical benchmark

The sub-critical and super-critical benchmarks differ only in the level of the background
material, controlled by the parameter d in (2.13). The elevated value of this parameter
in the super-critical benchmark increases the rate of arrival of mass to the interface, ex-
ceeding the interface’s capacity to absorb the arriving mass via a curve lengthening flow
or by pearl generation. The interface undergoes defect generation. For the super-critical
benchmark with σtol = 10−5 the output from the four schemes do not agree at leading
order, as can be seen in Fig. 7. For the PSD and ETD schemes the bilayer interface ab-
sorbs material from the background and pearls locally at points of high curvature, and
then ejects 8 endcap defects, five of which intersect back with the underlying interface,
forming closed loops. Two of the loops subsequently merge to form an extended loop
which grows into a cisternal structure characterized by two long parallel interfaces. The
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Figure 7: Simulations of the super-critical benchmark with q = 0, σtol = 10−5 and N = 256 at time T = 50
(left) and T=250 (right). The top row presents the PSD simulation and the bottom row represents the SAV
simulation. The IMEX and SAV simulations are very similar, and the PSD and ETD simulations are very
similar, but the two groups of simulations disagree, being separated by an L2 relative error of 9×10−2, as
reported in Table 4. The red number on colorbar indicates max{u}.

IMEX and SAV simulations differ from the PSD and ETD , but agree with each-other.
They also produce 8 endcap defects initially, however only four of them subsequently
form closed loops. Two of these loops merge, forming a cisternal structure, however
there are two small endcaps in the IMEX and SAV simulations, in contrast to the one
small endcap in the PSD and ETD simulation. At longer times the cisternal region grows,
consuming structures and at time T = 250 it leaves one loop, one long endcap, and one
short endcap in all simulations – however in the SAV and IMEX simulations the distance
between cisternal region and small loop is significantly longer than in PSD and ETD sim-
ulations. Fig. 8 shows the levels sets corresponding to u=−0.12 for the sub-critical and
super-critical benchmarks with σtol = 10−5 and N = 256, showing their agreement in the
sub-critical benchmark and their disparity in the super-critical benchmark. In the super-
critical benchmark the higher rate of absorption driven by the higher initial background
level of u produces dynamic choices associated to endcap formation that require greater
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Figure 8: Contour curves from each of the simulations of each of the schemes with σtol =10−5 and N=256.
The level set u=−0.12 for (left) the sub-critical simulation at T=10 and (right) the super-critical benchmark
at T=50.

10-1 100 101 102 103

-0.02

-0.01

0

0.01

0.02

PSD: center
PSD: corner
IMEX: center
IMEX: corner
SAV: center
SAV: corner
ETD: center
ETD: corner

50 150 250 350 450
-0.0205

-0.02

-0.0195

-0.019

Center values

Figure 9: Value of u−b− at center point (solid) and corner point (dashed) of computational domain for the
sub-critical (left) and super-critical (right) benchmarks with σtol =10−5. Horizontal axis is log of time.

accuracy than the linearly implicit schemes can achieve at σtol = 10−5. If σtol is reduced
to 10−6, then PSD and ETD simulations do not change quantitatively, while the SAV and
IMEX simulations move into quantitative agreement with the PSD and ETD schemes.

The value of u in the far field, away from the interfacial structure, is asymptotically
constant at equilibrium and has been shown to be a key bifurcation parameter for the
onset of pearling, [34, 35]. Faithful resolution of this value is essential to an accurate
simulation. Fig. 9 traces the evolution of the value of u−b− at the domain center (solid
lines) and domain corner (dashed lines) for each of the simulation strategies. For the sub-
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critical simulation no defects are formed and the far-field values of u relax to a tight range
of equilibrium values over the time frame T = 75∼ 100. The super-critical simulations
have various defect merging events and each is associated with a small excursion in the
background levels. In the inset of Fig. 9 (right) these excursions can be seen at T=210,330,
and 460 for the PSD scheme. For the ETD scheme the excursions are similar but can be
delayed by up to T = 20. Conversely for the IMEX and SAV schemes the background
levels are in close agreement, recording excursions T = 150,350, and 500, but differ in
both timing and in number of events from the more accurate PSD and ETD simulations.

4.4 Foot 1 benchmark

The Foot 1 and sub-critical benchmarks, are identical in initial data and parameters with
the exception of the value of the concavity of the well Wq, controlled by the parameter
q. For Foot 1 we take q= 0.2 which increases the value of αm(q)=W ′′q (b−), as depicted
in Fig. 2. This adjustment raises the energy associated to small, spatially uniform values
of u, thereby increasing the rate of absorption of material from the bulk. Although the
total amount of material in the background is the same in both benchmarks, the increased
absorption rate in the Foot 1 benchmark leads to defect formation. We consider only the
PSD, IMEX, and SAV schemes, and each capture these events with quantitative accuracy,
as shown in Table 4. In Fig. 10 (left) the pearling and defect formation are visible in the
lower-right of the bilayer interface already at time T=1.5. At time T=50 the simulations
produce six closed loops place roughly symmetrically around the bilayer interface. This
structure is quasi-stable, but eventually evolves onto a double-sheeted bubble similar to
that depicted in the right-most panel of the top row of Fig. 18.

