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Abstract. This paper presents new finite difference schemes for solving the Helmholtz
equation in the polar and spherical coordinates. The most important result presented
in this study is that the developed difference schemes are pollution free, and their
convergence orders are independent of the wave number k. Let h denote the step
size, it will be demonstrated that when solving the Helmholtz equation at large wave
numbers and considering kh is fixed, the errors of the proposed new schemes decrease
as h decreases even when k is increasing and kh>1.
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1 Introduction

In this paper, we study the Helmholtz equation in the exterior domain:

−∆u−k2u=0, in R
d\D, (1.1)

u|∂D = g1, (1.2)

∂ru− jku= o
(

||x||
1−d

2

)

, as ||x||→∞, (1.3)

where D is a bounded domain in R
d (d=2,3), k is the wave number, ∂r denotes the radial

derivative, g1 is a given function and j2 =−1.
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The problem (1.1)-(1.3) appears in many applications, such as the electromagnetic
wave scattering, acoustic and geophysical problems. Developing efficient and accurate
numerical schemes to solve the Helmholtz equation at large wave number k is a very
challenging task, and it has attracted a great of attention for a long time. Not only the
problem has an unbounded domain, but the solution also becomes highly oscillatory for
cases with large k. Many literatures have been devoted to the Helmholtz equation, see
[3,7,8,13,14,18,26,29,31–35] for the finite difference methods, [1,2,4–6,16,21,24,25,30,38]
for the finite element methods, [27, 28] for the spectral method, [19, 20] for the boundary
element method and [15, 17] for other techniques. An essential step to solve the above
problem is to consider a bounded computational domain (see [3, 19, 27, 28, 32, 35]):

−∆u−k2u=0, in Ω :=B\D, (1.4)

u|∂D = g1, (1.5)
(

∂ru− jku
)

|∂B = g2, (1.6)

where B∈R
d (d=2,3) is a sufficiently large ball containing D and g2 is a given function.

When approximating the Helmholtz equation (1.4)-(1.6) numerically, it will result a
numerical wave number which will disperse in non-dispersive media for most of the
existing numerical schemes. The numerical dispersion directly relates to the pollution
error of the computed solution, which is known as a “pollution effect” (see [5, 21]). The
“pollution effect” causes a serious problem when the wave number k is very large (see
[1, 21, 24, 25, 34]). It should be noted that while a numerical scheme works well for solv-
ing the problem (1.4)-(1.6) for small k, the accuracy and performance usually deteriorate
significantly as k increases. Due to the “pollution effect”, the computed results likely
become totally unacceptable when k is very large. To overcome this problem, many in-
vestigations have been reported in the past decades. For the finite difference methods,
Chen et al. [32, 35] proposed methods to minimize the numerical dispersion, and the use
of higher order finite difference schemes were also studied in [18, 29, 31]. For the finite
element methods, Babus̆ka et al. [5] designed a generalized finite element method to en-
sure that the pollution effect is minimal, further development can be found in [2, 30].
Assuming that kh is fixed, Ihlenburg and Babus̆ka [24,25] proposed the h-p finite element
method to solve the equations (1.4)-(1.6), in which the “pollution effect” can be reduced as
p increases or h decreases. This approach was continued and reported in [1,38]. In [27,28],
Shen and Wang considered the problem in polar and spherical coordinates, they analyzed
the spectral method and derived a complete error for the Helmholtz equation in 2D and
3D. Other techniques using the discontinuous Galerkin method and the discrete singular
convolution algorithm had also been investigated for problems with large wave numbers
(see [15, 17]).

Generally speaking, in order to ensure the bound of the relative error for the numeri-
cal solution of (1.4)-(1.6), it is necessary to impose the condition kβ(kh)γ=constant where
β > 0, γ≥ 0 are real numbers and h is the mesh size. For example, β = 2 and γ= 2 for
the standard finite difference method, β=2 and γ=4 for the fourth order compact finite