Figure 10: Simulation of the Foot 1 benchmark with q= 0.2, σtol = 10−5 and N = 256 at times T = 1.5 (left)
and T=50 (right). All three schemes agree to within L2 relative error 3×10−3 as reported in Table 4. The red
number on colorbar indicates max{u}.
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4.5 Foot 2 benchmark

The Foot 2 and sub-critical benchmarks have an identical setup with the exception of
the value of q, which is taken to be q = 0.5 in Foot 2. This introduces a very strong,
nonlinear stiffness, and the large value of αm =W ′′q (b−)

∣∣
q=0.5 significantly increases the

energy penalty associated to dispersed amphiphilic material. As a consequence its rate
of absorption onto the bilayer interface increases, inducing a curve-splitting bifurcation
in which the bilayer interface splits directly in two, as shown in Fig. 11 (left) at T=1. All
three schemes agree qualitatively on the 512×512 mesh, producing four loops and two
double loops. Grid refinement in Table 5 shows that the N = 256 grid is insufficient to
produce accurate results. Further grid refinement to N=1024 yields quantitative agree-
ment with the N=512 simulations. The large value of W ′′q (b−) for q=0.5 yields a profile
that is much less smooth. The spatial convergence to the far-field value occurs at the

exponential rate
√

W ′′q (b−)
/

ε, which is significantly greater for q=0.5, necessitating the
higher spatial resolution.

The time-trace of the background levels, u−b− evaluated at the domain center (solid)
and domain corner (dashed), are presented for the Foot 2 benchmark in Fig. 13 (left).
It has several notable differences from the sub-critical benchmark presented in Fig. 9
(left). The most salient distinction is that the large value of αm(0.5) greatly increases the
temporal rate of absorption of amphiphilic material from the background. For the Foot 2
benchmark the background state begins to achieve its equilibrium value at T = 1 and is
fully equilibrated around T=7∼8. This is roughly 10-15 times faster than the relaxation
for the q=0 sub-critical benchmark, depicted in Fig. 9.

Figure 11: Simulation of the Foot 2 benchmark with q=0.5, σtol=10−5 at times T=1 (left) and T=50 (right)
for N =512. All three schemes agree to within L2 error 1×10−2 as reported in Table 4. The red number on
colorbar indicates max{u}.
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Table 5: L2 grid refinement (absolute) error with the PSD scheme.

N 256 / 512 512 / 1024
Sub-Critical 6.218E-04

Critical 3.827E-04
Super-Critical 2.589e-04

Foot 1 8.502E-02
Foot 2 1.008 5.762E-04

5 Computational accuracy and efficiency

The four schemes presented are second order accurate, as verified by the convergence
study presented in Table 6. Nevertheless, the performance of the schemes is not equally
accurate nor efficient, particularly as the nonlinear stiffness parameter q is increased.
Generally the ETD scheme requires substantially smaller time steps to achieve compet-
itive local truncation errors. This is consistent with analysis in [8] which showed that

Table 6: L2 temporal convergence errors and rates. The error is determined by comparison to PSD with a
fixed temporal step size k=10−6 and itol =10−11.

Schemes IMEX PSD SAV ETD

fixed k L2 Error Rate L2 Error Rate L2 Error Rate L2 Error Rate

8×10−2 2.20E-01 7.03E-05 2.20E-01

4×10−2 5.38E-02 2.03 1.77E-05 1.99 5.38E-02 2.03

2×10−2 1.37E-02 1.98 4.43E-06 2.00 1.37E-02 1.98

1×10−2 3.54E-03 1.95 1.11E-06 2.00 3.54E-03 1.95

5×10−3 9.31E-04 1.93 2.79E-07 1.99 9.31E-04 1.93 3.47E-01

2.5×10−3 2.46E-04 1.92 8.36E-08 1.74 2.46E-04 1.92 1.41E-01 1.30

1.25×10−3 6.47E-05 1.93 6.89E-08 0.28 6.46E-05 1.93 5.05E-02 1.48

6.25×10−4 1.69E-05 1.94 6.62E-08 0.06 1.69E-05 1.94 1.65E-02 1.61

3.125×10−4 4.37E-06 1.95 5.81E-08 0.19 4.37E-06 1.95 5.07E-03 1.71

1.563×10−4 1.12E-06 1.96 1.12E-06 1.96 1.48E-03 1.77

3.906×10−5 1.17E-04 1.85

9.766×10−6 8.51E-06 1.90

2.441×10−6 5.77E-07 1.95
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Runge-Kutta based schemes, even fully implicit ones, can lead to larger truncation er-
rors. It is clear that the ETD scheme achieves second order accuracy, however it incurs a
larger constant from amplification of error in the stages due to the presence of large space
gradients in the bilayer morphologies. We discuss the relation of accuracy to energy de-
cay, global discretization error, and computational efficiency.

5.1 Energy decay

A major feature of gradient schemes is the decay of the overall system energy. Much
attention has been given to the construction of gradient stable schemes for which energy
decay is unconditional with respect to the temporal step-size. However in gradient flows
that generate a rich variety of structures issues of accuracy move to the forefront and en-
ergy decay ideally becomes a consequence of accuracy. For the super-critical benchmark,
the various competing outcomes are significantly different but have only marginally dif-
ferent energies and considerable accuracy is required for a scheme to differentiate be-
tween the available options. As shown in Fig. 12 (left), with σtol =10−5 for each of the 5
benchmarks the energy decay behavior is very similar and decays uniformly. There are
however important differences. As the middle inset shows, for the super-critical bench-
mark the energy trace for the IMEX and SAV simulations are almost indistinguishable
from each-other, but diverge from the more accurate PSD simulation with roughly a 1%
relative error. The differences in energy decay, and solution u, are largely erased for IMEX
and SAV when σtol is reduced to 10−6. The ETD has an energy trace that is more faithful
to the PSD, but has a notable excursion for T∈[750,850] that is eliminated for the reduced
value σtol = 10−6. The second inset shows detail of the Foot 1 benchmark. In this case
the PSD , IMEX , and SAV schemes have reasonable quantitative agreement. And error
is further reduced by taking σtol to be 10−6 in IMEX and SAV. These features emphasize
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Figure 12: (Left) System energy verses time on a semilog-x scale for each of the five benchmark problems for
each scheme with σtol =10−5. The boxed insets for the super-critical (middle) and foot 1 (right) benchmarks
show more detail and include results for IMEX and SAV with σtol =10−6.
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Figure 13: (Left) Value of u−b− at center point (solid) and corner point (dashed) of the computational
domain for the q = 0.5 Foot 2 benchmark for σtol = 10−5 and N = 512. (Right) Evolution of the adaptive
temporal step-size on a log-log scale for each of the four schemes for the q = 0 super-critical benchmark
(solid) and the q=0.5 Foot 2 benchmark (dashed). Horizontal axis is log of time.

that system energy can be a poor proxy for accuracy, and that energy decay is generally
a minor benchmark for a gradient flow.

The time-stepping profiles for the IMEX and SAV schemes are remarkably similar,
and differ in important ways from that of the PSD scheme. As shown in Fig. 13 (right),
the PSD generically takes the largest time step-sizes, and typically hits the maximum
step-size ceiling kmax shortly after the resolution of the initial transient. This ceiling is
required to insure the convergence of the nonlinear iterative scheme and to optimize its
performance as measured by FFT per time unit. This value is smaller for the stiffer Foot
2 benchmark than for the super-critical benchmark as reported in Table 3. Indeed the
time-step profile for PSD is largely equivalent for the super-critical and the Foot 2 bench-
marks, until it hits the lower value of kmax for the Foot 2 benchmark. This is in contrast
to the IMEX and SAV profiles which are different for the two benchmark problems, but
largely agree with each other. Each of the schemes has swings in step size of roughly one
order of magnitude during the various defect generation and merging events that occur
after the initial transient. The step sizes for the IMEX and SAV schemes are generically
smaller than those for PSD, by as much as two orders of magnitude for the stiffer Foot
2 benchmark. However this is offset by the growing number of iterations required for
solving the stiffer nonlinear system in this problem. The ETD scheme has the smallest
time steps, typically over an order of magnitude smaller than any of the BDF2 schemes.

An excellent proxy for accuracy is to determine the lowest (critical) value of the back-
ground level, as measured by the initial data parameter d in (2.13), at which a defect
is generated within the flow. The onset of a defect is easily detected through the maxi-
mum value of u, as the maximum value of the bilayer profile in these simulations occurs
at u= 0.3566, while defects and higher codimensional structures such as micelles reside
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Table 7: The dependence of the critical value of d in (2.13) upon σtol for each scheme.

σtol PSD IMEX SAV

10−5 0.7527 0.7540 0.7541

10−6 0.7525 0.7529 0.7529

10−7 0.7526 0.7527 0.7527

10−8 0.7526 0.7526 0.7526
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Figure 14: Running value of max(u) from the PSD scheme for the critical benchmark problem with d =
0.7523,··· ,0.7728 in increments of 0.0001 when σtol=10−7. When accurately resolved the defect onset occurs
at the critical value d=0.7526.

much more deeply in the right well of Wq, with maximum values close to u=0.74. Track-
ing the temporal evolution of maxu yields a strong dichotomy. We fixed the parameters
as in the critical benchmark problem but slightly adjusted the value of d to modify the
amount of amphiphilic material in the bulk. The critical d value, reported in Table 7 de-
pends upon the local truncation error, but converges to a common value of d= 0.7526
with decreasing σtol. Indeed the PSD scheme is very close to identifying the correct crit-
ical value with σtol = 10−5 while IMEX and SAV require a value of σtol of 10−7 or 10−8

to achieve similar accuracy. The time evolution of max(u(·,t)) under PSD for the critical
benchmark parameters and for seven different value of d is presented in Fig. 14.

5.2 Global discretization error verses computational cost

The definitive measure of accuracy is to compute the global discretization error of a sim-
ulation as measured against a known highly accurate answer. To produce these highly-
accurate solutions we conduct a spatial grid refinement study for each benchmark prob-
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Figure 15: (Left: blue y-axis and lines) Global L2 relative error verses σtol at T = 250 for the q = 0 super-
critical benchmark as measured by comparison to the most accurate solution. (Left: red y-axis and lines)
Computational cost verses σtol as measured by total number of FFT calls. (Right) “Dollars-per-digit” or
computational cost verses global L2 relative error, plotted parametrically in σtol.

lem and each computational scheme. For all but the stiffest Foot 2 benchmark increasing
the grid from N = 256 to N = 512 produces consistent results, with solution differences
reported in Table 5. We present results only to the accuracy determined within this grid
refinement study. Specifically the highly accurate simulations are calculated with the
PSD scheme with σtol =10−9 for q=0, and with σtol =3×10−8 for q=0.2. For q=0.5, the
IMEX scheme with σtol = 3×10−9 is used. The output of these simulations are taken as
the highly accurate simulation against which others are compared. For all three schemes,
sufficient refinement of σtol lead to a global error that is within the anticipated accuracy
of the scheme. Indeed our computations find that a global L2(Ω) relative discretization
error of 2.5×10−3 is generically sufficient to ensure that scheme is quantitatively accurate,
with the correct numbers, types, and placements of defects.

We measure the computational efficiency of the three schemes in two ways. First as
global relative truncation error, Grte, verses σtol, and then more meaningfully as global
discretization error verses FFT calls. This latter is euphemistically referred to as the
dollars-per-digit metric. The first result, presented in Fig. 15 (left), shows the decay in
global L2 relative error with decreasing σtol. The blue curves, corresponding to the left
(blue) vertical axis, show that all four schemes improve in global accuracy with decreas-
ing σtol. For the super-critical benchmark the linear-implicit IMEX and SAV schemes are
inaccurate for σtol>4×10−6 and then have global discretization errors that decay linearly
on a log-log plot, corresponding to a global discretization error roughly proportional the
2/3 power of the local truncation error. The ETD scheme is more accurate than IMEX
and SAV for σtol = 10−5 but becomes somewhat less accurate than IMEX and SAV when
decreasing σtol. Conversely, the PSD is accurate for all σtol < 1×10−3, but its global ac-
curacy at first improves sub-linearly with σtol on the log-log scale before setting into the
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2/3 power law relation between global discretization and local truncation errors. For the
linear-implicit schemes the workload as measured by total FFT calls is remarkably linear
as function of local truncation error on the log-log curve. Their workload grows approx-
imately as a −1/2 power of the local truncation error over three orders of magnitude,
with the IMEX more efficient than the SAV by a fixed factor of 1.4 over this range. The
ETD scheme has a significantly higher workload, often by more than an order of mag-
nitude, across all ranges of σtol. The PSD workload starts out significantly higher than
the linear-implicit schemes, but grows more slowly, becoming comparable at very small
values of σtol.

A more intuitive comparison of the performance arises from plotting the FFT calls
verses the global discretization error, with σtol acting as a parameterization of the curve.
This is the dollars-per-digit plot, shown in Fig. 15 (right). In this plot, the lowest curve
attains the desired global discretization error with the least computation cost. Setting
Grte=2.5×10−3 as an acceptable upper limit, we find that all schemes except ETD achieve
this global tolerance at comparable computational costs that correspond to disparate lo-
cal truncation errors. The IMEX scheme is generally the most efficient, hitting the global
accuracy mark with 1.5×105 FFT calls at σtol = 3×10−6, while PSD does so with 2×105

FFT calls at a much lower σtol = 10−3, and SAV with 2×105 FFT calls at σtol = 3×10−6.
However the efficiency of the PSD decays with global relative error above this acceptable
upper limit, recovering only at very small global error. The overall result is a large in-
terval in which the linear-implicit schemes slightly outperform PSD. The ETD scheme is
not competitive, requiring considerably more computational effort to achieve the same
accuracy. A heuristic argument for this result, based upon scaling of trunction error in
the thin-interface regime (ε≪1) is presented in Appendix B.

For the stiffer Foot 1 benchmark simulations with q=0.2 the linear-implicit schemes
perform at a similar level to the q=0 benchmarks, while the nonlinearly implicit PSD ex-
periences slower convergence in its nonlinear solver. As shown in Fig. 16 (left), the global
error for each scheme is an approximately linear function of local truncation error on the
log-log scale, corresponding to a power law exponent in the range 0.5∼0.6 that is slightly
reduced from the 2/3 exponent observed for the super-critical benchmark. The compu-
tational efficiency plot, Fig. 16 (right), the data for both Foot 1 and Foot 2 benchmarks are
compared. The linear-implicit schemes substantially outperform the nonlinear-implicit
PSD, with the IMEX scheme preserving its proportional efficiency over SAV over two or-
ders of magnitude of global discretization error. For the linear-implicit schemes the com-
putational cost is very similar for Foot 1 and 2, with the Foot 2 simulations slightly more
accurate due to the increase in spatial resolution to N = 512. Conversely, the nonlinear-
implicit PSD requires significantly more effort with increasing q as the iteration count
in the nonlinear solver increases significantly. The minimal cost for SAV to achieve the
acceptable global discretization error is roughly 1.4 that of IMEX. It is worth noting that
PSD is comparably more efficient at lower global error; indeed it requires only 5 and 20
times the computational effort of IMEX to achieve an error of 7×10−4 for the Foot 1 and
Foot 2 benchmarks, respectively.



A. Christlieb et al. / Commun. Comput. Phys., 37 (2025), pp. 877-920 911

10-910-810-710-610-510-410-3

tol

10-5

10-4

10-3

10-2
G

lo
b
a
l 
L

2
 r

e
la

ti
v
e
 e

rr
o
r

104

105

106

F
F

T
2
 c

a
llsPSD

IMEX
SAV

PSD
IMEX
SAV

2.5e-3

10-610-510-410-310-2

Global L2 relative error

104

105

106

107

F
F

T
2
 c

a
lls

Foot 1: PSD
Foot 1: IMEX
Foot 1: SAV
Foot 2: PSD
Foot 2: IMEX
Foot 2: SAV

2.5e-3

Foo2: when L2 relative error = 2.5e-3
PSD: 

max
 = 0.07

IMEX: 
max

 = 3.2e-4

SAV: 
max

 = 3.2e-4

Foot1: when L2 relative error = 2.5e-3
PSD: 

max
 = 7.2e-5

IMEX: 
max

 = 1.1e-5

SAV: 
max

 = 1.1e-5

Figure 16: (Left: blue y-axis and lines) Global L2 relative error verses σtol at T = 50 for the q= 0.2 Foot 1
benchmark as measured by comparison to the most accurate solution. (Left: red y-axis and lines) Computa-
tional cost verses σtol as measured by total number of FFT calls. (Right) “Dollars-per-digit” or computational
cost verses global L2 relative error for Foot 1 and Foot 2 benchmarks, plotted parametrically in σtol.

In Fig. 17 the temporal trace of the global error is plotted for local truncation errors
of σtol =10−5,10−6, and 10−7. In all cases the PSD is the most accurate, generically by an
order of magnitude at the same local truncation error. However the accuracy for PSD
increases only modestly with decreasing σtol while SAV and IMEX schemes have more
significant improvements. For the sub-critical benchmark the global error accumulates
slowly in each of the schemes as the shape of the interface evolves and inaccuracies in
its location accumulate. For the super-critical benchmark the error has peaks at each of
the major defect merging events that occur at t=50,150,185,210. These peaks reflect the
impact of slight timing errors in the defect merging events and in the spatial structure
of the merging transient. Each scheme shows about a half-order of magnitude loss of
accuracy during the merging that is recovered afterwards. This holds except for the SAV
and IMEX schemes with σtol =10−5 which are both insufficiently accurate to capture the
correct sequencing of the defect evolution.

6 Conclusion

We have demonstrated that the morphological complexity that develops within the gra-
dient flows of the FCH energy requires accuracy for faithful representation. The bench-
mark problems place a complex labyrinth of saddle points between the initial data and
the end state solution. The saddle points’ energies differ by algebraically small orders of
ε≪ 1. Unlike problems in one space dimension which manifest exponentially long res-
idence times, [8], resolving the algebraically small differences in the energy landscape
makes these benchmarks ideal: simple to code, quick to simulate, and effective at expos-
ing the trade-offs between accuracy and efficiency in a stiff, highly non-convex problem.
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Figure 17: Time evolution of the global L2 relative error between output of the three schemes and the highly
accurate solution for σtol=10−5,10−6, and 10−7 for (top) the sub-critical benchmark and (bottom) the super-
critical benchmark.

These benchmarks model the chemical and material science problems for which com-
putational accuracy is crucial. Small errors in the resolution of the structure of different
configurations generate divergent alternate temporal evolutions and errors that grow to
become leading order. The impact of this is magnified as the nonlinear stiffness in the
model is increased. The nonlinear solve requires in the more strongly implicit PSD ap-
proach tends to raise the overall accuracy of the scheme, and for less-stiff forms of the
model this compensates for the increased computational effort required for the iterative
solver. The result is that the linear-implicit and nonlinear-implicit models are compa-
rable. However for the more nonlinearly stiff versions of the model, the linear-implicit
schemes require no tuning and experience only modest decline in efficiency, while the
nonlinear-implicit PSD requires tuning of the error tolerance and maximum time-step
parameters to optimize its performance. Despite this tuning the efficiency of the PSD
scheme falls behind the linear-implicit schemes by a factor that is comparable to the in-
crease in stiffness, as measured by the left-well concavity αm(q)=W ′′q (b−).
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Within the linear-implicit schemes the performance of the IMEX and SAV schemes
are almost indistinguishable. Their global accuracy as a function of local truncation er-
ror are almost identical. The only discrepancy lies in the computational effort which is
routinely a factor of 1.4 larger for the SAV scheme. This is a result of the extra steps re-
quired to resolve the larger SAV system of equations. Beyond the guarantee of the decay
of the associated modified energy, it is difficult to identify a feature in the SAV scheme
in which it improves upon the simpler IMEX approach. Far and away the most impor-
tant step in balancing the linear-implicit schemes is selecting a proper linear term for the
implicit step. Given the theoretical understanding of the importance of the background
state (the value of u away from non-trivial structures), it is reasonable and efficient to use
the linearization about the spatially constant state u≡b−. We generalize this to the family
of operators presented in (3.18), and find that the choice of β1+β2≈ 3 provides optimal
performance, with the choice β1 =2 and β2 =1 corresponding to the linearization about
the spatially constant background state. These constant coefficient linear operators are
trivially inverted in the spatially periodic setting considered herein. It certainly may not
be the case that such a convenient and efficient linear-implicit operator is available in all
systems. The ETD scheme does not seem to have competitive accuracy in the thin inter-
face regime of the FCH system. The ETD formulation has been proven effective at han-
dling linear stiffness. It places the higher-order differential operators into a semi-group
where they are more stable to discretization error. However, as argued in Appendix B,
the local truncation error in the ETD scheme seems to have poorer scaling with respect
to interfacial thickness in the thin interface regime ε≪ 1 than IMEX type schemes. The
large spatial gradients presented by the bilayer interfaces in the super-critical benchmark
problem lead to an amplification of error in the ETD Runge-Kutta approximation.

As a final demonstration of the complexity possible within the FCH gradient flow, we
present a series of computations that show a putative equilibrium state resulting from the
gradient flow of the initial data from the super-critical benchmark, see Fig. 18. The only
variation is in the value of the parameter η2, which represents the aspect ratio of the
amphiphilic molecule. The decreasing values of η2 correspond to the increasing values
of wPEO in the horizontal axis of the experimental bifurcation diagram presented in Fig. 1.
Perhaps the fundamental contribution of this numerical study lies in the suggestion that
the shapes of the final structures produced in these casting problems are not uniquely
determined by the properties and densities of the molecules they are composed of, but
also depend upon the history of the morphology. Once defects are induced by transient
flow, they become an integral part of the energy landscape and can entrap the gradient
flow at a rich variety of local minima. These gradient flow transients form an intriguing
phylogenesis, whose resolution requires significant accuracy.
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Appendices

A Proof of the energy decay in SAV – Theorem 3.1

From the relations (3.21)-(3.22) the SAV scheme with fixed time-step k>0 takes the form

3un+1−4un+un−1

2k
=∆µn+1, (A.1)

µn+1=L0un+1+L1ūn+1+rn+1Xn+1, (A.2)

3rn+1−4rn+rn−1=
∫

Ω

1
2

Xn+1(3un+1−4un+un−1)dx, (A.3)
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where ūn+1 = 2un−un−1 and Xn+1 = V[ūn+1]√
E1[ūn+1]+D0

. Taking the L2 inner product of (A.1)

with µn+1, and (A.2) with 3un+1−4un+un−1, we have

−2k∥∇µn+1∥2=(3un+1−4un+un−1,µn+1)

=(L0un+1,3un+1−4un+un−1)+(L1ūn+1,3un+1−4un+un−1)

+(rn+1Xn+1,3un+1−4un+un−1)

=: I1+ I2+ I3. (A.4)

From the identity

2a(3a−4b+c)=
(
|a|2+|2a−b|2

)
−
(
|b|2+|2b−c|2

)
+|a−2b+c|2, (A.5)

we deduce that

I1=
1
2

(
L0un+1,un+1

)
+

1
2

(
L0(2un+1−un),2un+1−un

)
− 1

2
(L0un,un)− 1

2

(
L0(2un−un−1),2un−un−1

)
+

1
2

(
L0(un+1−2un+un−1),un+1−2un+un−1

)
. (A.6)

From the identity

2(2b−c)(3a−4b+c)=
(
|a|2+|2a−b|2−2|a−b|2

)
−
(
|b|2+|2b−c|2−2|b−c|2

)
−3|a−2b+c|2,

(A.7)

we rewrite I2 as

I2=
1
2

(
L1un+1,un+1

)
+

1
2

(
L1(2un+1−un),2un+1−un

)
−
(
L1(un+1−un),un+1−un

)
− 1

2
(L1un,un)− 1

2

(
L1(2un−un−1),2un−un−1

)
+
(
L1(un−un−1),un−un−1

)
+

3
2

(
−L1(un+1−2un+un−1),un+1−2un+un−1

)
. (A.8)

Multiplying (A.3) by 2rn+1 and using identity (A.5), we get

I3=
(
|rn+1|2+|2rn+1−rn|2

)
−
(
|rn|2+|2rn−rn−1|2

)
+
∣∣rn+1−2rn+rn−1∣∣2. (A.9)
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Finally, since LSAV :=L0+L1 we may combine (A.4), (A.6), (A.8) and (A.9) to deduce

0≥−2k∥∇µn+1∥2

=
1
2

(
LSAV un+1,un+1

)
+

1
2

(
LSAV (2un+1−un),2un+1−un

)
+|rn+1|2+|2rn+1−rn|2

− 1
2
(
LSAV un,un)− 1

2

(
LSAV(2un−un−1),2un−un−1

)
−|rn|2−|2rn−rn−1|2

−
(
L1(un+1−un),un+1−un

)
+
(
L1(un−un−1),un−un−1

)
+

1
2

(
L0(un+1−2un+un−1),un+1−2un+un−1

)
+

3
2

(
−L1(un+1−2un+un−1),un+1−2un+un−1

)
+|rn+1−2rn+rn−1|2.

= Eaux
(
un+1,un,rn+1,rn)−Eaux

(
un,un−1,rn,rn−1)+|rn+1−2rn+rn−1|2

+
1
2

(
L0(un+1−2un+un−1),un+1−2un+un−1

)
+

3
2

(
−L1(un+1−2un+un−1),un+1−2un+un−1

)
. (A.10)

Dropping the last three non-negative terms in (A.10), yields (3.25).

B Heuristic analysis of time stepping accuracy

We adapt the analysis of time stepping in the thin-interface regime (0< ε≪ 1) from [4].
We consider a general form of the Allen Cahn system

Ut =LU+ f (U), (B.1)

with L= ∆ and f (U) =− 1
ε2 (U3−U). The ε scaling sets the late-state motion by mean

curvature to have normal velocity V =O(1). To take a time step from U0 at t=0 to U at
t= k we have the exact relation

U= ekLU0+
∫ k

0
e(k−s)L f (U(s))ds. (B.2)

Replacing f (U(s)) with f (U0) yields a first-order scheme ETDRK1. Carrying out the
integral

U∗= ekLU0+L−1(ekL− I) f (U0).

The error induced by the replacement satisfies

e0 := f (U(s))− f (U0)=O( fUkUt).



A. Christlieb et al. / Commun. Comput. Phys., 37 (2025), pp. 877-920 917

Generically for a quasi-steady front Γ the solution u takes the form U= g(z) where g is a
front profile and z= z(x) is the ε-scaled signed distance of x to Γ. Near the front U is not
close to ±1 and consequently fU =O(ε−2). Also near the front Ut = g′(z)V/ε=O(ε−1)
and ∆U= g′′(z)(V/ε)2=O(ε−2). The local truncation error has the general size

E0 :=
∫ k

0
e0ds=O

(
k2/ε3).

This is the same order as that found for the first order IMEX schemes.
Returning to the exact relation (B.2) the second order replacement

f (U(s))≈ f (U0)+
s
k
(

f (U∗)− f (U0)
)

,

yields the second-order ETDRK2 scheme

U=U∗+
1
k

∫ k

0
se(k−s)L( f (U∗)− f (U0)

)
ds,

=U∗+
L−2

k

(
ekL−(I+kL)

)(
f (U∗)− f (U0)

)
. (B.3)

The error sources arise first from that implicit in U∗ which is O(k2/ε3). Defining e1 to be
the error implicit in f (U∗) we have

e1=O
(
k2/ε5).

Other sources of error in this scheme are smaller, generallyO(k2/ε4). The associated local
truncation error

E1 :=
1
k

∫ k

0
se(k−s)Le1ds=

L−2

k

(
ekL−(I+kL)

)
e1≈

k
2

e1=O
(
k3/ε5).

A similar analysis applied to the second-order SBDF2 IMEX scheme shows that the time-
stepping error error scales like O(k3/ε4). For a prescribed local truncation error σ the
time step scaling for an SBDF2 IMEX code applied to the Allen Cahn system is k∼ ε

4
3 σ

1
3 ,

(see Table 1 of [4]). For ETDRK2 the time step scaling on the same system are limited to
k∼ ε

5
3 σ

1
3 . Moreover this work suggests that the scaling gap in the thin-interface error will

grow larger for higher order equations such as Cahn Hilliard and the FCH.

References

[1] S. Barnhill, N. Bell, J. Patterson, D. Olds, and N. Gianneschi, Phase diagrams of polynor-
bornene amphiphilic block copolymers in solution, Macromolecules 48 (2015) 1152-1161.

[2] A. Blanazs, S.P. Armes, and A. J. Ryan, Self-assembled block copolymer aggregates: From
micelles to vesicles and their biological applications, Macromol. Rapid Commun. 30 (2009)
267-277.



918 A. Christlieb et al. / Commun. Comput. Phys., 37 (2025), pp. 877-920

[3] L. Chen, X. Hu, and S.M. Wise, Convergence Analysis of the Fast Subspace De-
scent Method for Convex Optimization Problems, Math. Comput. 89 (2020) 2249-2282.
https://doi.org/10.1090/mcom/3526.

[4] X. Cheng, D. Li, K. Promislow, and B. Wetton, Asymptotic behavior of time stepping meth-
ods for phase field models, J. Sci. Comput. 86:32 (2021)

[5] Y. Chen, A. Doelman, K. Promislow, and F. Veerman, Robust stability of multicomponent
membranes: The role of glycolipids, Arch. Rational Mech. Anal. 238 (2020) 1521–1557.
https://doi.org/10.1007/s00205-020-01571-x.

[6] Y. Chen and K. Promislow, Curve Lengthening via Regularized Motion Against Cur-
vature from the Strong FCH Flow. J. Dyn. Differ. Equations 35 (2023) 1785–1841.
https://doi.org/10.1007/s10884-022-10178-7.

[7] Y. Chen and K. Promislow, Manifolds of amphiphilic bilayers: Stability up to the boundary,
J. Differential Equations 292 (2021) 1-69.

[8] A. Christlieb, J. Jones, K. Promislow, B. Wetton, and M. Willoughby, High accuracy solutions
to energy gradient flows from material science models, J. Comput. Phys. 257 (2014) 193-215.

[9] S.-H. Choi, T. Lodge, and F. Bates, Mechanism of molecular exchange in diblock copolymer
micelles: Hypersensitivity to core chain length, Phys. Rev. Lett. 104 (2010) 047802.

[10] R. Choksi and S. Ren, On the derivation of a density functional theory for microphase sepa-
ration of diblock copolymers, J. Stat. Phys. 113 (2003) 151-176.

[11] R. Choksi and X. Ren, Diblock copolymer/homopolymer blends: Derivation of a density
functional theory. Physica D 203(1-2) (2005) 100-119.

[12] A. Christlieb, N. Kraitzman, and K. Promislow, Competition and Complexity in Am-
phiphilic Polymer Morphology, Physica D 400 (2019) 132144.

[13] S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput.
Phys. 176, (2002) 430-455.

[14] S. Dai and K. Promislow, Geometric Evolution of Bilayers under the Functionalized Cahn-
Hilliard equation, Proc. R. Soc. Lond., Ser. A 469 (2013) 20120505.

[15] S. Dai and K. Promislow, Competitive Geometric Evolution of Amphiphilic Interfaces, SIAM
J. Math. Anal. 47 (2015) 347-380.

[16] Q. Du, L. Ju, X. Li, and Z. Qiao, Stabilized linear semi-implicit schemes for the nonlocal
Cahn-Hilliard equation, J. Comput. Phys. 363 (2018) 39-54.

[17] Q. Du, L. Ju, X. Li, and Z. Qiao, Maximum Bound Principles for a Class of Semilinear
Parabolic Equations and Exponential Time-Differencing Schemes, SIAM Rev. 63 (2021) 317–
359. https://doi.org/10.1137/19M1243750.

[18] W. Feng, Z. Guan, J.S. Lowengrub, X. Wang, S.M. Wise, and Y. Chen, A uniquely solvable,
energy stable numerical scheme for the functionalized Cahn–Hilliard Equation and its con-
vergence analysis, J. Sci. Comput. 76 (2018) 1938-1967.

[19] W. Feng, A.J. Salgado, C. Wang, and S.M. Wise, Preconditioned Steepest Descent Methods
for Some Nonlinear Elliptic Equations Involving p-Laplacian Terms, J. Comput. Phys. 334
(2017) 45-67.

[20] G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, International Series
of Monographs on Physics 134, Oxford: Clarendon Press, (2006).

[21] N. Gavish, G. Hayrapetyan, K. Promislow, and L. Yang, Curvature driven flow of bi-layer
interfaces, Physica D 240 (2011) 675-693.

[22] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-
Hall, Englewood Cliffs, NJ (1971).

[23] G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys.



A. Christlieb et al. / Commun. Comput. Phys., 37 (2025), pp. 877-920 919

Rev. E 50 (1994) 1325-1335.
[24] G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I.

Gaussian interface fluctuations, Phys. Rev. E 47 (1993) 4289-4312.
[25] G. Gompper and M. Schick, Correlation between structural and interfacial properties of am-

phillic systems, Phys. Rev. Lett. 65 (1990) 1116-1119.
[26] Y. Gong, J. Zhao, and Q. Wang, Arbitrarily high-order unconditionally energy sta-

ble SAV schemes for gradient flow models, Comput. Phys. Commun. 249 (2020).
https://doi.org/10.1016/j.cpc.2019.107033.

[27] E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential Equations I: Nonstiff
Problems, Springer, Berlin, (1993).

[28] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, Springer, Berlin, (1996).

[29] Q. Hong and Q. Wang, A hybrid phase field method for fluid-structure interactions in vis-
cous fluids, Arxiv, 1-34, https://arxiv.org/pdf/2109.07361.

[30] S. Jain and F.S. Bates, On the origins of morphological complexity in block copolymer sur-
factants, Science 300 (5618) (2003) 460-464.

[31] S. Jain and F.S. Bates, Consequences of nonergodicity in aqueous binary PEO-PB micellar
dispersions. Macromolecules 37 (2004) 1511-1523.

[32] L. Ju, J. Zhang, L. Y. Zhu, and Q. Du, Fast explicit integration factor methods for semilinear
parabolic equations, J. Sci. Comput. 62 (2015) 431-455.

[33] L. Ju, J. Zhang, and Q. Du, Fast and Accurate Algorithms for Simulating Coarsening Dy-
namics of Cahn-Hilliard Equations, Comput. Mater. Sci. 108 (2015) 272-282.

[34] N. Kraitzman and K. Promislow, Pearling Bifurcations in the strong Functionalion-
alized Cahn-Hilliard Free Energy, SIAM J. Math. Anal. 50 (3) (2018) 3395-3426,
https://doi.org/10.1137/16M1108406.

[35] K. Promislow and Q. Wu, Existence of pearled patterns in the planar Functionalized Cahn-
Hilliard equation, J. Differential Equations 259 (2015) 3298-3343.

[36] Z. Qiao, Z. Zhang, and T. Tang, An adaptive time-stepping strategy for the molecular beam
epitaxy models, SIAM J. Sci. Comput. 33 (2011) 1395-1414.

[37] J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (BDF2-SAV) approach for gradient
flows, J. Comput. Phys. 353 (2018) 407-416.

[38] J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (BDF2-
SAV) schemes to gradient flows, SIAM J. Numer. Anal. 56 (2018) 2895-2912.

[39] J. Shen, J. Xu, and J. Yang, A New Class of Efficient and Robust Energy Stable Schemes for
Gradient Flows, SIAM Rev. 61 (3), (2019) 474-506.
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